1
|
Peoples LM, Isanta-Navarro J, Bras B, Hand BK, Rosenzweig F, Elser JJ, Church MJ. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate. mSystems 2024; 9:e0077024. [PMID: 38980051 PMCID: PMC11334502 DOI: 10.1128/msystems.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Brian K. Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James J. Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
2
|
Maeda T, Furusawa C. Laboratory Evolution of Antimicrobial Resistance in Bacteria to Develop Rational Treatment Strategies. Antibiotics (Basel) 2024; 13:94. [PMID: 38247653 PMCID: PMC10812413 DOI: 10.3390/antibiotics13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Laboratory evolution studies, particularly with Escherichia coli, have yielded invaluable insights into the mechanisms of antimicrobial resistance (AMR). Recent investigations have illuminated that, with repetitive antibiotic exposures, bacterial populations will adapt and eventually become tolerant and resistant to the drugs. Through intensive analyses, these inquiries have unveiled instances of convergent evolution across diverse antibiotics, the pleiotropic effects of resistance mutations, and the role played by loss-of-function mutations in the evolutionary landscape. Moreover, a quantitative analysis of multidrug combinations has shed light on collateral sensitivity, revealing specific drug combinations capable of suppressing the acquisition of resistance. This review article introduces the methodologies employed in the laboratory evolution of AMR in bacteria and presents recent discoveries concerning AMR mechanisms derived from laboratory evolution. Additionally, the review outlines the application of laboratory evolution in endeavors to formulate rational treatment strategies.
Collapse
Affiliation(s)
- Tomoya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita 565-0874, Japan;
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita 565-0874, Japan;
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Tveit AT, Söllinger A, Rainer EM, Didriksen A, Hestnes AG, Motleleng L, Hellinger HJ, Rattei T, Svenning MM. Thermal acclimation of methanotrophs from the genus Methylobacter. THE ISME JOURNAL 2023; 17:502-513. [PMID: 36650275 PMCID: PMC10030640 DOI: 10.1038/s41396-023-01363-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Methanotrophs oxidize most of the methane (CH4) produced in natural and anthropogenic ecosystems. Often living close to soil surfaces, these microorganisms must frequently adjust to temperature change. While many environmental studies have addressed temperature effects on CH4 oxidation and methanotrophic communities, there is little knowledge about the physiological adjustments that underlie these effects. We have studied thermal acclimation in Methylobacter, a widespread, abundant, and environmentally important methanotrophic genus. Comparisons of growth and CH4 oxidation kinetics at different temperatures in three members of the genus demonstrate that temperature has a strong influence on how much CH4 is consumed to support growth at different CH4 concentrations. However, the temperature effect varies considerably between species, suggesting that how a methanotrophic community is composed influences the temperature effect on CH4 uptake. To understand thermal acclimation mechanisms widely we carried out a transcriptomics experiment with Methylobacter tundripaludum SV96T. We observed, at different temperatures, how varying abundances of transcripts for glycogen and protein biosynthesis relate to cellular glycogen and ribosome concentrations. Our data also demonstrated transcriptional adjustment of CH4 oxidation, oxidative phosphorylation, membrane fatty acid saturation, cell wall composition, and exopolysaccharides between temperatures. In addition, we observed differences in M. tundripaludum SV96T cell sizes at different temperatures. We conclude that thermal acclimation in Methylobacter results from transcriptional adjustment of central metabolism, protein biosynthesis, cell walls and storage. Acclimation leads to large shifts in CH4 consumption and growth efficiency, but with major differences between species. Thus, our study demonstrates that physiological adjustments to temperature change can substantially influence environmental CH4 uptake rates and that consideration of methanotroph physiology might be vital for accurate predictions of warming effects on CH4 emissions.
Collapse
Affiliation(s)
- Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Andrea Söllinger
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Edda Marie Rainer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anne Grethe Hestnes
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Liabo Motleleng
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Hans-Jörg Hellinger
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
- University of Vienna, Doctoral School in Microbiology and Environmental Science, Vienna, Austria
| | - Thomas Rattei
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Vienna, Austria
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Grézal G, Spohn R, Méhi O, Dunai A, Lázár V, Bálint B, Nagy I, Pál C, Papp B. Plasticity and Stereotypic Rewiring of the Transcriptome Upon Bacterial Evolution of Antibiotic Resistance. Mol Biol Evol 2023; 40:7013728. [PMID: 36718533 PMCID: PMC9927579 DOI: 10.1093/molbev/msad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.
Collapse
Affiliation(s)
- Gábor Grézal
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged, Hungary,Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Orsolya Méhi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Translational Microbiology Research Lab, Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Viktória Lázár
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,SeqOmics Biotechnology Ltd., Mórahalom, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., Mórahalom, Hungary,Sequencing Platform, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary,National Laboratory of Biotechnology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | | |
Collapse
|
5
|
Matsui Y, Nagai M, Ying BW. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions. Front Microbiol 2023; 14:1145673. [PMID: 37032868 PMCID: PMC10073601 DOI: 10.3389/fmicb.2023.1145673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
The genomic, environmental, and evolutionary interruptions caused the changes in bacterial growth, which were stringently associated with changes in gene expression. The growth and gene expression changes remained unclear in response to these interruptions that occurred combinative. As a pilot study, whether and how bacterial growth was affected by the individual and dual interruptions of genome reduction, environmental stress, and adaptive evolution were investigated. Growth assay showed that the presence of the environmental stressors, i.e., threonine and chloramphenicol, significantly decreased the growth rate of the wild-type Escherichia coli, whereas not that of the reduced genome. It indicated a canceling effect in bacterial growth due to the dual interruption of the genomic and environmental changes. Experimental evolution of the reduced genome released the canceling effect by improving growth fitness. Intriguingly, the transcriptome architecture maintained a homeostatic chromosomal periodicity regardless of the genomic, environmental, and evolutionary interruptions. Negative epistasis in transcriptome reorganization was commonly observed in response to the dual interruptions, which might contribute to the canceling effect. It was supported by the changes in the numbers of differentially expressed genes (DEGs) and the enriched regulons and functions. Gene network analysis newly constructed 11 gene modules, one out of which was correlated to the growth rate. Enrichment of DEGs in these modules successfully categorized them into three types, i.e., conserved, responsive, and epistatic. Taken together, homeostasis in transcriptome architecture was essential to being alive, and it might be attributed to the negative epistasis in transcriptome reorganization and the functional differentiation in gene modules. The present study directly connected bacterial growth fitness with transcriptome reorganization and provided a global view of how microorganisms responded to genomic, environmental, and evolutionary interruptions for survival from wild nature.
Collapse
|
6
|
Mahilkar A, Raj N, Kemkar S, Saini S. Selection in a growing colony biases results of mutation accumulation experiments. Sci Rep 2022; 12:15470. [PMID: 36104390 PMCID: PMC9475022 DOI: 10.1038/s41598-022-19928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022] Open
Abstract
Mutations provide the raw material for natural selection to act. Therefore, understanding the variety and relative frequency of different type of mutations is critical to understanding the nature of genetic diversity in a population. Mutation accumulation (MA) experiments have been used in this context to estimate parameters defining mutation rates, distribution of fitness effects (DFE), and spectrum of mutations. MA experiments can be performed with different effective population sizes. In MA experiments with bacteria, a single founder is grown to a size of a colony (~ 108). It is assumed that natural selection plays a minimal role in dictating the dynamics of colony growth. In this work, we simulate colony growth via a mathematical model, and use our model to mimic an MA experiment. We demonstrate that selection ensures that, in an MA experiment, fraction of all mutations that are beneficial is over-represented by a factor of almost two, and that the distribution of fitness effects of beneficial and deleterious mutations are inaccurately captured in an MA experiment. Given this, the estimate of mutation rates from MA experiments is non-trivial. We then perform an MA experiment with 160 lines of E. coli, and show that due to the effect of selection in a growing colony, the size and sector of a colony from which the experiment is propagated impacts the results. Overall, we demonstrate that the results of MA experiments need to be revisited taking into account the action of selection in a growing colony.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Namratha Raj
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sharvari Kemkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
7
|
Yang Y, Wang T, Yu Q, Liu H, Xun L, Xia Y. The pathway of recombining short homologous ends in Escherichia coli revealed by the genetic study. Mol Microbiol 2021; 115:1309-1322. [PMID: 33372330 DOI: 10.1111/mmi.14677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The recombination of short homologous ends in Escherichia coli has been known for 30 years, and it is often used for both site-directed mutagenesis and in vivo cloning. For cloning, a plasmid and target DNA fragments were converted into linear DNA fragments with short homologous ends, which are joined via recombination inside E. coli after transformation. Here this mechanism of joining homologous ends in E. coli was determined by a linearized plasmid with short homologous ends. Two 3'-5' exonucleases ExoIII and ExoX with nonprocessive activity digested linear dsDNA to generate 5' single-strand overhangs, which annealed with each other. The polymerase activity of DNA polymerase I (Pol I) was exclusively employed to fill in the gaps. The strand displacement activity and the 5'-3' exonuclease activity of Pol I were also required, likely to generate 5' phosphate termini for subsequent ligation. Ligase A (LigA) joined the nicks to finish the process. The model involving 5' single-stranded overhangs is different from established recombination pathways that all generate 3' single-stranded overhangs. This recombination is likely common in bacteria since the involved enzymes are ubiquitous.
Collapse
Affiliation(s)
- Yuqing Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,Institute of Marine Science and Technology, Shandong University, Qingdao, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| |
Collapse
|
8
|
Abstract
Living systems evolve one mutation at a time, but a single mutation can alter the effect of subsequent mutations. The underlying mechanistic determinants of such epistasis are unclear. Here, we demonstrate that the physical dynamics of a biological system can generically constrain epistasis. We analyze models and experimental data on proteins and regulatory networks. In each, we find that if the long-time physical dynamics is dominated by a slow, collective mode, then the dimensionality of mutational effects is reduced. Consequently, epistatic coefficients for different combinations of mutations are no longer independent, even if individually strong. Such epistasis can be summarized as resulting from a global nonlinearity applied to an underlying linear trait, that is, as global epistasis. This constraint, in turn, reduces the ruggedness of the sequence-to-function map. By providing a generic mechanistic origin for experimentally observed global epistasis, our work suggests that slow collective physical modes can make biological systems evolvable.
Collapse
Affiliation(s)
- Kabir Husain
- Department of Physics, University of Chicago, Chicago, IL
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL
| |
Collapse
|
9
|
Correlated chromosomal periodicities according to the growth rate and gene expression. Sci Rep 2020; 10:15531. [PMID: 32968121 PMCID: PMC7511328 DOI: 10.1038/s41598-020-72389-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/02/2022] Open
Abstract
Linking genetic information to population fitness is crucial to understanding living organisms. Despite the abundant knowledge of the genetic contribution to growth, the overall patterns/features connecting genes, their expression, and growth remain unclear. To reveal the quantitative and direct connections, systematic growth assays of single-gene knockout Escherichia coli strains under both rich and poor nutritional conditions were performed; subsequently, the resultant growth rates were associated with the original expression levels of the knockout genes in the parental genome. Comparative analysis of growth and the transcriptome identified not only the nutritionally differentiated fitness cost genes but also a significant correlation between the growth rates of the single-gene knockout strains and the original expression levels of these knockout genes in the parental strain, regardless of the nutritional variation. In addition, the coordinated chromosomal periodicities of the wild-type transcriptome and the growth rates of the strains lacking the corresponding genes were observed. The common six-period periodicity was somehow attributed to the essential genes, although the underlying mechanism remains to be addressed. The correlated chromosomal periodicities associated with the gene expression-growth dataset were highly valuable for bacterial growth prediction and discovering the working principles governing minimal genetic information.
Collapse
|
10
|
Nalven SG, Ward CP, Payet JP, Cory RM, Kling GW, Sharpton TJ, Sullivan CM, Crump BC. Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo‐alteration for freshwater microbes. Environ Microbiol 2020; 22:3505-3521. [DOI: 10.1111/1462-2920.15121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/03/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Sarah G. Nalven
- Oregon State University Corvallis OR USA
- College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA
| | | | - Jérôme P. Payet
- Oregon State University Corvallis OR USA
- College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA
| | - Rose M. Cory
- College of Literature, Science, and the Arts Earth and Environmental Sciences University of Michigan Ann Arbor MI USA
- University of Michigan Ann Arbor MI USA
| | - George W. Kling
- University of Michigan Ann Arbor MI USA
- College of Literature, Science, and the Arts Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Thomas J. Sharpton
- Oregon State University Corvallis OR USA
- Department of Microbiology Oregon State University Corvallis OR USA
| | - Christopher M. Sullivan
- Oregon State University Corvallis OR USA
- Center for Genome Research and Biocomputing Oregon State University Corvallis OR USA
| | - Byron C. Crump
- Oregon State University Corvallis OR USA
- College of Earth, Ocean, and Atmospheric Sciences Oregon State University Corvallis OR USA
| |
Collapse
|
11
|
Nagai M, Kurokawa M, Ying BW. The highly conserved chromosomal periodicity of transcriptomes and the correlation of its amplitude with the growth rate in Escherichia coli. DNA Res 2020; 27:5899727. [PMID: 32866232 PMCID: PMC7508348 DOI: 10.1093/dnares/dsaa018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022] Open
Abstract
The growth rate, representing the fitness of a bacterial population, is determined by the transcriptome. Chromosomal periodicity, which is known as the periodic spatial pattern of a preferred chromosomal distance in microbial genomes, is a representative overall feature of the transcriptome; however, whether and how it is associated with the bacterial growth rate are unknown. To address these questions, we analysed a total of 213 transcriptomes of multiple Escherichia coli strains growing in an assortment of culture conditions varying in terms of temperature, nutrition level and osmotic pressure. Intriguingly, Fourier transform analyses of the transcriptome identified a common chromosomal periodicity of transcriptomes, which was independent of the variation in genomes and environments. In addition, fitting of the data to a theoretical model, we found that the amplitudes of the periodic transcriptomes were significantly correlated with the growth rates. These results indicated that the amplitude of periodic transcriptomes is a parameter representing the global pattern of gene expression in correlation with the bacterial growth rate. Thus, our study provides a novel parameter for evaluating the adaptiveness of a growing bacterial population and quantitatively predicting the growth dynamics according to the global expression pattern.
Collapse
Affiliation(s)
- Motoki Nagai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
12
|
Sakata A, Kaneko K. Dimensional Reduction in Evolving Spin-Glass Model: Correlation of Phenotypic Responses to Environmental and Mutational Changes. PHYSICAL REVIEW LETTERS 2020; 124:218101. [PMID: 32530655 DOI: 10.1103/physrevlett.124.218101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The evolution of high-dimensional phenotypes is investigated using a statistical physics model consisting of interacting spins, in which phenotypes, genotypes, and environments are represented by spin configurations, interaction matrices, and external fields, respectively. We found that phenotypic changes upon diverse environmental change and genetic variation are highly correlated across all spins, consistent with recent experimental observations of biological systems. The dimension reduction in phenotypic changes is shown to be a result of the evolution of the robustness to thermal noise, achieved at the replica symmetric phase.
Collapse
Affiliation(s)
- Ayaka Sakata
- Department of Statistical Inference & Mathematics, Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
14
|
Predicting the decision making chemicals used for bacterial growth. Sci Rep 2019; 9:7251. [PMID: 31076576 PMCID: PMC6510730 DOI: 10.1038/s41598-019-43587-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Predicting the contribution of media components to bacterial growth was first initiated by introducing machine learning to high-throughput growth assays. A total of 1336 temporal growth records corresponding to 225 different media, which were composed of 13 chemical components, were generated. The growth rate and saturated density of each growth curve were automatically calculated with the newly developed data processing program. To identify the decision making factors related to growth among the 13 chemicals, big datasets linking the growth parameters to the chemical combinations were subjected to decision tree learning. The results showed that the only carbon source, glucose, determined bacterial growth, but it was not the first priority. Instead, the top decision making chemicals in relation to the growth rate and saturated density were ammonium and ferric ions, respectively. Three chemical components (NH4+, Mg2+ and glucose) commonly appeared in the decision trees of the growth rate and saturated density, but they exhibited different mechanisms. The concentration ranges for fast growth and high density were overlapped for glucose but distinguished for NH4+ and Mg2+. The results suggested that these chemicals were crucial in determining the growth speed and growth maximum in either a universal use or a trade-off manner. This differentiation might reflect the diversity in the resource allocation mechanisms for growth priority depending on the environmental restrictions. This study provides a representative example for clarifying the contribution of the environment to population dynamics through an innovative viewpoint of employing modern data science within traditional microbiology to obtain novel findings.
Collapse
|
15
|
Morrison MD, Fajardo-Cavazos P, Nicholson WL. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity 2019; 5:1. [PMID: 30623021 PMCID: PMC6323116 DOI: 10.1038/s41526-018-0061-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
The human spaceflight environment is notable for the unique factor of microgravity, which exerts numerous physiologic effects on macroscopic organisms, but how this environment may affect single-celled microbes is less clear. In an effort to understand how the microbial transcriptome responds to the unique environment of spaceflight, the model Gram-positive bacterium Bacillus subtilis was flown on two separate missions to the International Space Station in experiments dubbed BRIC-21 and BRIC-23. Cells were grown to late-exponential/early stationary phase, frozen, then returned to Earth for RNA-seq analysis in parallel with matched ground control samples. A total of 91 genes were significantly differentially expressed in both experiments; 55 exhibiting higher transcript levels in flight samples and 36 showing higher transcript levels in ground control samples. Genes upregulated in flight samples notably included those involved in biofilm formation, biotin and arginine biosynthesis, siderophores, manganese transport, toxin production and resistance, and sporulation inhibition. Genes preferentially upregulated in ground control samples notably included those responding to oxygen limitation, e.g., fermentation, anaerobic respiration, subtilosin biosynthesis, and anaerobic regulatory genes. The results indicated differences in oxygen availability between flight and ground control samples, likely due to differences in cell sedimentation and the toroidal shape assumed by the liquid cultures in microgravity.
Collapse
Affiliation(s)
- Michael D. Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| |
Collapse
|
16
|
Zavřel T, Faizi M, Loureiro C, Poschmann G, Stühler K, Sinetova M, Zorina A, Steuer R, Červený J. Quantitative insights into the cyanobacterial cell economy. eLife 2019; 8:42508. [PMID: 30714903 PMCID: PMC6391073 DOI: 10.7554/elife.42508] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/01/2019] [Indexed: 01/27/2023] Open
Abstract
Phototrophic microorganisms are promising resources for green biotechnology. Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a reproducible cultivation setup. We report key physiological parameters, including growth rate, cell size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were quantified to monitor proteome allocation as a function of growth rate. Among other physiological acclimations, we identify an upregulation of the translational machinery and downregulation of light harvesting components with increasing light intensity and growth rate. The resulting growth laws are discussed in the context of a coarse-grained model of phototrophic growth and available data obtained by a comprehensive literature search. Our insights into quantitative aspects of cyanobacterial acclimations to different growth rates have implications to understand and optimize photosynthetic productivity.
Collapse
Affiliation(s)
- Tomáš Zavřel
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| | - Marjan Faizi
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Cristina Loureiro
- Department of Applied PhysicsPolytechnic University of ValenciaValenciaSpain
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
| | - Maria Sinetova
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Anna Zorina
- Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussian Federation
| | - Ralf Steuer
- Institut für Biologie, Fachinstitut für Theoretische BiologieHumboldt-Universität zu BerlinBerlinGermany
| | - Jan Červený
- Laboratory of Adaptive BiotechnologiesGlobal Change Research Institute CASBrnoCzech Republic
| |
Collapse
|
17
|
Maser A, Peebo K, Nahku R. Avoiding amino acid depletion in a complex medium results in improved Escherichia coli BW25113 growth. MICROBIOLOGY-SGM 2018; 165:37-46. [PMID: 30412459 DOI: 10.1099/mic.0.000742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied Escherichia coli BW25113 growth in a complex medium with emphasis on amino acid consumption. The aim was to profile amino acid utilization in acid-hydrolysed casein and a defined nutrient-rich medium and based on these measurements modify the medium for better growth performance. Amino acid depletions in both media caused apparent biomass growth stops that prolonged growth duration. Obtained amino acid consumption values enabled a new defined medium to be formulated, where no growth stops were observed, the specific growth rate was constant, and the provided substrates were fully utilized. Similarly, we modified the acid-hydrolysed casein medium by adding pure amino acids that removed the apparent biomass growth stops. Key to our results was the combination of growth medium analysis and process monitoring data, specifically oxygen partial pressure and produced carbon dioxide that were used to track growth changes. Our findings showed the deficiencies of the nutrient-rich medium and how rational medium design, based on consumption values, removed these shortcomings. The resulting balanced medium gives a high specific growth rate and is suitable for studying E. coli physiology at fast growth.
Collapse
Affiliation(s)
- Andres Maser
- 1Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.,2Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Karl Peebo
- 1Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.,2Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Ranno Nahku
- 2Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| |
Collapse
|
18
|
Zhang C, Su S, Li X, Li B, Yang B, Zhu J, Wang W. Comparative transcriptomics identifies genes differentially expressed in the intestine of a new fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. PLoS One 2018; 13:e0206615. [PMID: 30395585 PMCID: PMC6218049 DOI: 10.1371/journal.pone.0206615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
We have created a new, fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. To better understand the impacts of gene regulation in intestinal tissue on growth and unsaturated fatty acid content, we conducted a comparative RNA-Seq transcriptome analysis between intestine samples of Selected and Control groups (and corroborated selected results by PCR). After eight weeks of cage culture, weight gain of the Selected group was 20.84% higher. In muscles of the control group, monounsaturated fatty acids (FAs) were more abundant, whereas polyunsaturated FAs were more abundant in muscles of the Selected group. In total, we found 106 differentially expressed genes (DEGs) between the two groups. Only the endocytosis pathway was significantly enriched in DEGs, with two upregulated genes: il2rb and ehd1. The latter is involved in the growth hormone/insulin-like growth factor (Gh/Igf) axis, which plays a key role in the regulation of growth in animals. tll2, which is known to be associated with intestinal regeneration, was extremely highly upregulated in both transcriptomic (infinite) and qPCR (610.70) analyses. Two of the upregulated genes are associated with the fatty acid metabolism, several genes are likely to be indicators of heightened transcription levels, several are associated with metabolic and developmental roles, several with neuronal functions (including two with vision), several with the immune system, and two downregulated genes with the development of vasculature. The higher growth rate of the Selected group is likely to be at least partially attributed to increased endocytosis efficiency and genetically-driven behavioural differences (higher aggression levels). There are some indications that this new strain might have slightly impaired immune responses, and a higher propensity for inherited diseases leading to sight impairment, as well for neurodegenerative diseases in general, but these indications still need to be confirmed.
Collapse
Affiliation(s)
- Chengfeng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Bing Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Baojuan Yang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail: (JZ); (WW)
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (JZ); (WW)
| |
Collapse
|
19
|
Ying BW, Yama K. Gene Expression Order Attributed to Genome Reduction and the Steady Cellular State in Escherichia coli. Front Microbiol 2018; 9:2255. [PMID: 30294319 PMCID: PMC6158460 DOI: 10.3389/fmicb.2018.02255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Transcriptomes not only reflect the growth status but also link to the genome in bacteria. To investigate if and how genome or cellular state changes contribute to the gene expression order, the growth profile-associated transcriptomes of an assortment of genetically differentiated Escherichia coli either exponentially growing under varied conditions or in response to environmental disturbance were analyzed. A total of 168 microarray data sets representing 56 transcriptome variations, were categorized by genome size (full length or reduced) and cellular state (steady or unsteady). At the genome-wide level, the power-law distribution of gene expression was found to be significantly disturbed by the genome size but not the cellular state. At the regulatory network level, more networks with improved coordination of growth rates were observed in genome reduction than at the steady state. At the single-gene level, both genome reduction and steady state increased the correlation of gene expression to growth rate, but the enriched gene categories with improved correlations were different. These findings not only illustrate the order of gene expression attributed to genome reduction and steady cellular state but also indicate that the accessory sequences acquired during genome evolution largely participated in the coordination of transcriptomes to growth fitness.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Institute of Biology and Information Science, East China Normal University, Shanghai, China.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kazuma Yama
- Advanced Analytical Science Laboratories, Research & Development Headquarters, Lion Corporation, Tokyo, Japan
| |
Collapse
|
20
|
Furusawa C, Kaneko K. Formation of dominant mode by evolution in biological systems. Phys Rev E 2018; 97:042410. [PMID: 29758752 DOI: 10.1103/physreve.97.042410] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Indexed: 12/14/2022]
Abstract
A reduction in high-dimensional phenotypic states to a few degrees of freedom is essential to understand biological systems. Here, we show evolutionary robustness causes such reduction which restricts possible phenotypic changes in response to a variety of environmental conditions. First, global protein expression changes in Escherichia coli after various environmental perturbations were shown to be proportional across components, across different types of environmental conditions. To examine if such dimension reduction is a result of evolution, we analyzed a cell model-with a huge number of components, that reproduces itself via a catalytic reaction network-and confirmed that common proportionality in the concentrations of all components is shaped through evolutionary processes. We found that the changes in concentration across all components in response to environmental and evolutionary changes are constrained to the changes along a one-dimensional major axis, within a huge-dimensional state space. On the basis of these observations, we propose a theory in which such constraints in phenotypic changes are achieved both by evolutionary robustness and plasticity and formulate this proposition in terms of dynamical systems. Accordingly, broad experimental and numerical results on phenotypic changes caused by evolution and adaptation are coherently explained.
Collapse
Affiliation(s)
- Chikara Furusawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan and Universal Biology Institute, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Kunihiko Kaneko
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
21
|
Abstract
We present a macroscopic theory to characterize the plasticity, robustness, and evolvability of biological responses and their fluctuations. First, linear approximation in intracellular reaction dynamics is used to demonstrate proportional changes in the expression of all cellular components in response to a given environmental stress, with the proportion coefficient determined by the change in growth rate as a consequence of the steady growth of cells. We further demonstrate that this relationship is supported through adaptation experiments of bacteria, perhaps too well as this proportionality is held even across cultures of different types of conditions. On the basis of simulations of cell models, we further show that this global proportionality is a consequence of evolution in which expression changes in response to environmental or genetic perturbations are constrained along a unique one-dimensional curve, which is a result of evolutionary robustness. It then follows that the expression changes induced by environmental changes are proportionally reduced across different components of a cell by evolution, which is akin to the Le Chatelier thermodynamics principle. Finally, with the aid of a fluctuation-response relationship, this proportionality is shown to hold between fluctuations caused by genetic changes and those caused by noise. Overall, these results and support from the theoretical and experimental literature suggest a formulation of cellular systems akin to thermodynamics, in which a macroscopic potential is given by the growth rate (or fitness) represented as a function of environmental and evolutionary changes.
Collapse
Affiliation(s)
- Kunihiko Kaneko
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, 3-8-1 Komaba, Tokyo 153-8902, Japan;
| | - Chikara Furusawa
- Quantitative Biology Center (QBiC), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; .,Universal Biology Institute, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Yuan X, Couto JM, Glidle A, Song Y, Sloan W, Yin H. Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior. ACS Synth Biol 2017; 6:2219-2227. [PMID: 28844132 DOI: 10.1021/acssynbio.7b00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.
Collapse
Affiliation(s)
- Xiaofei Yuan
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Jillian M. Couto
- College
of Science and Engineering, Division of Infrastructure and Environment,
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Andrew Glidle
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Yanqing Song
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - William Sloan
- College
of Science and Engineering, Division of Infrastructure and Environment,
School of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Huabing Yin
- College
of Science and Engineering, Division of Biomedical Engineering, School
of Engineering, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
23
|
González-González A, Hug SM, Rodríguez-Verdugo A, Patel JS, Gaut BS. Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression. Mol Biol Evol 2017; 34:2839-2855. [PMID: 28961910 PMCID: PMC5815632 DOI: 10.1093/molbev/msx216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination.
Collapse
Affiliation(s)
- Andrea González-González
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
- Department of Biological Sciences, University of Idaho, Moscow, ID
| | - Shaun M. Hug
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| | - Alejandra Rodríguez-Verdugo
- Department of Environmental Systems Sciences, ETH Zürich, Zürich,
Switzerland
- Department of Environmental Microbiology, Eawag, Dübendorf,
Switzerland
| | | | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California,
Irvine, CA
| |
Collapse
|
24
|
Abstract
Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba; Institute of Biology and Information Science, East China Normal University;
| |
Collapse
|
25
|
Abstract
Genome size is determined during evolution, but it can also be altered by genetic engineering in laboratories. The systematic characterization of reduced genomes provides valuable insights into the cellular properties that are quantitatively described by the global parameters related to the dynamics of growth and mutation. In the present study, we analyzed a small collection of W3110 Escherichia coli derivatives containing either the wild-type genome or reduced genomes of various lengths to examine whether the mutation rate, a global parameter representing genomic plasticity, was affected by genome reduction. We found that the mutation rates of these cells increased with genome reduction. The correlation between genome length and mutation rate, which has been reported for the evolution of bacteria, was also identified, intriguingly, for genome reduction. Gene function enrichment analysis indicated that the deletion of many of the genes encoding membrane and transport proteins play a role in the mutation rate changes mediated by genome reduction. Furthermore, the increase in the mutation rate with genome reduction was highly associated with a decrease in the growth rate in a nutrition-dependent manner; thus, poorer media showed a larger change that was of higher significance. This negative correlation was strongly supported by experimental evidence that the serial transfer of the reduced genome improved the growth rate and reduced the mutation rate to a large extent. Taken together, the global parameters corresponding to the genome, growth, and mutation showed a coordinated relationship, which might be an essential working principle for balancing the cellular dynamics appropriate to the environment. Genome reduction is a powerful approach for investigating the fundamental rules for living systems. Whether genetically disturbed genomes have any specific properties that are different from or similar to those of natively evolved genomes has been under investigation. In the present study, we found that Escherichia coli cells with reduced genomes showed accelerated nucleotide substitution errors (mutation rates), although these cells retained the normal DNA mismatch repair systems. Intriguingly, this finding of correlation between reduced genome size and a higher mutation rate was consistent with the reported evolution of mutation rates. Furthermore, the increased mutation rate was quantitatively associated with a decreased growth rate, indicating that the global parameters related to the genome, growth, and mutation, which represent the amount of genetic information, the efficiency of propagation, and the fidelity of replication, respectively, are dynamically coordinated.
Collapse
|
26
|
Kurokawa M, Seno S, Matsuda H, Ying BW. Correlation between genome reduction and bacterial growth. DNA Res 2016; 23:517-525. [PMID: 27374613 PMCID: PMC5144675 DOI: 10.1093/dnares/dsw035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/08/2016] [Indexed: 11/13/2022] Open
Abstract
Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences.
Collapse
Affiliation(s)
- Masaomi Kurokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Osaka 565-0871, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
27
|
The Escherichia coli transcriptome linked to growth fitness. GENOMICS DATA 2016; 7:1-3. [PMID: 26981347 PMCID: PMC4778597 DOI: 10.1016/j.gdata.2015.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 11/25/2022]
Abstract
A series of Escherichia coli strains with varied genomic sequences were subjected to high-density microarray analyses to elucidate the fitness-correlated transcriptomes. Fitness, which is commonly evaluated by the growth rate during the exponential phase, is not only determined by the genome but is also linked to growth conditions, e.g., temperature. We previously reported genetic and environmental contributions to E. coli transcriptomes and evolutionary transcriptome changes in thermal adaptation. Here, we describe experimental details on how to prepare microarray samples that truly represent the growth fitness of the E. coli cells. A step-by-step record of sample preparation procedures that correspond to growing cells and transcriptome data sets that are deposited at the GEO database (GSE33212, GSE52770, GSE61739) are also provided for reference.
Collapse
|
28
|
Ying BW, Matsumoto Y, Kitahara K, Suzuki S, Ono N, Furusawa C, Kishimoto T, Yomo T. Bacterial transcriptome reorganization in thermal adaptive evolution. BMC Genomics 2015; 16:802. [PMID: 26474851 PMCID: PMC4609109 DOI: 10.1186/s12864-015-1999-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/03/2015] [Indexed: 11/30/2022] Open
Abstract
Background Evolution optimizes a living system at both the genome and transcriptome levels. Few studies have investigated transcriptome evolution, whereas many studies have explored genome evolution in experimentally evolved cells. However, a comprehensive understanding of evolutionary mechanisms requires knowledge of how evolution shapes gene expression. Here, we analyzed Escherichia coli strains acquired during long-term thermal adaptive evolution. Results Evolved and ancestor Escherichia coli cells were exponentially grown under normal and high temperatures for subsequent transcriptome analysis. We found that both the ancestor and evolved cells had comparable magnitudes of transcriptional change in response to heat shock, although the evolutionary progression of their expression patterns during exponential growth was different at either normal or high temperatures. We also identified inverse transcriptional changes that were mediated by differences in growth temperatures and genotypes, as well as negative epistasis between genotype—and heat shock-induced transcriptional changes. Principal component analysis revealed that transcriptome evolution neither approached the responsive state at the high temperature nor returned to the steady state at the regular temperature. We propose that the molecular mechanisms of thermal adaptive evolution involve the optimization of steady-state transcriptomes at high temperatures without disturbing the heat shock response. Conclusions Our results suggest that transcriptome evolution works to maintain steady-state gene expression during constrained differentiation at various evolutionary stages, while also maintaining responsiveness to environmental stimuli and transcriptome homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1999-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan.
| | - Yuki Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan. .,Present address: IMS, RIKEN, Kanagawa, 230-0045, Japan.
| | - Kazuki Kitahara
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan.
| | | | - Naoaki Ono
- Graduate School of Information Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Chikara Furusawa
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan. .,QBiC, RIKEN, Osaka, 565-0874, Japan.
| | | | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan. .,Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan. .,Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo, 102-0076, Japan.
| |
Collapse
|
29
|
Yama K, Matsumoto Y, Murakami Y, Seno S, Matsuda H, Gotoh K, Motooka D, Nakamura S, Ying BW, Yomo T. Functional specialization in regulation and quality control in thermal adaptive evolution. Genes Cells 2015; 20:943-55. [PMID: 26373241 DOI: 10.1111/gtc.12298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/04/2015] [Indexed: 01/22/2023]
Abstract
Distinctive survival strategies, specialized in regulation and in quality control, were observed in thermal adaptive evolution with a laboratory Escherichia coli strain. The two specialists carried a single mutation either within rpoH or upstream of groESL, which led to the activated global regulation by sigma factor 32 or an increased amount of GroEL/ES chaperonins, respectively. Although both specialists succeeded in thermal adaptation, the common winner of the evolution was the specialist in quality control, that is, the strategy of chaperonin-mediated protein folding. To understand this evolutionary consequence, multilevel analyses of cellular status, for example, transcriptome, protein and growth fitness, were carried out. The specialist in quality control showed less change in transcriptional reorganization responding to temperature increase, which was consistent with the finding of that the two specialists showed the biased expression of molecular chaperones. Such repressed changes in gene expression seemed to be advantageous for long-term sustainability because a specific increase in chaperonins not only facilitated the folding of essential gene products but also saved cost in gene expression compared with the overall transcriptional increase induced by rpoH regulation. Functional specialization offered two strategies for successful thermal adaptation, whereas the evolutionary advantageous was more at the points of cost-saving in gene expression and the essentiality in protein folding.
Collapse
Affiliation(s)
- Kazuma Yama
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan
| | - Yuki Matsumoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshie Murakami
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan
| | - Kazuyoshi Gotoh
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Shota Nakamura
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, Osaka, 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo, 102-0076, Japan
| |
Collapse
|
30
|
Ying BW, Honda T, Tsuru S, Seno S, Matsuda H, Kazuta Y, Yomo T. Evolutionary Consequence of a Trade-Off between Growth and Maintenance along with Ribosomal Damages. PLoS One 2015; 10:e0135639. [PMID: 26292224 PMCID: PMC4546238 DOI: 10.1371/journal.pone.0135639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/24/2015] [Indexed: 12/15/2022] Open
Abstract
Microorganisms in nature are constantly subjected to a limited availability of resources and experience repeated starvation and nutrition. Therefore, microbial life may evolve for both growth fitness and sustainability. By contrast, experimental evolution, as a powerful approach to investigate microbial evolutionary strategies, often targets the increased growth fitness in controlled, steady-state conditions. Here, we address evolutionary changes balanced between growth and maintenance while taking nutritional fluctuations into account. We performed a 290-day-long evolution experiment with a histidine-requiring Escherichia coli strain that encountered repeated histidine-rich and histidine-starved conditions. The cells that experienced seven rounds of starvation and re-feed grew more sustainably under prolonged starvation but dramatically lost growth fitness under rich conditions. The improved sustainability arose from the evolved capability to use a trace amount of histidine for cell propagation. The reduced growth rate was attributed to mutations genetically disturbing the translation machinery, that is, the ribosome, ultimately slowing protein translation. This study provides the experimental demonstration of slow growth accompanied by an enhanced affinity to resources as an evolutionary adaptation to oscillated environments and verifies that it is possible to evolve for reduced growth fitness. Growth economics favored for population increase under extreme resource limitations is most likely a common survival strategy adopted by natural microbes.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305–8572, Japan
| | - Tomoya Honda
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, United States of America
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Shigeto Seno
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Yasuaki Kazuta
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- ERATO, JST, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1–5 Yamadaoka, Suita, Osaka, 565–0871, Japan
- * E-mail:
| |
Collapse
|
31
|
Sekar K, Tyo KE. Regulatory effects on central carbon metabolism from poly-3-hydroxybutryate synthesis. Metab Eng 2015; 28:180-189. [DOI: 10.1016/j.ymben.2015.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
|
32
|
Murakami Y, Matsumoto Y, Tsuru S, Ying BW, Yomo T. Global coordination in adaptation to gene rewiring. Nucleic Acids Res 2015; 43:1304-16. [PMID: 25564530 PMCID: PMC4333410 DOI: 10.1093/nar/gku1366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Gene rewiring is a common evolutionary phenomenon in nature that may lead to extinction for living organisms. Recent studies on synthetic biology demonstrate that cells can survive genetic rewiring. This survival (adaptation) is often linked to the stochastic expression of rewired genes with random transcriptional changes. However, the probability of adaptation and the underlying common principles are not clear. We performed a systematic survey of an assortment of gene-rewired Escherichia coli strains to address these questions. Three different cell fates, designated good survivors, poor survivors and failures, were observed when the strains starved. Large fluctuations in the expression of the rewired gene were commonly observed with increasing cell size, but these changes were insufficient for adaptation. Cooperative reorganizations in the corresponding operon and genome-wide gene expression largely contributed to the final success. Transcriptome reorganizations that generally showed high-dimensional dynamic changes were restricted within a one-dimensional trajectory for adaptation to gene rewiring, indicating a general path directed toward cellular plasticity for a successful cell fate. This finding of global coordination supports a mechanism of stochastic adaptation and provides novel insights into the design and application of complex genetic or metabolic networks.
Collapse
Affiliation(s)
- Yoshie Murakami
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Matsumoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Saburo Tsuru
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Bei-Wen Ying
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsuya Yomo
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
33
|
A reduced genome decreases the host carrying capacity for foreign DNA. Microb Cell Fact 2014; 13:49. [PMID: 24685185 PMCID: PMC4021254 DOI: 10.1186/1475-2859-13-49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/24/2014] [Indexed: 11/17/2022] Open
Abstract
Background Host-plasmid interactions have been discussed largely in terms of the influences of plasmids, whereas the contributions of variations in host genomes to host interactions with foreign DNA remain unclear. A strain with a so-called “clean genome” (i.e., MDS42) of reduced genome size has recently been generated from the wild-type strain MG1655, a commonly used host strain. A quantitative evaluation of the influence of plasmid burdens in these two Escherichia coli strains can not only provide an understanding of how a reduced genome responds to foreign DNA but also offer insights into the proper application of these strains. Results The decreases in growth caused by the cost of carrying foreign DNA were similar for the wild-type and clean-genome strains. A negative correlation between the growth rate and the total amount of exogenous DNA was observed in both strains, but a better theoretical fit with a higher statistical significance was found for the strain with the clean genome. Compared to the wild-type strain, the clean-genome strain exhibited a reduced carrying capacity for exogenous DNA, which was largely attributed to its ability to restrict the replication of foreign DNA. A tendency to allocate energy and resources toward gene expression, but not DNA replication, was observed in the strain with the clean genome. Conclusions The possession of a clean genome constrained the plasmid copy number to a wild-type-equivalent load. The results indicate that the wild-type strain possesses a greater tolerance for foreign DNA, as in endosymbiosis, and that the use of strains with clean genomes will be favorable in the applications that require precise control and theoretical prediction.
Collapse
|