1
|
Bosse M, van Loon S. Challenges in quantifying genome erosion for conservation. Front Genet 2022; 13:960958. [PMID: 36226192 PMCID: PMC9549127 DOI: 10.3389/fgene.2022.960958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Massive defaunation and high extinction rates have become characteristic of the Anthropocene. Genetic effects of population decline can lead populations into an extinction vortex, where declining populations show lower genetic fitness, in turn leading to lower populations still. The lower genetic fitness in a declining population due to a shrinking gene pool is known as genetic erosion. Three different types of genetic erosion are highlighted in this review: overall homozygosity, genetic load and runs of homozygosity (ROH), which are indicative of inbreeding. The ability to quantify genetic erosion could be a very helpful tool for conservationists, as it can provide them with an objective, quantifiable measure to use in the assessment of species at risk of extinction. The link between conservation status and genetic erosion should become more apparent. Currently, no clear correlation can be observed between the current conservation status and genetic erosion. However, the high quantities of genetic erosion in wild populations, especially in those species dealing with habitat fragmentation and habitat decline, may be early signs of deteriorating populations. Whole genome sequencing data is the way forward to quantify genetic erosion. Extra screening steps for genetic load and hybridization can be included, since they could potentially have great impact on population fitness. This way, the information yielded from genetic sequence data can provide conservationists with an objective genetic method in the assessment of species at risk of extinction. However, the great complexity of genome erosion quantification asks for consensus and bridging science and its applications, which remains challenging.
Collapse
Affiliation(s)
- Mirte Bosse
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, Netherlands
| | - Sam van Loon
- Amsterdam Institute for Life and Environment (A-LIFE), Section Ecology and Evolution, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Graham CF, Eberts RL, Goncin U, Somers CM. Spontaneous hybridization and introgression between walleye ( Sander vitreus) and sauger ( Sander canadensis) in two large reservoirs: Insights from genotyping by sequencing. Evol Appl 2021; 14:965-982. [PMID: 33897814 PMCID: PMC8061268 DOI: 10.1111/eva.13174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
Anthropogenic activities may facilitate undesirable hybridization and genomic introgression between fish species. Walleye (Sander vitreus) and sauger (Sander canadensis) are economically valuable freshwater species that can spontaneously hybridize in areas of sympatry. Levels of genomic introgression between walleye and sauger may be increased by modifications to waterbodies (e.g., reservoir development) and inadvertent propagation of hybrids in stocking programs. We used genotyping by sequencing (GBS) to examine 217 fish from two large reservoirs with mixed populations of walleye and sauger in Saskatchewan, Canada (Lake Diefenbaker, Tobin Lake). Analyses with 20,038 (r90) and 478 (r100) single nucleotide polymorphisms clearly resolved walleye and sauger, and classified hybrids with high confidence. F1, F2, and multigeneration hybrids were detected in Lake Diefenbaker, indicating potentially high levels of genomic introgression. In contrast, only F1 hybrids were detected in Tobin Lake. Field classification of fish was unreliable; 7% of fish were misidentified based on broad species categories. Important for activities such as brood stock selection, 12 of 173 (7%) fish field identified as pure walleye, and one of 24 (4%) identified as pure sauger were actually hybrids. In addition, two of 15 (13%) field-identified hybrids were actually pure walleye or sauger. We conclude that hybridization and introgression are occurring in Saskatchewan reservoirs and that caution is warranted when using these populations in stocking programs. GBS offers a powerful and flexible tool for examining hybridization without preidentification of informative loci, eliminating some of the key challenges associated with other marker types.
Collapse
Affiliation(s)
| | - Rebecca L. Eberts
- Fish, Wildlife, and Lands Branch, Ministry of EnvironmentGovernment of SaskatchewanPrince AlbertSKCanada
| | - Una Goncin
- Department of BiologyUniversity of ReginaReginaSKCanada
| | | |
Collapse
|
3
|
Malmberg MM, Spangenberg GC, Daetwyler HD, Cogan NOI. Assessment of low-coverage nanopore long read sequencing for SNP genotyping in doubled haploid canola (Brassica napus L.). Sci Rep 2019; 9:8688. [PMID: 31213642 PMCID: PMC6582154 DOI: 10.1038/s41598-019-45131-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Despite the high accuracy of short read sequencing (SRS), there are still issues with attaining accurate single nucleotide polymorphism (SNP) genotypes at low sequencing coverage and in highly duplicated genomes due to misalignment. Long read sequencing (LRS) systems, including the Oxford Nanopore Technologies (ONT) minION, have become popular options for de novo genome assembly and structural variant characterisation. The current high error rate often requires substantial post-sequencing correction and would appear to prevent the adoption of this system for SNP genotyping, but nanopore sequencing errors are largely random. Using low coverage ONT minION sequencing for genotyping of pre-validated SNP loci was examined in 9 canola doubled haploids. The minION genotypes were compared to the Illumina sequences to determine the extent and nature of genotype discrepancies between the two systems. The significant increase in read length improved alignment to the genome and the absence of classical SRS biases results in a more even representation of the genome. Sequencing errors are present, primarily in the form of heterozygous genotypes, which can be removed in completely homozygous backgrounds but requires more advanced bioinformatics in heterozygous genomes. Developments in this technology are promising for routine genotyping in the future.
Collapse
Affiliation(s)
- M M Malmberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - G C Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - H D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - N O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
4
|
Valencia LM, Martins A, Ortiz EM, Di Fiore A. A RAD-sequencing approach to genome-wide marker discovery, genotyping, and phylogenetic inference in a diverse radiation of primates. PLoS One 2018; 13:e0201254. [PMID: 30118481 PMCID: PMC6097672 DOI: 10.1371/journal.pone.0201254] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023] Open
Abstract
Until recently, most phylogenetic and population genetics studies of nonhuman primates have relied on mitochondrial DNA and/or a small number of nuclear DNA markers, which can limit our understanding of primate evolutionary and population history. Here, we describe a cost-effective reduced representation method (ddRAD-seq) for identifying and genotyping large numbers of SNP loci for taxa from across the New World monkeys, a diverse radiation of primates that shared a common ancestor ~20-26 mya. We also estimate, for the first time, the phylogenetic relationships among 15 of the 22 currently-recognized genera of New World monkeys using ddRAD-seq SNP data using both maximum likelihood and quartet-based coalescent methods. Our phylogenetic analyses robustly reconstructed three monophyletic clades corresponding to the three families of extant platyrrhines (Atelidae, Pitheciidae and Cebidae), with Pitheciidae as basal within the radiation. At the genus level, our results conformed well with previous phylogenetic studies and provide additional information relevant to the problematic position of the owl monkey (Aotus) within the family Cebidae, suggesting a need for further exploration of incomplete lineage sorting and other explanations for phylogenetic discordance, including introgression. Our study additionally provides one of the first applications of next-generation sequencing methods to the inference of phylogenetic history across an old, diverse radiation of mammals and highlights the broad promise and utility of ddRAD-seq data for molecular primatology.
Collapse
Affiliation(s)
- Lina M. Valencia
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, Austin, United States of America
| | - Amely Martins
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, Austin, United States of America
- Centro Nacional de Pesquisa de Conservação de Primatas Brasileiros, ICMBio/MMA, Brazil, Brazil
| | - Edgardo M. Ortiz
- Department of Integrative Biology, University of Texas at Austin, Austin, United States of America
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory, Department of Anthropology, University of Texas at Austin, Austin, United States of America
| |
Collapse
|
5
|
In Silico Studies Applied to Natural Products with Potential Activity Against Alzheimer’s Disease. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7404-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, Groves C, Pybus M, Sonay TB, Roos C, Lameira AR, Wich SA, Askew J, Davila-Ross M, Fredriksson G, de Valles G, Casals F, Prado-Martinez J, Goossens B, Verschoor EJ, Warren KS, Singleton I, Marques DA, Pamungkas J, Perwitasari-Farajallah D, Rianti P, Tuuga A, Gut IG, Gut M, Orozco-terWengel P, van Schaik CP, Bertranpetit J, Anisimova M, Scally A, Marques-Bonet T, Meijaard E, Krützen M. Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species. Curr Biol 2017; 27:3487-3498.e10. [PMID: 29103940 DOI: 10.1016/j.cub.2017.09.047] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022]
Abstract
Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexander Nater
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| | - Maja P Mattle-Greminger
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Anton Nurcahyo
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia
| | - Matthew G Nowak
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA
| | - Marc de Manuel
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Tariq Desai
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Colin Groves
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia
| | - Marc Pybus
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Tugce Bilgin Sonay
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Adriano R Lameira
- Department of Anthropology, Durham University, Dawson Building, South Road, Durham DH1 3LE, UK; School of Psychology & Neuroscience, St. Andrews University, St. Mary's Quad, South Street, St. Andrews, Fife KY16 9JP, Scotland, UK
| | - Serge A Wich
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098, the Netherlands
| | - James Askew
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Marina Davila-Ross
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry 1(st) Street, Portsmouth PO1 2DY, UK
| | - Gabriella Fredriksson
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098, the Netherlands
| | - Guillem de Valles
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Ferran Casals
- Servei de Genòmica, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | | | - Benoit Goossens
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia; Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia; Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff CF10 3BA, UK
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ Rijswijk, the Netherlands
| | - Kristin S Warren
- Conservation Medicine Program, College of Veterinary Medicine, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Ian Singleton
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Foundation for a Sustainable Ecosystem (YEL), Medan, Indonesia
| | - David A Marques
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Joko Pamungkas
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Faculty of Veterinary Medicine, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
| | - Dyah Perwitasari-Farajallah
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Animal Biosystematics and Ecology Division, Department of Biology, Bogor Agricultural University, Jalan Agatis, Dramaga Campus, Bogor 16680, Indonesia
| | - Puji Rianti
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Animal Biosystematics and Ecology Division, Department of Biology, Bogor Agricultural University, Jalan Agatis, Dramaga Campus, Bogor 16680, Indonesia
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia
| | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Carel P van Schaik
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain; Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Erik Meijaard
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia; Borneo Futures, Bandar Seri Begawan, Brunei Darussalam.
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
7
|
Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, Storfer A. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour 2016; 17:142-152. [PMID: 27860289 DOI: 10.1111/1755-0998.12635] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/23/2016] [Accepted: 09/02/2016] [Indexed: 12/26/2022]
Abstract
Understanding how and why populations evolve is of fundamental importance to molecular ecology. Restriction site-associated DNA sequencing (RADseq), a popular reduced representation method, has ushered in a new era of genome-scale research for assessing population structure, hybridization, demographic history, phylogeography and migration. RADseq has also been widely used to conduct genome scans to detect loci involved in adaptive divergence among natural populations. Here, we examine the capacity of those RADseq-based genome scan studies to detect loci involved in local adaptation. To understand what proportion of the genome is missed by RADseq studies, we developed a simple model using different numbers of RAD-tags, genome sizes and extents of linkage disequilibrium (length of haplotype blocks). Under the best-case modelling scenario, we found that RADseq using six- or eight-base pair cutting restriction enzymes would fail to sample many regions of the genome, especially for species with short linkage disequilibrium. We then surveyed recent studies that have used RADseq for genome scans and found that the median density of markers across these studies was 4.08 RAD-tag markers per megabase (one marker per 245 kb). The length of linkage disequilibrium for many species is one to three orders of magnitude less than density of the typical recent RADseq study. Thus, we conclude that genome scans based on RADseq data alone, while useful for studies of neutral genetic variation and genetic population structure, will likely miss many loci under selection in studies of local adaptation.
Collapse
Affiliation(s)
- David B Lowry
- Plant Biology Laboratories, Department of Plant Biology, Michigan State University, 612 Wilson Road, Room 166, East Lansing, MI, 48824, USA.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Sean Hoban
- The Morton Arboretum, Lisle, IL, USA.,National Institute for Mathematical and Biological Synthesis (NIMBioS), Knoxville, TN, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - Laura K Reed
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, 35406, USA
| | - Michael F Antolin
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
8
|
Kuhlwilm M, de Manuel M, Nater A, Greminger MP, Krützen M, Marques-Bonet T. Evolution and demography of the great apes. Curr Opin Genet Dev 2016; 41:124-129. [PMID: 27716526 DOI: 10.1016/j.gde.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/03/2016] [Accepted: 09/12/2016] [Indexed: 01/27/2023]
Abstract
The great apes are the closest living relatives of humans. Chimpanzees and bonobos group together with humans, while gorillas and orangutans are more divergent from humans. Here, we review insights into their evolution pertaining to the topology of species and subspecies and the reconstruction of their demography based on genome-wide variation. These advances have only become possible recently through next-generation sequencing technologies. Given the close relationship to humans, they provide an important evolutionary context for human genetics.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Alexander Nater
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Maja P Greminger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.
| |
Collapse
|
9
|
Humble E, Thorne MAS, Forcada J, Hoffman JI. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success. BMC Res Notes 2016; 9:418. [PMID: 27562535 PMCID: PMC5000416 DOI: 10.1186/s13104-016-2209-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/06/2016] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. RESULTS Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. CONCLUSIONS Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be explored in future studies of non-model organisms.
Collapse
Affiliation(s)
- Emily Humble
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501, Bielefeld, Germany. .,British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK.
| | - Michael A S Thorne
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - Joseph I Hoffman
- Department of Animal Behaviour, University of Bielefeld, Postfach 100131, 33501, Bielefeld, Germany
| |
Collapse
|
10
|
Draft Genome Sequences of Staphylococcus aureus Strains Isolated from Subclinical Bovine Mastitis in Brazil. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01594-15. [PMID: 26893417 PMCID: PMC4759064 DOI: 10.1128/genomea.01594-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we present the draft genome sequences of four Staphylococcus aureus strains isolated from mastitic milk collected from animals with subclinical manifestations. Three of them were typed as sequence type 126 (ST126), a genotype with no genome sequence available. ST126 is found in several herds of southern Brazil and is described as a bovine pathogen strongly associated with milk around the world.
Collapse
|
11
|
Abstract
High-throughput techniques based on restriction site-associated DNA sequencing (RADseq) are enabling the low-cost discovery and genotyping of thousands of genetic markers for any species, including non-model organisms, which is revolutionizing ecological, evolutionary and conservation genetics. Technical differences among these methods lead to important considerations for all steps of genomics studies, from the specific scientific questions that can be addressed, and the costs of library preparation and sequencing, to the types of bias and error inherent in the resulting data. In this Review, we provide a comprehensive discussion of RADseq methods to aid researchers in choosing among the many different approaches and avoiding erroneous scientific conclusions from RADseq data, a problem that has plagued other genetic marker types in the past.
Collapse
|
12
|
Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LCS, Fuchs RA. Genome Wide Sampling Sequencing for SNP Genotyping: Methods, Challenges and Future Development. Int J Biol Sci 2016; 12:100-8. [PMID: 26722221 PMCID: PMC4679402 DOI: 10.7150/ijbs.13498] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/07/2015] [Indexed: 12/04/2022] Open
Abstract
Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.
Collapse
Affiliation(s)
- Zhihua Jiang
- 1. Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620, USA
| | - Hongyang Wang
- 1. Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620, USA; ; 2. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Jennifer J Michal
- 1. Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620, USA
| | - Xiang Zhou
- 1. Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620, USA
| | - Bang Liu
- 2. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education and The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Leah C Solberg Woods
- 3. Department of Pediatrics, Human and Molecular Genetics Center and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rita A Fuchs
- 4. Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA 99164-7620, USA
| |
Collapse
|
13
|
How Well Do Molecular and Pedigree Relatedness Correspond, in Populations with Diverse Mating Systems, and Various Types and Quantities of Molecular and Demographic Data? G3-GENES GENOMES GENETICS 2015; 5:1815-26. [PMID: 26134496 PMCID: PMC4555218 DOI: 10.1534/g3.115.019323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies.
Collapse
|
14
|
Hoffmann A, Griffin P, Dillon S, Catullo R, Rane R, Byrne M, Jordan R, Oakeshott J, Weeks A, Joseph L, Lockhart P, Borevitz J, Sgrò C. A framework for incorporating evolutionary genomics into biodiversity conservation and management. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40665-014-0009-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Nater A, Greminger MP, Arora N, van Schaik CP, Goossens B, Singleton I, Verschoor EJ, Warren KS, Krützen M. Reconstructing the demographic history of orang-utans using Approximate Bayesian Computation. Mol Ecol 2015; 24:310-27. [PMID: 25439562 DOI: 10.1111/mec.13027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
Abstract
Investigating how different evolutionary forces have shaped patterns of DNA variation within and among species requires detailed knowledge of their demographic history. Orang-utans, whose distribution is currently restricted to the South-East Asian islands of Borneo (Pongo pygmaeus) and Sumatra (Pongo abelii), have likely experienced a complex demographic history, influenced by recurrent changes in climate and sea levels, volcanic activities and anthropogenic pressures. Using the most extensive sample set of wild orang-utans to date, we employed an Approximate Bayesian Computation (ABC) approach to test the fit of 12 different demographic scenarios to the observed patterns of variation in autosomal, X-chromosomal, mitochondrial and Y-chromosomal markers. In the best-fitting model, Sumatran orang-utans exhibit a deep split of populations north and south of Lake Toba, probably caused by multiple eruptions of the Toba volcano. In addition, we found signals for a strong decline in all Sumatran populations ~24 ka, probably associated with hunting by human colonizers. In contrast, Bornean orang-utans experienced a severe bottleneck ~135 ka, followed by a population expansion and substructuring starting ~82 ka, which we link to an expansion from a glacial refugium. We showed that orang-utans went through drastic changes in population size and connectedness, caused by recurrent contraction and expansion of rainforest habitat during Pleistocene glaciations and probably hunting by early humans. Our findings emphasize the fact that important aspects of the evolutionary past of species with complex demographic histories might remain obscured when applying overly simplified models.
Collapse
Affiliation(s)
- Alexander Nater
- Anthropological Institute & Museum, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H, Tohme J, Dellaporta SL. Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genomics 2014. [PMID: 25406744 DOI: 10.1186/1471‐2164‐15‐979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many areas critical to agricultural production and research, such as the breeding and trait mapping in plants and livestock, require robust and scalable genotyping platforms. Genotyping-by-sequencing (GBS) is a one such method highly suited to non-human organisms. In the GBS protocol, genomic DNA is fractionated via restriction digest, then reduced representation is achieved through size selection. Since many restriction sites are conserved across a species, the sequenced portion of the genome is highly consistent within a population. This makes the GBS protocol highly suited for experiments that require surveying large numbers of markers within a population, such as those involving genetic mapping, breeding, and population genomics. We have modified the GBS technology in a number of ways. Custom, enzyme specific adaptors have been replaced with standard Illumina adaptors compatible with blunt-end restriction enzymes. Multiplexing is achieved through a dual barcoding system, and bead-based library preparation protocols allows for in-solution size selection and eliminates the need for columns and gels. RESULTS A panel of eight restriction enzymes was selected for testing on B73 maize and Nipponbare rice genomic DNA. Quality of the data was demonstrated by identifying that the vast majority of reads from each enzyme aligned to restriction sites predicted in silico. The link between enzyme parameters and experimental outcome was demonstrated by showing that the sequenced portion of the genome was adaptable by selecting enzymes based on motif length, complexity, and methylation sensitivity. The utility of the new GBS protocol was demonstrated by correctly mapping several in a maize F2 population resulting from a B73×Country Gentleman test cross. CONCLUSIONS This technology is readily adaptable to different genomes, highly amenable to multiplexing and compatible with over forty commercially available restriction enzymes. These advancements represent a major improvement in genotyping technology by providing a highly flexible and scalable GBS that is readily implemented for studies on genome-wide variation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen L Dellaporta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
17
|
Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H, Tohme J, Dellaporta SL. Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genomics 2014; 15:979. [PMID: 25406744 PMCID: PMC4253001 DOI: 10.1186/1471-2164-15-979] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/23/2014] [Indexed: 12/19/2022] Open
Abstract
Background Many areas critical to agricultural production and research, such as the breeding and trait mapping in plants and livestock, require robust and scalable genotyping platforms. Genotyping-by-sequencing (GBS) is a one such method highly suited to non-human organisms. In the GBS protocol, genomic DNA is fractionated via restriction digest, then reduced representation is achieved through size selection. Since many restriction sites are conserved across a species, the sequenced portion of the genome is highly consistent within a population. This makes the GBS protocol highly suited for experiments that require surveying large numbers of markers within a population, such as those involving genetic mapping, breeding, and population genomics. We have modified the GBS technology in a number of ways. Custom, enzyme specific adaptors have been replaced with standard Illumina adaptors compatible with blunt-end restriction enzymes. Multiplexing is achieved through a dual barcoding system, and bead-based library preparation protocols allows for in-solution size selection and eliminates the need for columns and gels. Results A panel of eight restriction enzymes was selected for testing on B73 maize and Nipponbare rice genomic DNA. Quality of the data was demonstrated by identifying that the vast majority of reads from each enzyme aligned to restriction sites predicted in silico. The link between enzyme parameters and experimental outcome was demonstrated by showing that the sequenced portion of the genome was adaptable by selecting enzymes based on motif length, complexity, and methylation sensitivity. The utility of the new GBS protocol was demonstrated by correctly mapping several in a maize F2 population resulting from a B73 × Country Gentleman test cross. Conclusions This technology is readily adaptable to different genomes, highly amenable to multiplexing and compatible with over forty commercially available restriction enzymes. These advancements represent a major improvement in genotyping technology by providing a highly flexible and scalable GBS that is readily implemented for studies on genome-wide variation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-979) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen L Dellaporta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|