1
|
Papudeshi B, Rusch DB, VanInsberghe D, Lively CM, Edwards RA, Bashey F. Host Association and Spatial Proximity Shape but Do Not Constrain Population Structure in the Mutualistic Symbiont Xenorhabdus bovienii. mBio 2023:e0043423. [PMID: 37154562 DOI: 10.1128/mbio.00434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
To what extent are generalist species cohesive evolutionary units rather than a compilation of recently diverged lineages? We examine this question in the context of host specificity and geographic structure in the insect pathogen and nematode mutualist Xenorhabdus bovienii. This bacterial species partners with multiple nematode species across two clades in the genus Steinernema. We sequenced the genomes of 42 X. bovienii strains isolated from four different nematode species and three field sites within a 240-km2 region and compared them to globally available reference genomes. We hypothesized that X. bovienii would comprise several host-specific lineages, such that bacterial and nematode phylogenies would be largely congruent. Alternatively, we hypothesized that spatial proximity might be a dominant signal, as increasing geographic distance might lower shared selective pressures and opportunities for gene flow. We found partial support for both hypotheses. Isolates clustered largely by nematode host species but did not strictly match the nematode phylogeny, indicating that shifts in symbiont associations across nematode species and clades have occurred. Furthermore, both genetic similarity and gene flow decreased with geographic distance across nematode species, suggesting differentiation and constraints on gene flow across both factors, although no absolute barriers to gene flow were observed across the regional isolates. Several genes associated with biotic interactions were found to be undergoing selective sweeps within this regional population. The interactions included several insect toxins and genes implicated in microbial competition. Thus, gene flow maintains cohesiveness across host associations in this symbiont and may facilitate adaptive responses to a multipartite selective environment. IMPORTANCE Microbial populations and species are notoriously hard to delineate. We used a population genomics approach to examine the population structure and the spatial scale of gene flow in Xenorhabdus bovienii, an intriguing species that is both a specialized mutualistic symbiont of nematodes and a broadly virulent insect pathogen. We found a strong signature of nematode host association, as well as evidence for gene flow connecting isolates associated with different nematode host species and collected from distinct study sites. Furthermore, we saw signatures of selective sweeps for genes involved with nematode host associations, insect pathogenicity, and microbial competition. Thus, X. bovienii exemplifies the growing consensus that recombination not only maintains cohesion but can also allow the spread of niche-beneficial alleles.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, Australia
- National Centre for Genome Analysis Support, Pervasive Institute of Technology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | | | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, Australia
| | - Farrah Bashey
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
2
|
McKerral JC, Papudeshi B, Inglis LK, Roach MJ, Decewicz P, McNair K, Luque A, Dinsdale EA, Edwards RA. The Promise and Pitfalls of Prophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537752. [PMID: 37131798 PMCID: PMC10153245 DOI: 10.1101/2023.04.20.537752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phages dominate every ecosystem on the planet. While virulent phages sculpt the microbiome by killing their bacterial hosts, temperate phages provide unique growth advantages to their hosts through lysogenic conversion. Many prophages benefit their host, and prophages are responsible for genotypic and phenotypic differences that separate individual microbial strains. However, the microbes also endure a cost to maintain those phages: additional DNA to replicate and proteins to transcribe and translate. We have never quantified those benefits and costs. Here, we analysed over two and a half million prophages from over half a million bacterial genome assemblies. Analysis of the whole dataset and a representative subset of taxonomically diverse bacterial genomes demonstrated that the normalised prophage density was uniform across all bacterial genomes above 2 Mbp. We identified a constant carrying capacity of phage DNA per bacterial DNA. We estimated that each prophage provides cellular services equivalent to approximately 2.4 % of the cell's energy or 0.9 ATP per bp per hour. We demonstrate analytical, taxonomic, geographic, and temporal disparities in identifying prophages in bacterial genomes that provide novel targets for identifying new phages. We anticipate that the benefits bacteria accrue from the presence of prophages balance the energetics involved in supporting prophages. Furthermore, our data will provide a new framework for identifying phages in environmental datasets, diverse bacterial phyla, and from different locations.
Collapse
Affiliation(s)
- Jody C. McKerral
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Laura K. Inglis
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Michael J. Roach
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Przemyslaw Decewicz
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Katelyn McNair
- Computational Sciences Research Center, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- The Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Antoni Luque
- The Viral Information Institute, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Elizabeth A. Dinsdale
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Robert A. Edwards
- Flinders Accelerator for Microbiome Exploration, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
3
|
Leyton-Carcaman B, Abanto M. Beyond to the Stable: Role of the Insertion Sequences as Epidemiological Descriptors in Corynebacterium striatum. Front Microbiol 2022; 13:806576. [PMID: 35126341 PMCID: PMC8811144 DOI: 10.3389/fmicb.2022.806576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
In recent years, epidemiological studies of infectious agents have focused mainly on the pathogen and stable components of its genome. The use of these stable components makes it possible to know the evolutionary or epidemiological relationships of the isolates of a particular pathogen. Under this approach, focused on the pathogen, the identification of resistance genes is a complementary stage of a bacterial characterization process or an appendix of its epidemiological characterization, neglecting its genetic components’ acquisition or dispersal mechanisms. Today we know that a large part of antibiotic resistance is associated with mobile elements. Corynebacterium striatum, a bacterium from the normal skin microbiota, is also an opportunistic pathogen. In recent years, reports of infections and nosocomial outbreaks caused by antimicrobial multidrug-resistant C. striatum strains have been increasing worldwide. Despite the different existing mobile genomic elements, there is evidence that acquired resistance genes are coupled to insertion sequences in C. striatum. This perspective article reviews the insertion sequences linked to resistance genes, their relationship to evolutionary lineages, epidemiological characteristics, and the niches the strains inhabit. Finally, we evaluate the potential of the insertion sequences for their application as a descriptor of epidemiological scenarios, allowing us to anticipate the emergence of multidrug-resistant lineages.
Collapse
|
4
|
Provorov NA. Symbiotic Models for Reconstruction of Organellogenesis. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Molecular epidemiology and intercontinental spread of cholera. Vaccine 2020; 38 Suppl 1:A46-A51. [DOI: 10.1016/j.vaccine.2019.07.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 11/22/2022]
|
6
|
Hounmanou YMG, Leekitcharoenphon P, Kudirkiene E, Mdegela RH, Hendriksen RS, Olsen JE, Dalsgaard A. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Negl Trop Dis 2019; 13:e0007934. [PMID: 31869327 PMCID: PMC6927581 DOI: 10.1371/journal.pntd.0007934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tanzania is one of seven countries with the highest disease burden caused by cholera in Africa. We studied the evolution of Vibrio cholerae O1 isolated in Tanzania during the past three decades. METHODOLOGY/PRINCIPAL FINDINGS Genome-wide analysis was performed to characterize V. cholerae O1 responsible for the Tanzanian 2015-2017 outbreak along with strains causing outbreaks in the country for the past three decades. The genomes were further analyzed in a global context of 590 strains of the seventh cholera pandemic (7PET), as well as environmental isolates from Lake Victoria. All Tanzanian cholera outbreaks were caused by the 7PET lineage. The T5 sub-lineage (ctxB3) dominated outbreaks until 1997, followed by the T10 atypical El Tor (ctxB1) up to 2015, which were replaced by the T13 atypical El Tor of the current third wave (ctxB7) causing most cholera outbreaks until 2017 with T13 being phylogenetically related to strains from East African countries, Yemen and Lake Victoria. The strains were less drug resistant with approximate 10-kb deletions found in the SXT element, which encodes resistance to sulfamethoxazole and trimethoprim. Nucleotide deletions were observed in the CTX prophage of some strains, which warrants further virulence studies. Outbreak strains share 90% of core genes with V. cholerae O1 from Lake Victoria with as low as three SNPs difference and a significantly similar accessory genome, composed of genomic islands namely the CTX prophage, Vibrio Pathogenicity Islands; toxin co-regulated pilus biosynthesis proteins and the SXT-ICE element. CONCLUSION/SIGNIFICANCE Characterization of V. cholerae O1 from Tanzania reveals genetic diversity of the 7PET lineage composed of T5, T10 and T13 sub-lineages with introductions of new sequence types from neighboring countries. The presence of these sub-lineages in environmental isolates suggests that the African Great Lakes may serve as aquatic reservoirs for survival of V. cholerae O1 favoring continuous human exposure.
Collapse
Affiliation(s)
| | | | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robinson H. Mdegela
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rene S. Hendriksen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore city, Singapore
| |
Collapse
|
7
|
Ramamurthy T, Mutreja A, Weill FX, Das B, Ghosh A, Nair GB. Revisiting the Global Epidemiology of Cholera in Conjuction With the Genomics of Vibrio cholerae. Front Public Health 2019; 7:203. [PMID: 31396501 PMCID: PMC6664003 DOI: 10.3389/fpubh.2019.00203] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Toxigenic Vibrio cholerae is responsible for 1.4 to 4.3 million cases with about 21,000-143,000 deaths per year. Dominance of O1 and O139 serogroups, classical and El tor biotypes, alterations in CTX phages and the pathogenicity Islands are some of the major features of V. cholerae isolates that are responsible for cholera epidemics. Whole-genome sequencing (WGS) based analyses of single-nucleotide polymorphisms (SNPs) and other infrequent genetic variants provide a robust phylogenetic framework. Recent studies on the global transmission of pandemic V. cholerae O1 strains have shown the existence of eight different phyletic lineages. In these, the classical and El Tor biotype strains were separated as two distinctly evolved lineages. The frequency of SNP accumulation and the temporal and geographical distribution supports the perception that the seventh cholera pandemic (7CP) has spread from the Bay of Bengal region in three independent but overlapping waves. The 2010 Haitian outbreak shared a common ancestor with South-Asian wave-3 strains. In West Africa and East/Southern Africa, cholera epidemics are caused by single expanded lineage, which has been introduced several times since 1970. The Latin American epidemics that occurred in 1991 and 2010 were the result of introductions of two 7CP sublineages. Sublineages representing wave-3 have caused huge outbreaks in Haiti and Yemen. The Ogawa-Inaba serotype switchover in several cholera epidemics are believed to be due to the involvement of certain selection mechanism(s) rather than due to random events. V. cholerae O139 serogroup is phylogenetically related to the 7CP El Tor, and almost all these isolates belonged to the multilocus sequence type-69. Additional phenotypic and genotypic information have been generated to understand the pathogenicity of classical and El Tor vibrios. Presence of integrative conjugative elements (ICE) with antibiotic resistance gene cassettes, clustered regularly interspaced short palindromic repeats-associated protein system and ctxAB promoter based ToxRS expression of cholera toxin (CT) separates classical and El Tor biotypes. With the availability of WGS information, several important applications including, molecular typing, antimicrobial resistance, new diagnostics, and vaccination strategies could be generated.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Ankur Mutreja
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India.,Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Ghosh
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
8
|
Mohammed Y, Aboderin AO, Okeke IN, Olayinka AT. Antimicrobial resistance of Vibrio cholerae from sub-Saharan Africa: A systematic review. Afr J Lab Med 2018; 7:778. [PMID: 30643734 PMCID: PMC6325272 DOI: 10.4102/ajlm.v7i2.778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 09/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background The World Health Assembly adopted the Global Action Plan on Antimicrobial Resistance, which includes improving the knowledge base through surveillance and research. Noteworthily, the World Health Organization has advocated a Global Antimicrobial Resistance Surveillance System to address the plan’s surveillance objective, with most African countries enrolling in or after 2017. Aim The aim of this article was to review prior data on antimicrobial resistance of Vibrio cholerae from sub-Saharan Africa with a view for future control and intervention strategies. Methods We used the Preferred Reporting Items for Systematic Review and Meta-Analysis (or ‘PRISMA’) guidelines to search the PubMed and African Journals Online databases, as well as additional articles provided by the Nigeria Centre for Disease Control, for articles reporting on the antibiotic susceptibility of V. cholerae between January 2000 and December 2017. Results We identified 340 publications, of which only 25 (reporting from 16 countries within the sub-Saharan African region) were eligible. The majority (20; 80.0%) of the cholera toxigenic V. cholerae isolates were of the serogroup O1 of the El Tor biotype with Ogawa and Inaba serotypes predominating. Resistance was predominantly documented to trimethoprim-sulphamethoxazole (50% of the studies), ampicillin (43.3% of the studies), chloramphenicol (43.3% of the studies) and streptomycin (30% of the studies). Resistance mechanisms were reported in 40% of the studies. Conclusion Our results demonstrate a documented antimicrobial resistance of V. cholerae to multiple antibiotic classes, including cell wall active agents and antimetabolites with evidence of phenotypic/genotypic resistance to fluoroquinolones.
Collapse
Affiliation(s)
- Yahaya Mohammed
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Aaron O Aboderin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Adebola T Olayinka
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
9
|
Gong L, Yu P, Zheng H, Gu W, He W, Tang Y, Wang Y, Dong Y, Peng X, She Q, Xie L, Chen L. Comparative genomics for non-O1/O139 Vibrio cholerae isolates recovered from the Yangtze River Estuary versus V. cholerae representative isolates from serogroup O1. Mol Genet Genomics 2018; 294:417-430. [PMID: 30488322 DOI: 10.1007/s00438-018-1514-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/13/2018] [Indexed: 01/03/2023]
Abstract
Vibriocholerae, which is autochthonous to estuaries worldwide, can cause human cholera that is still pandemic in developing countries. A number of V. cholerae isolates of clinical and environmental origin worldwide have been subjected to genome sequencing to address their phylogenesis and bacterial pathogenesis, however, little genome information is available for V. cholerae isolates derived from estuaries, particularly in China. In this study, we determined the complete genome sequence of V. cholerae CHN108B (non-O1/O139 serogroup) isolated from the Yangtze River Estuary, China and performed comparative genome analysis between CHN108B and other eight representative V. cholerae isolates. The 4,168,545-bp V. cholerae CHN108B genome (47.2% G+C) consists of two circular chromosomes with 3,691 predicted protein-encoding genes. It has 110 strain-specific genes, the highest number among the eight representative V. cholerae whole genomes from serogroup O1: there are seven clinical isolates linked to cholera pandemics (1937-2010) and one environmental isolate from Brazil. Various mobile genetic elements (such as insertion sequences, prophages, integrative and conjugative elements, and super-integrons) were identified in the nine V. cholerae genomes of clinical and environmental origin, indicating that the bacterium undergoes extensive genetic recombination via lateral gene transfer. Comparative genomics also revealed different virulence and antimicrobial resistance gene patterns among the V. cholerae isolates, suggesting some potential virulence factors and the rising development of resistance among pathogenic V. cholerae. Additionally, draft genome sequences of multiple V. cholerae isolates recovered from the Yangtze River Estuary were also determined, and comparative genomics revealed many genes involved in specific metabolism pathways, which are likely shaped by the unique estuary environment. These results provide additional evidence of V. cholerae genome plasticity and will facilitate better understanding of the genome evolution and pathogenesis of this severe water-borne pathogen worldwide.
Collapse
Affiliation(s)
- Li Gong
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, People's Republic of China
| | - Wenyi Gu
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, People's Republic of China
| | - Wei He
- Shanghai Hanyu Bio-lab, Shanghai, People's Republic of China
| | - Yadong Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yaping Wang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Yue Dong
- University of Oklahoma, Norman, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Qunxin She
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China.
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, Shanghai, People's Republic of China.
| |
Collapse
|
10
|
Nguyen TH, Pham TD, Higa N, Iwashita H, Takemura T, Ohnishi M, Morita K, Yamashiro T. Analysis of Vibrio seventh pandemic island II and novel genomic islands in relation to attachment sequences among a wide variety of Vibrio cholerae strains. Microbiol Immunol 2018; 62:150-157. [PMID: 29315809 PMCID: PMC5900727 DOI: 10.1111/1348-0421.12570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Vibrio cholerae O1 El Tor, the pathogen responsible for the current cholera pandemic, became pathogenic by acquiring virulent factors including Vibrio seventh pandemic islands (VSP)‐I and −II. Diversity of VSP‐II is well recognized; however, studies addressing attachment sequence left (attL) sequences of VSP‐II are few. In this report, a wide variety of V. cholerae strains were analyzed for the structure and distribution of VSP‐II in relation to their attachment sequences. Of 188 V. cholerae strains analyzed, 81% (153/188) strains carried VSP‐II; of these, typical VSP‐II, and a short variant was found in 36% (55/153), and 63% (96/153), respectively. A novel VSP‐II was found in two V. cholerae non‐O1/non‐O139 strains. In addition to the typical 14‐bp attL, six new attL‐like sequences were identified. The 14‐bp attL was associated with VSP‐II in 91% (139/153), whereas the remaining six types were found in 9.2% (14/153) of V. cholerae strains. Of note, six distinct types of the attL‐like sequence were found in the seventh pandemic wave 1 strains; however, only one or two types were found in the wave 2 or 3 strains. Interestingly, 86% (24/28) of V. cholerae seventh pandemic strains harboring a 13‐bp attL‐like sequence were devoid of VSP‐II. Six novel genomic islands using two unique insertion sites to those of VSP‐II were identified in 11 V. cholerae strains in this study. Four of those shared similar gene clusters with VSP‐II, except integrase gene.
Collapse
Affiliation(s)
- Tuan Hai Nguyen
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan
| | - Tho Duc Pham
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan
| | - Naomi Higa
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hanako Iwashita
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Taichiro Takemura
- Department of Tropical Microbiology, Nagasaki University Institute of Tropical Medicine, Nagasaki, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouichi Morita
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan.,Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
11
|
Abstract
Many disciplines, from human genetics and oncology to plant breeding, microbiology and virology, commonly face the challenge of analyzing rapidly increasing numbers of genomes. In case of Homo sapiens, the number of sequenced genomes will approach hundreds of thousands in the next few years. Simply scaling up established bioinformatics pipelines will not be sufficient for leveraging the full potential of such rich genomic data sets. Instead, novel, qualitatively different computational methods and paradigms are needed. We will witness the rapid extension of computational pan-genomics, a new sub-area of research in computational biology. In this article, we generalize existing definitions and understand a pan-genome as any collection of genomic sequences to be analyzed jointly or to be used as a reference. We examine already available approaches to construct and use pan-genomes, discuss the potential benefits of future technologies and methodologies and review open challenges from the vantage point of the above-mentioned biological disciplines. As a prominent example for a computational paradigm shift, we particularly highlight the transition from the representation of reference genomes as strings to representations as graphs. We outline how this and other challenges from different application domains translate into common computational problems, point out relevant bioinformatics techniques and identify open problems in computer science. With this review, we aim to increase awareness that a joint approach to computational pan-genomics can help address many of the problems currently faced in various domains.
Collapse
|
12
|
A Reverse Ecology Framework for Bacteria and Archaea. POPULATION GENOMICS: MICROORGANISMS 2018. [DOI: 10.1007/13836_2018_46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Klemm E, Dougan G. Advances in Understanding Bacterial Pathogenesis Gained from Whole-Genome Sequencing and Phylogenetics. Cell Host Microbe 2017; 19:599-610. [PMID: 27173928 DOI: 10.1016/j.chom.2016.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 01/07/2023]
Abstract
The development of next-generation sequencing as a cost-effective technology has facilitated the analysis of bacterial population structure at a whole-genome level and at scale. From these data, phylogenic trees have been constructed that define population structures at a local, national, and global level, providing a framework for genetic analysis. Although still at an early stage, these approaches have yielded progress in several areas, including pathogen transmission mapping, the genetics of niche colonization and host adaptation, as well as gene-to-phenotype association studies. Antibiotic resistance has proven to be a major challenge in the early 21(st) century, and phylogenetic analyses have uncovered the dramatic effect that the use of antibiotics has had on shaping bacterial population structures. An update on insights into bacterial evolution from comparative genomics is provided in this review.
Collapse
Affiliation(s)
- Elizabeth Klemm
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
14
|
Winans NJ, Walter A, Chouaia B, Chaston JM, Douglas AE, Newell PD. A genomic investigation of ecological differentiation between free-living and Drosophila-associated bacteria. Mol Ecol 2017; 26:4536-4550. [PMID: 28667798 DOI: 10.1111/mec.14232] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/31/2017] [Accepted: 06/08/2017] [Indexed: 12/27/2022]
Abstract
Various bacterial taxa have been identified both in association with animals and in the external environment, but the extent to which related bacteria from the two habitat types are ecologically and evolutionarily distinct is largely unknown. This study investigated the scale and pattern of genetic differentiation between bacteria of the family Acetobacteraceae isolated from the guts of Drosophila fruit flies, plant material and industrial fermentations. Genome-scale analysis of the phylogenetic relationships and predicted functions was conducted on 44 Acetobacteraceae isolates, including newly sequenced genomes from 18 isolates from wild and laboratory Drosophila. Isolates from the external environment and Drosophila could not be assigned to distinct phylogenetic groups, nor are their genomes enriched for any different sets of genes or category of predicted gene functions. In contrast, analysis of bacteria from laboratory Drosophila showed they were genetically distinct in their universal capacity to degrade uric acid (a major nitrogenous waste product of Drosophila) and absence of flagellar motility, while these traits vary among wild Drosophila isolates. Analysis of the competitive fitness of Acetobacter discordant for these traits revealed a significant fitness deficit for bacteria that cannot degrade uric acid in culture with Drosophila. We propose that, for wild populations, frequent cycling of Acetobacter between Drosophila and the external environment prevents genetic differentiation by maintaining selection for traits adaptive in both the gut and external habitats. However, laboratory isolates bear the signs of adaptation to persistent association with the Drosophila host under tightly defined environmental conditions.
Collapse
Affiliation(s)
- Nathan J Winans
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Alec Walter
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Bessem Chouaia
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - John M Chaston
- Department of Entomology, Cornell University, Ithaca, NY, USA.,Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Peter D Newell
- Department of Entomology, Cornell University, Ithaca, NY, USA.,Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| |
Collapse
|
15
|
Takemura T, Murase K, Maruyama F, Tran TL, Ota A, Nakagawa I, Nguyen DT, Ngo TC, Nguyen TH, Tokizawa A, Morita M, Ohnishi M, Nguyen BM, Yamashiro T. Genetic diversity of environmental Vibrio cholerae O1 strains isolated in Northern Vietnam. INFECTION GENETICS AND EVOLUTION 2017. [PMID: 28642158 DOI: 10.1016/j.meegid.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholera epidemics have been recorded periodically in Vietnam during the seventh cholera pandemic. Since cholera is a water-borne disease, systematic monitoring of environmental waters for Vibrio cholerae presence is important for predicting and preventing cholera epidemics. We conducted monitoring, isolation, and genetic characterization of V. cholerae strains in Nam Dinh province of Northern Vietnam from Jul 2013 to Feb 2015. In this study, four V. cholerae O1 strains were detected and isolated from 110 analyzed water samples (3.6%); however, none of them carried the cholera toxin gene, ctxA, in their genomes. Whole genome sequencing and phylogenetic analysis revealed that the four O1 isolates were separated into two independent clusters, and one of them diverged from a common ancestor with pandemic strains. The analysis of pathogenicity islands (CTX prophage, VPI-I, VPI-II, VSP-I, and VSP-II) indicated that one strain (VNND_2014Jun_6SS) harbored an unknown prophage-like sequence with high homology to vibriophage KSF-1 phi and VCY phi, identified from Bangladesh and the USA, respectively, while the other three strains carried tcpA gene with a distinct sequence demonstrating a separate clonal lineage. These results suggest that the aquatic environment can harbor highly divergent V. cholera strains and serve as a reservoir for multiple V. cholerae virulence-associated genes which may be exchanged via mobile genetic elements. Therefore, continuous monitoring and genetic characterization of V. cholerae strains in the environment should contribute to the early detection of the sources of infection and prevention of cholera outbreaks as well as to understanding the natural ecology and evolution of V. cholerae.
Collapse
Affiliation(s)
- Taichiro Takemura
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kazunori Murase
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Fumito Maruyama
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Thi Luong Tran
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Atsushi Ota
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Ichiro Nakagawa
- Section of Microbiology, Graduated School of Medicine, Kyoto University, Japan
| | - Dong Tu Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Tu Cuong Ngo
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Thi Hang Nguyen
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Asako Tokizawa
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Masatomo Morita
- Department of Bacteriology, National Institute of Infectious Diseases, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Japan
| | - Binh Minh Nguyen
- Department of Bacteriology, National Institute of Hygiene and Epidemiology, Vietnam
| | - Tetsu Yamashiro
- Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Japan; Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Japan.
| |
Collapse
|
16
|
Motlagh AM, Bhattacharjee AS, Coutinho FH, Dutilh BE, Casjens SR, Goel RK. Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses. Front Microbiol 2017; 8:352. [PMID: 28316597 PMCID: PMC5334351 DOI: 10.3389/fmicb.2017.00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/20/2017] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through the transfer of auxiliary metabolic genes. Various studies have been conducted in diverse ecosystems to understand phage-host interactions and their effects on prokaryote metabolism and community composition. However, hypersaline environments remain among the least studied ecosystems and the interaction between the phages and prokaryotes in these habitats is poorly understood. This study begins to fill this knowledge gap by analyzing bacteriophage-host interactions in the Great Salt Lake, the largest prehistoric hypersaline lake in the Western Hemisphere. Our metagenomics analyses allowed us to comprehensively identify the bacterial and phage communities with Proteobacteria, Firmicutes, and Bacteroidetes as the most dominant bacterial species and Siphoviridae, Myoviridae, and Podoviridae as the most dominant viral families found in the metagenomic sequences. We also characterized interactions between the phage and prokaryotic communities of Great Salt Lake and determined how these interactions possibly influence the community diversity, structure, and biogeochemical cycles. In addition, presence of prophages and their interaction with the prokaryotic host was studied and showed the possibility of prophage induction and subsequent infection of prokaryotic community present in the Great Salt Lake environment under different environmental stress factors. We found that carbon cycle was the most susceptible nutrient cycling pathways to prophage induction in the presence of environmental stresses. This study gives an enhanced snapshot of phage and prokaryote abundance and diversity as well as their interactions in a hypersaline complex ecosystem, which can pave the way for further research studies.
Collapse
Affiliation(s)
- Amir Mohaghegh Motlagh
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| | - Ananda S Bhattacharjee
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| | - Felipe H Coutinho
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands
| | - Bas E Dutilh
- Instituto de Biologia, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Radboud Institute for Molecular Life Sciences, Centre for Molecular and Biomolecular Informatics, Radboud University Medical CentreNijmegen, Netherlands; Theoretical Biology and Bioinformatics, Utrecht UniversityUtrecht, Netherlands
| | | | - Ramesh K Goel
- Department of Civil and Environmental Engineering, University of Utah Salt Lake, UT, USA
| |
Collapse
|
17
|
Kraemer SA, Boynton PJ. Evidence for microbial local adaptation in nature. Mol Ecol 2017; 26:1860-1876. [DOI: 10.1111/mec.13958] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Susanne A. Kraemer
- Ashworth Laboratories; University of Edinburgh; King's Buildings EH9 3FL Edinburgh UK
| | - Primrose J. Boynton
- Max Planck Institute for Evolutionary Biology; August-Thienemann-Str. 2 24306 Plön Germany
| |
Collapse
|
18
|
Abstract
Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative Staphylococcus (CNS) species, we demonstrate that fungi can mediate the ecological distributions of closely related bacterial species. One of the Staphylococcus species studied, S. saprophyticus, is a common cause of urinary tract infections. By identifying processes that control the abundance of undesirable CNS species, cheese producers will have more precise control on the safety and quality of their products. More generally, Staphylococcus species frequently co-occur with fungi in mammalian microbiomes, and similar bacterium-fungus interactions may structure bacterial diversity in these systems.
Collapse
|
19
|
Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KYH, Thompson JR. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 2015; 6:1027. [PMID: 26441948 PMCID: PMC4585245 DOI: 10.3389/fmicb.2015.01027] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.
Collapse
Affiliation(s)
- BoonFei Tan
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
| | - Charmaine Ng
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Jean Pierre Nshimyimana
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological UniversitySingapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological UniversitySingapore, Singapore
| | - Lay Leng Loh
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Karina Y.-H. Gin
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Janelle R. Thompson
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, CambridgeMA, USA
| |
Collapse
|
20
|
Microbial taxonomy in the post-genomic era: rebuilding from scratch? Arch Microbiol 2014; 197:359-70. [PMID: 25533848 DOI: 10.1007/s00203-014-1071-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. Its cornerstone, the prokaryote species has been re-evaluated twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. Ultimately, we will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.
Collapse
|