1
|
Qi T, Wang M, Wang P, Wang L, Wang J. Insights into heterosis from histone modifications in the flag leaf of inter-subspecific hybrid rice. BMC PLANT BIOLOGY 2024; 24:767. [PMID: 39134930 PMCID: PMC11318154 DOI: 10.1186/s12870-024-05487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Inter-subspecific hybrid rice represents a significant breakthrough in agricultural genetics, offering higher yields and better resilience to various environmental stresses. While the utilization of these hybrids has shed light on the genetic processes underlying hybridization, understanding the molecular mechanisms driving heterosis remains a complex and ongoing challenge. Here, chromatin immunoprecipitation-sequencing (ChIP-seq) was used to analyze genome-wide profiles of H3K4me3 and H3K27me3 modifications in the inter-subspecific hybrid rice ZY19 and its parents, Z04A and ZHF1015, then combined them with the transcriptome and DNA methylation data to uncover the effects of histone modifications on gene expression and the contribution of epigenetic modifications to heterosis. RESULTS In the hybrid, there were 8,126 and 1,610 different peaks for H3K4me3 and H3K27me3 modifications when compared to its parents, respectively, with the majority of them originating from the parental lines. The different modifications between the hybrid and its parents were more frequently observed as higher levels in the hybrid than in the parents. In ZY19, there were 476 and 84 allele-specific genes with H3K4me3 and H3K27me3 modifications identified, representing 7.9% and 12% of the total analyzed genes, respectively. Only a small portion of genes that showed differences in parental H3K4me3 and H3K27me3 modifications which demonstrated allele-specific histone modifications (ASHM) in the hybrid. The H3K4me3 modification level in the hybrid was significantly lower compared to the parents. In the hybrid, DNA methylation occurs more frequently among histone modification target genes. Additionally, over 62.58% of differentially expressed genes (DEGs) were affected by epigenetic variations. Notably, there was a strong correlation observed between variations in H3K4me3 modifications and gene expression levels in the hybrid and its parents. CONCLUSION These findings highlight the substantial impact of histone modifications and DNA methylation on gene expression during hybridization. Epigenetic variations play a crucial role in controlling the differential expression of genes, with potential implications for heterosis.
Collapse
Affiliation(s)
- Tianpu Qi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peixuan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Zong W, Song Y, Xiao D, Guo X, Li F, Sun K, Tang W, Xie W, Luo Y, Liang S, Zhou J, Xie X, Liu D, Chen L, Wang H, Liu YG, Guo J. Dominance complementation of parental heading date alleles of Hd1, Ghd7, DTH8, and PRR37 confers transgressive late maturation in hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2108-2123. [PMID: 38526880 DOI: 10.1111/tpj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/11/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024]
Abstract
Rice (Oryza sativa L.) is a short-day plant whose heading date is largely determined by photoperiod sensitivity (PS). Many parental lines used in hybrid rice breeding have weak PS, but their F1 progenies have strong PS and exhibit an undesirable transgressive late-maturing phenotype. However, the genetic basis for this phenomenon is unclear. Therefore, effective methods are needed for selecting parents to create F1 hybrid varieties with the desired PS. In this study, we used bulked segregant analysis with F1 Ningyou 1179 (strong PS) and its F2 population, and through analyzing both parental haplotypes and PS data for 918 hybrid rice varieties, to identify the genetic basis of transgressive late maturation which is dependent on dominance complementation effects of Hd1, Ghd7, DTH8, and PRR37 from both parents rather than from a single parental genotype. We designed a molecular marker-assisted selection system to identify the genotypes of Hd1, Ghd7, DTH8, and PRR37 in parental lines to predict PS in F1 plants prior to crossing. Furthermore, we used CRISPR/Cas9 technique to knock out Hd1 in Ning A (sterile line) and Ning B (maintainer line) and obtained an hd1-NY material with weak PS while retaining the elite agronomic traits of NY. Our findings clarified the genetic basis of transgressive late maturation in hybrid rice and developed effective methods for parental selection and gene editing to facilitate the breeding of hybrid varieties with the desired PS for improving their adaptability.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingang Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaotong Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fuquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanqiu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shan Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingyao Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dilin Liu
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice, Breeding-Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
3
|
Zhong Z, Wu Y, Zhang P, Hu G, Fu D, Yu G, Tong H. Transcriptomic Analysis Reveals Panicle Heterosis in an Elite Hybrid Rice ZZY10 and Its Parental Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:1309. [PMID: 36987003 PMCID: PMC10059593 DOI: 10.3390/plants12061309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Heterosis is the phenomenon in which some hybrid traits are superior to those of their parents. Most studies have analyzed the heterosis of agronomic traits of crops; however, heterosis of the panicles can improve yield and is important for crop breeding. Therefore, a systematic study of panicle heterosis is needed, especially during the reproductive stage. RNA sequencing (RNA Seq) and transcriptome analysis are suitable for further study of heterosis. Using the Illumina Nova Seq platform, the transcriptome of ZhongZheYou 10 (ZZY10), an elite rice hybrid, the maintainer line ZhongZhe B (ZZB), and the restorer line Z7-10 were analyzed at the heading date in Hangzhou, 2022. 581 million high-quality short reads were obtained by sequencing and were aligned against the Nipponbare reference genome. A total of 9000 differential expression genes were found between the hybrids and their parents (DGHP). Of the DGHP, 60.71% were up-regulated and 39.29% were down-regulated in the hybrid. Comparative transcriptome analysis revealed that 5235 and 3765 DGHP were between ZZY10 and ZhongZhe B and between ZZY10 and Z7-10, respectively. This result is consistent with the transcriptome profile of ZZY10 and was similar to Z7-10. The expression patterns of DGHP mainly exhibited over-dominance, under-dominance, and additivity. Among the DGHP-involved GO terms, pathways such as photosynthesis, DNA integration, cell wall modification, thylakoid, and photosystem were significant. 21 DGHP, which were involved in photosynthesis, and 17 random DGHP were selected for qRT-PCR validation. The up-regulated PsbQ and down-regulated subunits of PSI and PSII and photosynthetic electron transport in the photosynthesis pathway were observed in our study. Extensive transcriptome data were obtained by RNA-Seq, providing a comprehensive overview of panicle transcriptomes at the heading stage in a heterotic hybrid.
Collapse
Affiliation(s)
- Zhengzheng Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Yawen Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Guocheng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Dong Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Hanhua Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| |
Collapse
|
4
|
Chen X, Zhao B, Ji C, Zhu B, Wang R. Transcriptome profiling analysis of two contrasting barley genotypes in general combining ability for yield traits. BRAZILIAN JOURNAL OF BOTANY 2021; 44:117-123. [DOI: 10.1007/s40415-020-00696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 09/01/2023]
|
5
|
Late flowering in F 1 hybrid rice brought about by the complementary effect of quantitative trait loci. Genetica 2019; 147:351-358. [PMID: 31432314 DOI: 10.1007/s10709-019-00075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
Late flowering sometimes occurs in F1 hybrids between rice varieties (Oryza sativa L.), although the parental varieties show similar days-to-flowering (DTF). The genetic architecture prompting the occurrence of such late flowering is poorly understood. To clarify the genetic architecture of late flowering in F1 hybrids from a cross between rice varieties, 'Koshihikari' and 'IR64', we performed quantitative trait locus (QTL) analysis using an F2 population (selfed progeny of an F1 plant), in which heterozygous genotypes should segregate in a certain proportion in a Mendelian manner. The QTL analysis detected three significant QTLs. At one QTL (putatively Heading date 1), the 'Koshihikari' allele increased DTF, and at the other two QTLs (putatively Heading date 6 and Oryza sativa Pseudo-Response Regulator 37/Heading date 2), the 'IR64' alleles increased DTF. All alleles at these three QTLs showed partial dominance. The combination of the QTLs explained 82.2% of the total phenotypic variance of DTF in the F2 population, with contribution from epistasis between QTLs. There was no difference between DTFs of F1 hybrids and heterozygous genotypes for the three QTLs. Our results demonstrated that the complementary effects accompanied by epistasis of at least three QTLs were responsible for late flowering in F1 hybrids.
Collapse
|
6
|
Fan F, Long W, Liu M, Yuan H, Pan G, Li N, Li S. Quantitative Trait Locus Mapping of the Combining Ability for Yield-Related Traits in Wild Rice Oryza longistaminata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8766-8772. [PMID: 31313921 DOI: 10.1021/acs.jafc.9b02224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In decades of hybrid rice breeding, the combining ability has been successfully used to evaluate excellent parental lines and predict heterosis. However, previous studies for the combining ability mainly focused on cultivated rice and rarely involved wild rice. In this study, for the first time, we identified 20 new quantitative trait loci (QTLs) for the combining ability in wild rice using a North Carolina II mating design. Among them, qGCA1, one of the major QTLs that can significantly improve the general combining ability of the plant height, spikelet number, and yield per plant, was delimited to an interval of about 72 kb on chromosome 1. qSCA8, another major QTL, which can significantly improve the specific combining ability of the seed-setting rate and yield per plant, was located in an interval of about 90 kb on chromosome 8. These QTLs discovered from wild rice will provide new ideas to explain the genetic mechanism of the combining ability and establish the basis for breeding of high-combining-ability rice.
Collapse
Affiliation(s)
- Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Weixiong Long
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Manman Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Guojing Pan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science , Wuhan University , Wuhan , Hubei 430072 , People's Republic of China
| |
Collapse
|
7
|
Song Y, Zhang Z, Tan X, Jiang Y, Gao J, Lin L, Wang Z, Ren J, Wang X, Qin L, Cheng W, Qi J, Kuai B. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize. Sci Rep 2016; 6:29843. [PMID: 27435114 PMCID: PMC4951735 DOI: 10.1038/srep29843] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/24/2016] [Indexed: 11/17/2022] Open
Abstract
Maize exhibits a wide range of heterotic traits, but the molecular basis of heterosis at the reproductive stage has seldom been exploited. Leaf senescence is a degenerative process which affects crop yield and quality. In this study, we observed significantly delayed ear leaf senescence in the reciprocal hybrids of B73/Mo17 and Zheng58/Chang7-2 after silking, and all the hybrids displayed larger leaf areas and higher stems with higher yields. Our time-course transcriptome analysis identified 2,826 differentially expressed genes (DEGs) between two parental lines (PP-DEGs) and 2,328 DEGs between parental lines and the hybrid (PH-DEGs) after silking. Notably, several senescence promoting genes (ZmNYE1, ZmORE1, ZmWRKY53 and ZmPIFs) exhibited underdominant expression patterns in the hybrid, whereas putative photosynthesis and carbon-fixation (ZmPEPC)-associated, starch biosynthetic (ZmAPS1, ZmAPL), gibberellin biosynthetic genes (ZmGA20OX, ZmGA3OX) expressed overdominantly. We also identified 86 transcription factors from PH-DEGs, some of which were known to regulate senescence, stress and metabolic processes. Collectively, we demonstrate a molecular association of the regulations of both ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the late developmental stage. This finding not only extends our understanding to the molecular basis of maize heterosis but also provides basic information for molecular breeding.
Collapse
Affiliation(s)
- Yi Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhe Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| | - Xianjie Tan
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yufeng Jiang
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Jiong Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Li Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Zhenhua Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lanqiu Qin
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Weidong Cheng
- Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China.,Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Sun Y, Guo CY, Wang DD, Li XF, Xiao L, Zhang X, You X, Shi Q, Hu GJ, Fang C, Lin HR, Zhang Y. Transcriptome analysis reveals the molecular mechanisms underlying growth superiority in a novel grouper hybrid (Epinephelus fuscogutatus♀ × E. lanceolatus♂). BMC Genet 2016; 17:24. [PMID: 26785614 PMCID: PMC4719697 DOI: 10.1186/s12863-016-0328-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Groupers (Epinephelus spp.) have been widely cultivated in China and South-East Asian countries. As a novel hybrid offspring crossed between E. fuscogutatus♀ and E. lanceolatus♂, Hulong grouper exhibits significant growth superiority over its female parent, which made it a promising farmed species in grouper aquaculture industry in China. Hulong grouper present a good combination of beneficial traits from both parent species, but the molecular mechanisms of its heterosis still remain poorly understood. RESULTS Based on RNA sequencing and gene expression profiling, we conducted comparative transcriptome analyses between Hulong grouper and its parents E. fuscoguttatus & E. lanceolatus. Six hundred sixty-two and 5239 differentially expressed genes (DEGs) were identified in the brains and livers, respectively. GO enrichment analysis of these DEGs revealed that metabolic process and catalytic activity were the most enriched GO terms. Further analysis showed the expressions of GnRH1 and GnRH3 in the brain, and GH/IGF axis related genes such as IGF-1, IGF-2b, IGFBP-1, IGFBP-2, IGFBP-4 and IGFBP-5a in the liver of the hybrid F1 were significantly up-regulated, which is in accordance with the growth superiority of hybrid grouper. Meanwhile, expressions of genes related to the protein and glycogen synthesis pathway, such as PI3KC, PI3KR, Raptor, EIF4E3, and PP1 were up-regulated, while PYG expression was down-regulated. These changes might contribute to increased protein and glycogen synthesis in the hybrid grouper. CONCLUSIONS We identified a number of differentially expressed genes such as GnRH1 and GnRH3, and genes involved in GH/IGF axis and its downstream signaling pathways for protein and glycogen synthesis in Hulong Grouper. These findings provided molecular basis underlying growth superiority of hybrid grouper, and comprehensive insights into better understanding the molecular mechanisms and regulative pathways regulating heterosis in fish.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
| | - Chuan-Yu Guo
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
| | - Deng-Dong Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xiao Feng Li
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Guo-Jun Hu
- Shenzhen Key Lab of Marine Genomics, BGI, Shenzhen, 518083, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| | - Chao Fang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hao-Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Shenzhen, 518083, China.
| |
Collapse
|
9
|
OsPRR37 and Ghd7 are the major genes for general combining ability of DTH, PH and SPP in rice. Sci Rep 2015; 5:12803. [PMID: 26238949 PMCID: PMC4523830 DOI: 10.1038/srep12803] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/06/2015] [Indexed: 11/11/2022] Open
Abstract
Artificial selection of high yield crops and better livestock is paramount importance in breeding programs. Selection of elite parents with preferred traits from a phalanx of inbred lines is extremely laborious, time-consuming and highly random. General combining ability (GCA) was proposed and has been widely used for the evaluation of parents in hybrid breeding for more than half a century. However, the genetic and molecular basis of GCA has been largely overlooked. Here, we present two pleotropic QTLs are accounting for GCA of days to heading (DTH), plant height (PH) and spikelet per panicle (SPP) using an F2-based NCII design, the BC3F2 population as well as a set of nearly isogenic lines (NILs) with five testers. Both GCA1 and GCA2 were loss-of-function gene in low-GCA parent and gain-of-function gene in high-GCA parent, encoding the putative Pseudo-Response Regulators, OsPRR37 and Ghd7, respectively. Overexpression of GCA1 in low-GCA parent significantly increases GCA effects in three traits. Our results demonstrate that two GCA loci associate with OsPRR37 and Ghd7 and reveal that the genes responsible for important agronomic traits could simultaneously account for GCA effects.
Collapse
|
10
|
Guo Z, Song G, Liu Z, Qu X, Chen R, Jiang D, Sun Y, Liu C, Zhu Y, Yang D. Global epigenomic analysis indicates that epialleles contribute to Allele-specific expression via Allele-specific histone modifications in hybrid rice. BMC Genomics 2015; 16:232. [PMID: 25886904 PMCID: PMC4394419 DOI: 10.1186/s12864-015-1454-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 03/09/2015] [Indexed: 12/05/2022] Open
Abstract
Background For heterozygous genes, alleles on the chromatin from two different parents exhibit histone modification variations known as allele-specific histone modifications (ASHMs). The regulation of allele-specific gene expression (ASE) by ASHMs has been reported in animals. However, to date, the regulation of ASE by ASHM genes remains poorly understood in higher plants. Results We used chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) to investigate the global ASHM profiles of trimethylation on histone H3 lysine 27 (H3K27me3) and histone H3 lysine 36 (H3K36me3) in two rice F1 hybrids. A total of 522 to 550 allele-specific H3K27me3 genes and 428 to 494 allele-specific H3K36me3 genes were detected in GL × 93-11 and GL × TQ, accounting for 11.09% and 26.13% of the total analyzed genes, respectively. The epialleles between parents were highly related to ASHMs. Further analysis indicated that 52.48% to 70.40% of the epialleles were faithfully inherited by the F1 hybrid and contributed to 33.18% to 46.55% of the ASHM genes. Importantly, 66.67% to 82.69% of monoallelic expression genes contained the H3K36me3 modification. Further studies demonstrated a significant positive correlation of ASE with allele-specific H3K36me3 but not with H3K27me3, indicating that ASHM-H3K36me3 primarily regulates ASE in this study. Conclusions Our results demonstrate that epialleles from parents can be inherited by the F1 to produce ASHMs in the F1 hybrid. Our findings indicate that ASHM-H3K36me3, rather than H3K27me3, mainly regulates ASE in hybrid rice. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1454-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhibin Guo
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Gaoyuan Song
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Zhenwei Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Xuefeng Qu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Rong Chen
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Daiming Jiang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Yunfang Sun
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Chuan Liu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| | - Daichang Yang
- State Key Laboratory of Hybrid Rice and College of Life Sciences, Wuhan University, Luojia Hill, Wuhan, 430072, , Hubei Province, China.
| |
Collapse
|