1
|
Kumari K, Sharma PK, Singh RP. Unravelling the transcriptome response of Enterobacter sp. S-33 under varying temperature. Arch Microbiol 2024; 206:81. [PMID: 38294553 DOI: 10.1007/s00203-023-03792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
Enterobacter genus includes the bacteria occupying every aspect of environment, however, their adaptability at varying temperature is not clear. In the present study, we analyzed the transcriptome response of Enterobacter sp. S-33 and their functional genes under various temperatures (30-45 ℃) that were expressed and accumulated in cells under temperature-stress. During a temperature shift from 37 to 45 ℃, 165 genes showed differential expression including 112 up-regulated and 53 down-regulated. In particular, heat-shock genes such as CspA, 16 kDa heat shock protein A/B and transcriptional regulators such as LysR, TetR, and LuxR were differentially expressed, indicating the role of complex molecular mechanism of Enterobacter adapting to temperature stress. Similarly, genes associated to signal transduction, ABC transporters, iron homeostasis, and quorum sensing were also induced. The Gene ontology enrichment analysis of differentially expressed genes (DEGs) were categorized into "transmembrane transport", "tRNA binding", "hydrogen sulfide biosynthetic process" and "sulfate assimilation" terms. In addition, Kyoto Encyclopedia of Genes and Genomes pathways showed that ABC transporter as well as quorum sensing pathways were significantly enriched. Overall, current study has contributed to explore the adaptive molecular mechanisms of Enterobacter spp. upon temperature change, which further opens new avenues for future in-depth functional studies.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India.
| |
Collapse
|
2
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
3
|
Analysis of multipartite bacterial genomes using alignment free and alignment-based pipelines. Arch Microbiol 2022; 205:25. [PMID: 36515719 DOI: 10.1007/s00203-022-03354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
Since the discovery of second chromosome in Rhodobacter sphaeroides 2.4.1 in 1989, multipartite genomes have been reported in over three hundred bacterial species under nine different phyla. This has shattered the unipartite (single chromosome) genome dogma in bacteria. Since then, many questions on various aspects of multipartite genomes in bacteria have been addressed. However, our understanding of how multipartite genomes emerge and evolve is still lacking. Importantly, the knowledge of genetic factors underlying the differences in multipartite and single-chromosome genomes is lacking. In this work, we have performed comparative evolutionary and functional genomics analyses to identify molecular factors that discriminate multipartite from unipartite bacteria, with the goal to decipher taxon-specific factors, and those that are prevalent across the taxa, underlying these traits. We assessed the roles of evolutionary mechanisms, specifically gene gain, in driving the divergence of bacteria with single and multiple chromosomes. In addition, we performed functional genomic analysis to garner support for our findings from comparative evolutionary analysis. We found genes such as those encoding conserved hypothetical proteins in Deinococcus radiodurans R1, and putative phage phi-C31 gp36 major capsid like and hypothetical proteins in Rhodobacter sphaeroides 2.4.1, which are located on accessory chromosomes in these bacteria but were not found in the inferred ancestral sequences, and on the primary chromosomes, as well as were not found in their closest relatives with single chromosome within the same clade. Our study shines a new light on the potential roles of the secondary chromosomes in helping bacteria with multipartite genomes to adapt to specialized environments or growth conditions.
Collapse
|
4
|
Rajendran K, Kumar V, Raja I, Kumariah M, Tennyson J. Identification of sigma factor 54-regulated small non-coding RNAs by employing genome-wide and transcriptome-based methods in rhizobium strains. 3 Biotech 2022; 12:328. [PMID: 36276463 PMCID: PMC9584007 DOI: 10.1007/s13205-022-03394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/12/2022] [Indexed: 11/01/2022] Open
Abstract
Rhizobium-legume symbiosis is considered as the major contributor of biological nitrogen fixation. Bacterial small non-coding RNAs are crucial regulators in several cellular adaptation processes that occur due to the changes in metabolism, physiology, or the external environment. Identifying and analysing the conditional specific/sigma factor-54 regulated sRNAs provides a better understanding of sRNA regulation/mechanism in symbiotic association. In the present study, we have identified sigma factor 54-regulated sRNAs from the genome of six rhizobium strains and from the RNA-seq data of free-living and symbiotic conditions of Bradyrhizobium diazoefficiens USDA 110 to identify the novel putative sRNAs that are over expressed during the regulation of nitrogen fixation. A total of 1351 sRNAs were predicted from the genome of six rhizobium strains and 1375 sRNAs were predicted from the transcriptome data of B. diazoefficiens USDA 110. Analysis of target mRNA for these novel sRNAs was inferred to target several nodulation and nitrogen fixation genes including nodC, nodJ, nodY, nodJ, nodM, nodW, nodZ, nifD, nifN, nifQ, fixK, fixL, fdx, nolB, and several cytochrome proteins. In addition, sRNAs of B. diazoefficiens USDA 110 which targeted the regulatory genes of nitrogen fixation were confirmed by wet-lab experiments with semi-quantitative reverse transcription polymerase chain reaction. Predicted target mRNAs were functionally classified based on the COG analysis and GO annotations. The genome-wide and transcriptome-based integrated methods have led to the identification of several sRNAs involved in the nodulation and symbiosis. Further validation of the functional role of these sRNAs can help in exploring the role of sRNAs in nitrogen metabolism during free-living and symbiotic association with legumes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03394-x.
Collapse
Affiliation(s)
- Kasthuri Rajendran
- Department of Plant Morphology and Algology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021 India
| | - Vikram Kumar
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021 India
| | - Ilamathi Raja
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021 India
| | - Manoharan Kumariah
- Department of Plant Morphology and Algology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021 India
| | - Jebasingh Tennyson
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu 625 021 India
| |
Collapse
|
5
|
Analysis of Ensifer aridi Mutants Affecting Regulation of Methionine, Trehalose, and Inositol Metabolisms Suggests a Role in Stress Adaptation and Symbiosis Development. Microorganisms 2022; 10:microorganisms10020298. [PMID: 35208753 PMCID: PMC8877191 DOI: 10.3390/microorganisms10020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
Isolated from desert, the nitrogen-fixing bacterium Ensifer aridi LMR001 is capable of survival under particularly harsh environmental conditions. To obtain insights in molecular mechanisms involved in stress adaptation, a recent study using RNAseq revealed that the RpoE2-mediated general stress response was activated under mild saline stress but appeared non-essential for the bacterium to thrive under stress and develop the symbiosis. Functions associated with the stress response included the metabolisms of trehalose, methionine, and inositol. To explore the roles of these metabolisms in stress adaptation and symbiosis development, and the possible regulatory mechanisms involved, mutants were generated notably in regulators and their transcriptions were studied in various mutant backgrounds. We found that mutations in regulatory genes nesR and sahR of the methionine cycle generating S-adenosylmethionine negatively impacted symbiosis, tolerance to salt, and motility in the presence of NaCl. When both regulators were mutated, an increased tolerance to detergent, oxidative, and acid stresses was found, suggesting a modification of the cell wall components which may explain these phenotypes and support a major role of the fine-tuning methylation for symbiosis and stress adaptation of the bacterium. In contrast, we also found that mutations in the predicted trehalose transport and utilization regulator ThuR and the trehalose phosphate phosphatase OtsB-encoding genes improved symbiosis and growth in liquid medium containing 0.4 M of NaCl of LMR001ΔotsB, suggesting that trehalose metabolism control and possibly trehalose-6 phosphate cellular status may be biotechnologically engineered for improved symbiosis under stress. Finally, transcriptional fusions of gfp to promoters of selected genes and expression studies in the various mutant backgrounds suggest complex regulatory interplay between inositol, methionine, and trehalose metabolic pathways.
Collapse
|
6
|
Zhu J, Jiang X, Guan D, Kang Y, Li L, Cao F, Zhao B, Ma M, Zhao J, Li J. Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium. J Microbiol 2022; 60:31-46. [PMID: 34826097 DOI: 10.1007/s12275-022-1325-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaowei Kang
- Life Sciences College of Zhaoqing University, Zhaoqing, 526061, P. R. China
| | - Li Li
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| |
Collapse
|
7
|
Cui Z, Zhang Y, Kakar KU, Kong X, Li R, Loh B, Leptihn S, Li B. Involvement of non-coding RNAs during infection of rice by Acidovorax oryzae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:540-554. [PMID: 34121356 DOI: 10.1111/1758-2229.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The expression of non-coding RNAs (ncRNAs) has been observed in a variety of bacteria. However, the function of ncRNAs and their regulatory targets are largely unknown, and few ncRNAs are found to be associated with bacterial virulence. The bacterial brown stripe pathogen Acidovorax oryzae (Ao) RS-1 shows a high level of condition-dependent differential expression of ncRNA, which we identified in a genome wide screen. We experimentally validated 66 differentially expressed ncRNAs using an integrative analysis of conservative genome sequences and transcriptomic data during in vivo interaction of the bacterial pathogen with the rice plant. To test the relevance of the differentially expressed ncRNAs, we chose four with different positions within the genome, and with different secondary structures and promoter activities. The results show that the overexpression of the four ncRNAs caused a significant change in virulence-related phenotypes, resistance to various environmental stresses, expression of secretion systems and effector proteins, while changing the expression of ncRNA putative target genes. We conclude that these ncRNAs are examples for the inherent regulatory roles for many of the observed ncRNAs in response to changing conditions such as host interaction or environmental adaption.
Collapse
Affiliation(s)
- Zhouqi Cui
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Kaleem U Kakar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Xiangdong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruihui Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Xue D, Liu W, Chen Y, Liu Y, Han J, Geng X, Li J, Jiang S, Zhou Z, Zhang W, Chen M, Lin M, Ongena M, Wang J. RNA-Seq-Based Comparative Transcriptome Analysis Highlights New Features of the Heat-Stress Response in the Extremophilic Bacterium Deinococcus radiodurans. Int J Mol Sci 2019; 20:ijms20225603. [PMID: 31717497 PMCID: PMC6888292 DOI: 10.3390/ijms20225603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022] Open
Abstract
Deinococcus radiodurans is best known for its extraordinary resistance to diverse environmental stress factors, such as ionizing radiation, ultraviolet (UV) irradiation, desiccation, oxidation, and high temperatures. The heat response of this bacterium is considered to be due to a classical, stress-induced regulatory system that is characterized by extensive transcriptional reprogramming. In this study, we investigated the key functional genes involved in heat stress that were expressed and accumulated in cells (R48) following heat treatment at 48 °C for 2 h. Considering that protein degradation is a time-consuming bioprocess, we predicted that to maintain cellular homeostasis, the expression of the key functional proteins would be significantly decreased in cells (RH) that had partly recovered from heat stress relative to their expression in cells (R30) grown under control conditions. Comparative transcriptomics identified 15 genes that were significantly downregulated in RH relative to R30, seven of which had previously been characterized to be heat shock proteins. Among these genes, three hypothetical genes (dr_0127, dr_1083, and dr_1325) are highly likely to be involved in response to heat stress. Survival analysis of mutant strains lacking DR_0127 (a DNA-binding protein), DR_1325 (an endopeptidase-like protein), and DR_1083 (a hypothetical protein) showed a reduction in heat tolerance compared to the wild-type strain. These results suggest that DR_0127, DR_1083, and DR_1325 might play roles in the heat stress response. Overall, the results of this study provide deeper insights into the transcriptional regulation of the heat response in D. radiodurans.
Collapse
Affiliation(s)
- Dong Xue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Wenzheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China;
| | - Yun Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingying Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Jiahui Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Xiuxiu Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Jiang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Shijie Jiang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China;
| | - Zhengfu Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
| | - Marc Ongena
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Correspondence: (M.O.); (J.W.)
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (D.X.); (Y.C.); (Y.L.); (J.H.); (Z.Z.); (W.Z.); (M.C.); (M.L.)
- Correspondence: (M.O.); (J.W.)
| |
Collapse
|
9
|
Firsova YE, Torgonskaya ML. Different roles of two groEL homologues in methylotrophic utiliser of dichloromethane Methylorubrum extorquens DM4. Antonie van Leeuwenhoek 2019; 113:101-116. [PMID: 31463590 DOI: 10.1007/s10482-019-01320-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
The genome of methylotrophic bacteria Methylorubrum extorquens DM4 contains two homologous groESL operons encoding the 60-kDa and 10-kDa subunits of GroE heat shock chaperones with highly similar amino acid sequences. To test a possible functional redundancy of corresponding GroEL proteins we attempted to disrupt the groEL1 and groEL2 genes. Despite the large number of recombinants analysed and the gentle culture conditions the groEL1-lacking mutant was not constructed suggesting that the loss of GroEL1 was lethal for cells. At the same time the ∆groEL2 strain was viable and varied from the wild-type by increased sensitivity to acid, salt and desiccation stresses as well as by the impaired growth with a toxic halogenated compound-dichloromethane (DCM). The evaluation of activity of putative PgroE1 and PgroE2 promoters using the reporter gene of green fluorescent protein (GFP) showed that the expression of groESL1 operon greatly prevails (about two orders of magnitude) over those of groESL2 under all tested conditions. However the above promoters demonstrated differential regulation in response to stresses. The expression from PgroE1 was heat-inducible, while the activity of PgroE2 was upregulated upon acid shock and cultivation with DCM. Based on these results we conclude that the highly conservative groESL1 operon (old locus tags METDI5839-5840) encodes the housekeeping chaperone essential for fundamental cellular processes. On the contrary the second pair of paralogues (METDI4129-4130) is dispensable, but corresponding GroE2 chaperone promotes the tolerance to acid and salt stresses, in particular, during the growth with DCM.
Collapse
Affiliation(s)
- Yulia E Firsova
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Maria L Torgonskaya
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, Pushchino, Russia, 142290.
| |
Collapse
|
10
|
Lipa P, Vinardell JM, Janczarek M. Transcriptomic Studies Reveal that the Rhizobium leguminosarum Serine/Threonine Protein Phosphatase PssZ has a Role in the Synthesis of Cell-Surface Components, Nutrient Utilization, and Other Cellular Processes. Int J Mol Sci 2019; 20:ijms20122905. [PMID: 31197117 PMCID: PMC6628131 DOI: 10.3390/ijms20122905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing symbiotic associations with clover plants (Trifolium spp.). Surface polysaccharides, transport systems, and extracellular components synthesized by this bacterium are required for both the adaptation to changing environmental conditions and successful infection of host plant roots. The pssZ gene located in the Pss-I region, which is involved in the synthesis of extracellular polysaccharide, encodes a protein belonging to the group of serine/threonine protein phosphatases. In this study, a comparative transcriptomic analysis of R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt297 carrying a pssZ mutation was performed. RNA-Seq data identified a large number of genes differentially expressed in these two backgrounds. Transcriptome profiling of the pssZ mutant revealed a role of the PssZ protein in several cellular processes, including cell signalling, transcription regulation, synthesis of cell-surface polysaccharides and components, and bacterial metabolism. In addition, we show that inactivation of pssZ affects the rhizobial ability to grow in the presence of different sugars and at various temperatures, as well as the production of different surface polysaccharides. In conclusion, our results identified a set of genes whose expression was affected by PssZ and confirmed the important role of this protein in the rhizobial regulatory network.
Collapse
Affiliation(s)
- Paulina Lipa
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
11
|
Graña-Miraglia L, Arreguín-Pérez C, López-Leal G, Muñoz A, Pérez-Oseguera A, Miranda-Miranda E, Cossío-Bayúgar R, Castillo-Ramírez S. Phylogenomics picks out the par excellence markers for species phylogeny in the genus Staphylococcus. PeerJ 2018; 6:e5839. [PMID: 30386709 PMCID: PMC6203942 DOI: 10.7717/peerj.5839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Although genome sequencing has become a very promising approach to conduct microbial taxonomy, few labs have the resources to afford this especially when dealing with data sets of hundreds to thousands of isolates. The goal of this study was to identify the most adequate loci for inferring the phylogeny of the species within the genus Staphylococcus; with the idea that those who cannot afford whole genome sequencing can use these loci to carry out species assignation confidently. We retrieved 177 orthologous groups (OGs) by using a genome-based phylogeny and an average nucleotide identity analysis. The top 26 OGs showed topologies similar to the species tree and the concatenation of them yielded a topology almost identical to that of the species tree. Furthermore, a phylogeny of just the top seven OGs could be used for species assignment. We sequenced four staphylococcus isolates to test the 26 OGs and found that these OGs were far superior to commonly used markers for this genus. On the whole, our procedure allowed identification of the most adequate markers for inferring the phylogeny within the genus Staphylococcus. We anticipate that this approach will be employed for the identification of the most suitable markers for other bacterial genera and can be very helpful to sort out poorly classified genera.
Collapse
Affiliation(s)
- Lucia Graña-Miraglia
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - César Arreguín-Pérez
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Gamaliel López-Leal
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alan Muñoz
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Angeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Estefan Miranda-Miranda
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Jiutepec, Morelos, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
12
|
López-Leal G, Cornejo-Granados F, Hurtado-Ramírez JM, Mendoza-Vargas A, Ochoa-Leyva A. Functional and taxonomic classification of a greenhouse water drain metagenome. Stand Genomic Sci 2018; 13:20. [PMID: 30323887 PMCID: PMC6173933 DOI: 10.1186/s40793-018-0326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Microbiome sequencing has become the standard procedure in the study of new ecological and human-constructed niches. To our knowledge, this is the first report of a metagenome from the water of a greenhouse drain. We found that the greenhouse is not a diverse niche, mainly dominated by Rhizobiales and Rodobacterales. The analysis of the functions encoded in the metagenome showed enrichment of characteristic features of soil and root-associated bacteria such as ABC-transporters and hydrolase enzymes. Additionally, we found antibiotic resistances genes principally for spectinomycin, tetracycline, and aminoglycosides. This study aimed to identify the bacteria and functional gene composition of a greenhouse water drain sample and also provide a genomic resource to search novel proteins from a previously unexplored niche. All the metagenome proteins and their annotations are available to the scientific community via http://microbiomics.ibt.unam.mx/tools/metagreenhouse/.
Collapse
Affiliation(s)
- Gamaliel López-Leal
- 1Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos Mexico
| | - Fernanda Cornejo-Granados
- 1Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos Mexico
| | - Juan Manuel Hurtado-Ramírez
- 1Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos Mexico
| | - Alfredo Mendoza-Vargas
- 2Instituto Nacional de Medicina Genómica, Secretaría de Salud, Periférico Sur No. 4809, Col. Arenal Tepepan, Delegación Tlalpan, 14610 Ciudad de México, Mexico
| | - Adrian Ochoa-Leyva
- 1Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, 62210 Morelos Mexico
| |
Collapse
|
13
|
Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Fuli X, Wenlong Z, Xiao W, Jing Z, Baohai H, Zhengzheng Z, Bin-Guang M, Youguo L. A Genome-Wide Prediction and Identification of Intergenic Small RNAs by Comparative Analysis in Mesorhizobium huakuii 7653R. Front Microbiol 2017; 8:1730. [PMID: 28943874 PMCID: PMC5596092 DOI: 10.3389/fmicb.2017.01730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/24/2017] [Indexed: 01/23/2023] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) are critical regulators of cellular adaptation to changes in metabolism, physiology, or the external environment. In the last decade, more than 2000 of sRNA families have been reported in the Rfam database and have been shown to exert various regulatory functions in bacterial transcription and translation. However, little is known about sRNAs and their functions in Mesorhizobium. Here, we predicted putative sRNAs in the intergenic regions (IGRs) of M. huakuii 7653R by genome-wide comparisons with four related Mesorhizobial strains. The expression and transcribed regions of candidate sRNAs were analyzed using a set of high-throughput RNA deep sequencing data. In all, 39 candidate sRNAs were found, with 5 located in the symbiotic megaplasmids and 34 in the chromosome of M. huakuii 7653R. Of these, 24 were annotated as functional sRNAs in the Rfam database and 15 were recognized as putative novel sRNAs. The expression of nine selected sRNAs was confirmed by Northern blotting, and most of the nine selected sRNAs were highly expressed in 28 dpi nodules and under symbiosis-mimicking conditions. For those putative novel sRNAs, functional categorizations of their target genes were performed by analyzing the enriched GO terms. In addition, MH_s15 was shown to be an abundant and conserved sRNA.
Collapse
Affiliation(s)
- Xie Fuli
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhao Wenlong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Wang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zhang Jing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Hao Baohai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zou Zhengzheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Ma Bin-Guang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Li Youguo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
15
|
da-Silva JR, Alexandre A, Brígido C, Oliveira S. Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiol 2017; 3:365-382. [PMID: 31294167 PMCID: PMC6604987 DOI: 10.3934/microbiol.2017.3.365] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Rhizobia are soil bacteria able to form symbioses with legumes and fix atmospheric nitrogen, converting it into a form that can be assimilated by the plant. The biological nitrogen fixation is a possible strategy to reduce the environmental pollution caused by the use of chemical N-fertilizers in agricultural fields. Successful colonization of the host root by free-living rhizobia requires that these bacteria are able to deal with adverse conditions in the soil, in addition to stresses that may occur in their endosymbiotic life inside the root nodules. Stress response genes, such as otsAB, groEL, clpB, rpoH play an important role in tolerance of free-living rhizobia to different environmental conditions and some of these genes have been shown to be involved in the symbiosis. This review will focus on stress response genes that have been reported to improve the symbiotic performance of rhizobia with their host plants. For example, chickpea plants inoculated with a Mesorhizobium strain modified with extra copies of the groEL gene showed a symbiotic effectiveness approximately 1.5 fold higher than plants inoculated with the wild-type strain. Despite these promising results, more studies are required to obtain highly efficient and tolerant rhizobia strains, suitable for different edaphoclimatic conditions, to be used as field inoculants.
Collapse
Affiliation(s)
- José Rodrigo da-Silva
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Ana Alexandre
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Clarisse Brígido
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Solange Oliveira
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| |
Collapse
|
16
|
Global transcriptional response to salt shock of the plant microsymbiont Mesorhizobium loti MAFF303099. Res Microbiol 2017; 168:55-63. [DOI: 10.1016/j.resmic.2016.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/13/2016] [Accepted: 07/22/2016] [Indexed: 01/11/2023]
|
17
|
Surface Properties of Wild-Type Rhizobium leguminosarum bv. trifolii Strain 24.2 and Its Derivatives with Different Extracellular Polysaccharide Content. PLoS One 2016; 11:e0165080. [PMID: 27760230 PMCID: PMC5070845 DOI: 10.1371/journal.pone.0165080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium able to establish symbiosis with agriculturally important legumes, i.e., clover plants (Trifolium spp.). Cell surface properties of rhizobia play an essential role in their interaction with both biotic and abiotic surfaces. Physicochemical properties of bacterial cells are underpinned by the chemical composition of their envelope surrounding the cells, and depend on various environmental conditions. In this study, we performed a comprehensive characterization of cell surface properties of a wild-type R. leguminosarum bv. trifolii strain 24.2 and its derivatives producing various levels of exopolysaccharide (EPS), namely, pssA mutant Rt5819 deficient in EPS synthesis, rosR mutant Rt2472 producing diminished amounts of this polysaccharide, and two EPS-overproducing strains, Rt24.2(pBA1) and Rt24.2(pBR1), under different growth conditions (medium type, bacterial culture age, cell viability, and pH). We established that EPS plays an essential role in the electrophoretic mobility of rhizobial cells, and that higher amounts of EPS produced resulted in greater negative electrophoretic mobility and higher acidity (lower pKapp,av) of the bacterial cell surface. From the tested strains, the electrophoretic mobility was lowest in EPS-deficient pssA mutant. Moreover, EPS produced by rhizobial strains resulted not only in an increase of negative surface charge but also in increased hydrophobicity of bacterial cell surface. This was determined by measurements of water contact angle, surface free energy, and free energy of bacterial surface-water-bacterial surface interaction. Electrophoretic mobility of the studied strains was also affected by the structure of the bacterial population (i.e., live/dead cell ratio), medium composition (ionic strength and mono- and divalent cation concentrations), and pH.
Collapse
|
18
|
Hernández-Tamayo R, Torres-Tejerizo G, Brom S, Romero D. Site-specific bacterial chromosome engineering mediated by IntA integrase from Rhizobium etli. BMC Microbiol 2016; 16:133. [PMID: 27357704 PMCID: PMC4928290 DOI: 10.1186/s12866-016-0755-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/28/2016] [Indexed: 11/24/2022] Open
Abstract
Background The bacterial chromosome may be used to stably maintain foreign DNA in the mega-base range. Integration into the chromosome circumvents issues such as plasmid replication, stability, incompatibility, and copy number variance. The site-specific integrase IntA from Rhizobium etli CFN42 catalyzes a direct recombination between two specific DNA sites: attA and attD (23 bp). This recombination is stable. The aim of this work was to develop a R. etli derivative that may be used as recipient for the integration of foreign DNA in the chromosome, adapting the IntA catalyzed site-specific recombination system. Results To fulfill our aim, we designed a Rhizobium etli CFN42 derivative, containing a “landing pad” (LP) integrated into the chromosome. The LP sector consists of a green fluorescent protein gene under the control of the lacZ promoter and a spectinomycin resistance gene. Between the lacZ promoter and the GFP gene we inserted an IntA attachment site, which does not affect transcription from the lac promoter. Also, a mobilizable donor vector was generated, containing an attA site and a kanamycin resistance gene; to facilitate insertion of foreign DNA, this vector also contains a multicloning site. There are no promoters flanking the multicloning site. A biparental mating protocol was used to transfer the donor vector into the landing pad strain; insertion of the donor vector into the landing pad sector via IntA-mediated attA X attA recombination thereby interrupted the expression of the green fluorescent protein, generating site-specific cointegrants. Cointegrants were easily recognized by screening for antibiotic sensitivity and lack of GFP expression, and were obtained with an efficiency of 6.18 %. Conclusions Integration of foreign DNA in Rhizobium, lacking any similarity with the genome, can be easily achieved by IntA-mediated recombination. This protocol contains the mating and selection procedures for creating and isolating integrants.
Collapse
Affiliation(s)
- Rogelio Hernández-Tamayo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, 62210, Cuernavaca, Morelos, Mexico
| | - Gonzalo Torres-Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, 62210, Cuernavaca, Morelos, Mexico.,Departamento de Ciencias Biológicas, Instituto de Biotecnología y Biología Molecular, UNLP, CCT-La Plata-CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, 62210, Cuernavaca, Morelos, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
19
|
Defez R, Esposito R, Angelini C, Bianco C. Overproduction of Indole-3-Acetic Acid in Free-Living Rhizobia Induces Transcriptional Changes Resembling Those Occurring in Nodule Bacteroids. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:484-95. [PMID: 27003799 DOI: 10.1094/mpmi-01-16-0010-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Free-living bacteria grown under aerobic conditions were used to investigate, by next-generation RNA sequencing analysis, the transcriptional profiles of Sinorhizobium meliloti wild-type 1021 and its derivative, RD64, overproducing the main auxin indole-3-acetic acid (IAA). Among the upregulated genes in RD64 cells, we detected the main nitrogen-fixation regulator fixJ, the two intermediate regulators fixK and nifA, and several other genes known to be FixJ targets. The gene coding for the sigma factor RpoH1 and other genes involved in stress response, regulated in a RpoH1-dependent manner in S. meliloti, were also induced in RD64 cells. Under microaerobic condition, quantitative real-time polymerase chain reaction analysis revealed that the genes fixJL and nifA were up-regulated in RD64 cells as compared with 1021 cells. This work provided evidence that the overexpression of IAA in S. meliloti free-living cells induced many of the transcriptional changes that normally occur in nitrogen-fixing root nodule.
Collapse
Affiliation(s)
- Roberto Defez
- 1 Institute of Biosciences and BioResources, CNR, via P. Castellino 111, 80131 Naples, Italy
| | | | | | - Carmen Bianco
- 1 Institute of Biosciences and BioResources, CNR, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
20
|
Ricker N, Shen SY, Goordial J, Jin S, Fulthorpe RR. PacBio SMRT assembly of a complex multi-replicon genome reveals chlorocatechol degradative operon in a region of genome plasticity. Gene 2016; 586:239-47. [PMID: 27063562 DOI: 10.1016/j.gene.2016.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 01/03/2023]
Abstract
We have sequenced a Burkholderia genome that contains multiple replicons and large repetitive elements that would make it inherently difficult to assemble by short read sequencing technologies. We illustrate how the integrated long read correction algorithms implemented through the PacBio Single Molecule Real-Time (SMRT) sequencing technology successfully provided a de novo assembly that is a reasonable estimate of both the gene content and genome organization without making any further modifications. This assembly is comparable to related organisms assembled by more labour intensive methods. Our assembled genome revealed regions of genome plasticity for further investigation, one of which harbours a chlorocatechol degradative operon highly homologous to those previously identified on globally ubiquitous plasmids. In an ideal world, this assembly would still require experimental validation to confirm gene order and copy number of repeated elements. However, we submit that particularly in instances where a polished genome is not the primary goal of the sequencing project, PacBio SMRT sequencing provides a financially viable option for generating a biologically relevant genome estimate that can be utilized by other researchers for comparative studies.
Collapse
Affiliation(s)
- N Ricker
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S Y Shen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J Goordial
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 Lakeshore Rd., Sainte Anne de Bellevue, Quebec H9X 3V9, Canada
| | - S Jin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - R R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| |
Collapse
|
21
|
Pérez-Montaño F, Del Cerro P, Jiménez-Guerrero I, López-Baena FJ, Cubo MT, Hungria M, Megías M, Ollero FJ. RNA-seq analysis of the Rhizobium tropici CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. BMC Genomics 2016; 17:198. [PMID: 26951045 PMCID: PMC4782375 DOI: 10.1186/s12864-016-2543-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Rhizobium tropici strain CIAT 899 establishes effective symbioses with several legume species, including Phaseolus vulgaris and Leucaena leucocephala. This bacterium synthesizes a large variety of nodulation factors in response to nod-gene inducing flavonoids and, surprisingly, also under salt stress conditions. The aim of this study was to identify differentially expressed genes in the presence of both inducer molecules, and analyze the promoter regions located upstream of these genes. Results Results obtained by RNA-seq analyses of CIAT 899 induced with apigenin, a nod gene-inducing flavonoid for this strain, or salt allowed the identification of 19 and 790 differentially expressed genes, respectively. Fifteen of these genes were up-regulated in both conditions and were involved in the synthesis of both Nod factors and indole-3-acetic acid. Transcription of these genes was presumably activated through binding of at least one of the five NodD proteins present in this strain to specific nod box promoter sequences when the bacterium was induced by both apigenin and salt. Finally, under saline conditions, many other transcriptional responses were detected, including an increase in the transcription of genes involved in trehalose catabolism, chemotaxis and protein secretion, as well as ribosomal genes, and a decrease in the transcription of genes involved in transmembrane transport. Conclusions To our knowledge this is the first time that a transcriptomic study shows that salt stress induces the expression of nodulation genes in the absence of flavonoids. Thus, in the presence of both nodulation inducer molecules, apigenin and salt, R. tropici CIAT 899 up-regulated the same set of symbiotic genes. It could be possible that the increases in the transcription levels of several genes related to nodulation under saline conditions could represent a strategy to establish symbiosis under abiotic stressing conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2543-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Maria Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | | | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes n° 6, 41012, Sevilla, Spain.
| |
Collapse
|
22
|
Rachwał K, Matczyńska E, Janczarek M. Transcriptome profiling of a Rhizobium leguminosarum bv. trifolii rosR mutant reveals the role of the transcriptional regulator RosR in motility, synthesis of cell-surface components, and other cellular processes. BMC Genomics 2015; 16:1111. [PMID: 26715155 PMCID: PMC4696191 DOI: 10.1186/s12864-015-2332-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 12/17/2015] [Indexed: 11/10/2022] Open
Abstract
Background Rhizobium leguminosarum bv. trifolii is a soil bacterium capable of establishing a symbiotic relationship with red clover (Trifolium pratense). The presence of surface polysaccharides and other extracellular components as well as motility and competitiveness are essential traits for both adaptation of this bacterium to changing environmental conditions and successful infection of host plant roots. The R. leguminosarum bv. trifolii rosR gene encodes a protein belonging to the family of Ros/MucR transcriptional regulators, which contain a Cys2His2-type zinc-finger motif and are involved in the regulation of exopolysaccharide synthesis in several rhizobial species. Previously, it was established that a mutation in the rosR gene significantly decreased exopolysaccharide synthesis, increased bacterial sensitivity to some stress factors, and negatively affected infection of clover roots. Results RNA-Seq analysis performed for the R. leguminosarum bv. trifolii wild-type strain Rt24.2 and its derivative Rt2472 carrying a rosR mutation identified a large number of genes which were differentially expressed in these two backgrounds. A considerable majority of these genes were up-regulated in the mutant (63.22 %), indicating that RosR functions mainly as a repressor. Transcriptome profiling of the rosR mutant revealed a role of this regulator in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism. Moreover, it was established that the Rt2472 strain was characterized by a longer generation time and showed an increased aggregation ability, but was impaired in motility as a result of considerably reduced flagellation of its cells. Conclusions The comparative transcriptome analysis of R. leguminosarum bv. trifolii wild-type Rt24.2 and the Rt2472 mutant identified a set of genes belonging to the RosR regulon and confirmed the important role of RosR in the regulatory network. The data obtained in this study indicate that this protein affects several cellular processes and plays an important role in bacterial adaptation to environmental conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2332-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kamila Rachwał
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Ewa Matczyńska
- Department of Mathematics and Computer Science, Institute of Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348, Cracow, Poland.,Genomed SA, Ponczowa 12, 02-971, Warsaw, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
23
|
López-Fuentes E, Torres-Tejerizo G, Cervantes L, Brom S. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors. Front Microbiol 2015; 5:793. [PMID: 25642223 PMCID: PMC4294206 DOI: 10.3389/fmicb.2014.00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/23/2014] [Indexed: 11/13/2022] Open
Abstract
Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp) in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication), Mpf (Mating pair formation) and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164) and a transcriptional regulator (RHE_PA00165). RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times) but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative transfer.
Collapse
Affiliation(s)
- Eunice López-Fuentes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Gonzalo Torres-Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Laura Cervantes
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
24
|
Visioli G, D'Egidio S, Sanangelantoni AM. The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. FRONTIERS IN PLANT SCIENCE 2014; 5:752. [PMID: 25709609 PMCID: PMC4285865 DOI: 10.3389/fpls.2014.00752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/08/2014] [Indexed: 05/20/2023]
Abstract
Hyperaccumulators are plants that can extract heavy metal ions from the soil and translocate those ions to the shoots, where they are sequestered and detoxified. Hyperaccumulation depends not only on the availability of mobilized metal ions in the soil, but also on the enhanced activity of metal transporters and metal chelators which may be provided by the plant or its associated microbes. The rhizobiome is captured by plant root exudates from the complex microbial community in the soil, and may colonize the root surface or infiltrate the root cortex. This community can increase the root surface area by inducing hairy root proliferation. It may also increase the solubility of metals in the rhizosphere and promote the uptake of soluble metals by the plant. The bacterial rhizobiome, a subset of specialized microorganisms that colonize the plant rhizosphere and endosphere, makes an important contribution to the hyperaccumulator phenotype. In this review, we discuss classic and more recent tools that are used to study the interactions between hyperaccumulators and the bacterial rhizobiome, and consider future perspectives based on the use of omics analysis and microscopy to study plant metabolism in the context of metal accumulation. Recent data suggest that metal-resistant bacteria isolated from the hyperaccumulator rhizosphere and endosphere could be useful in applications such as phytoextraction and phytoremediation, although more research is required to determine whether such properties can be transferred successfully to non-accumulator species.
Collapse
Affiliation(s)
- Giovanna Visioli
- *Correspondence: Giovanna Visioli, Department of Life Sciences, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy e-mail:
| | | | | |
Collapse
|