Guardia GDA, Pires LF, Vêncio RZN, Malmegrim KCR, de Farias CRG. A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis.
PLoS One 2015. [PMID:
26207740 PMCID:
PMC4514690 DOI:
10.1371/journal.pone.0134011]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis.
Collapse