1
|
Huang L, Yu X, Jiang Z, Zeng P. Novel Autophagy-Related Gene Signature Investigation for Patients With Oral Squamous Cell Carcinoma. Front Genet 2021; 12:673319. [PMID: 34220946 PMCID: PMC8248343 DOI: 10.3389/fgene.2021.673319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/26/2021] [Indexed: 12/26/2022] Open
Abstract
The correlation between autophagy defects and oral squamous cell carcinoma (OSCC) has been previously studied, but only based on a limited number of autophagy-related genes in cell lines or animal models. The aim of the present study was to analyze differentially expressed autophagy-related genes through The Cancer Genome Atlas (TCGA) database to explore enriched pathways and potential biological function. Based on TCGA database, a signature composed of four autophagy-related genes (CDKN2A, NKX2-3, NRG3, and FADD) was established by using multivariate Cox regression models and two Gene Expression Omnibus datasets were applied for external validation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to study the function of autophagy-related genes and their pathways. The most significant GO and KEGG pathways were enriched in several key pathways that were related to the progression of autophagy and OSCC. Furthermore, a prognostic risk score was constructed based on the four genes; patients were then divided into two groups (i.e., high risk and low risk) in terms of the median of risk score. Prognosis of the two groups and results showed that patients at the low-risk group had a much better prognosis than those at the high-risk group, regardless of whether they were in the training datasets or validation datasets. Multivariate Cox regression results indicated that the risk score of the autophagy-related gene signatures could greatly predict the prognosis of patients after controlling for several clinical covariates. The findings of the present study revealed that autophagy-related gene signatures play an important role in OSCC and are potential prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lihong Huang
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinghao Yu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhou Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China.,Center for Medical Statistics and Data Analysis, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Wang H, Wang Z, Xu W, Wang K. Comprehensive transcriptomic and proteomic analyses identify intracellular targets for myriocin to induce Fusarium oxysporum f. sp. niveum cell death. Microb Cell Fact 2021; 20:69. [PMID: 33731109 PMCID: PMC7968361 DOI: 10.1186/s12934-021-01560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myriocin is a natural product with antifungal activity and is derived from Bacillus amyloliquefaciens LZN01. Our previous work demonstrated that myriocin can inhibit the growth of Fusarium oxysporum f. sp. niveum (Fon) by inducing membrane damage. In this study, the antifungal actions of myriocin against Fon were investigated with a focus on the effects of myriocin on intracellular molecules. RESULTS Analysis of DNA binding and fluorescence spectra demonstrated that myriocin can interact with dsDNA from Fon cells. The intracellular-targeted mechanism of action was also supported by transcriptomic and proteomic analyses; a total of 2238 common differentially expressed genes (DEGs) were identified. The DEGs were further verified by RT-qPCR. Most of the DEGs were assigned metabolism and genetic information processing functions and were enriched in ribosome biogenesis in eukaryotes pathway. The expression of some genes and proteins in ribosome biogenesis in eukaryotes pathway was affected by myriocin, primarily the genes controlled by the C6 zinc cluster transcription factor family and the NFYA transcription factor. Myriocin influenced the posttranscriptional processing of gene products by triggering the main RI (retained intron) events of novel alternative splicing; myriocin targeted key genes (FOXG_09470) or proteins (RIOK2) in ribosome biogenesis in eukaryotes pathway, resulting in disordered translation. CONCLUSIONS In conclusion, myriocin was determined to exhibit activity against Fon by targeting intracellular molecules. The results of our study may help to elucidate the antifungal actions of myriocin against Fon.
Collapse
Affiliation(s)
- Hengxu Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Zhigang Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| | - Weihui Xu
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China.
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China.
| | - Kexin Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar, 161006, China
- Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar, 161006, China
| |
Collapse
|
3
|
Rozhkova IN, Brusentsev EY, Igonina TN, Ragaeva DS, Petrova OM, Naprimerov VA, Tikhonova MA, Amstislavskaya TG, Amstislavsky SY. Delayed Effects of Surgery during Early Pregnancy on Brain Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2020; 50:723-729. [DOI: 10.1007/s11055-020-00960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 08/04/2023]
|
4
|
Igonina TN, Ragaeva DS, Tikhonova MA, Petrova OM, Herbeck YE, Rozhkova IN, Amstislavskaya TG, Amstislavsky SY. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res 2018; 1681:75-84. [DOI: 10.1016/j.brainres.2017.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/14/2017] [Accepted: 12/18/2017] [Indexed: 12/29/2022]
|
5
|
Korbolina EE, Zhdankina AA, Fursova AZ, Kozhevnikova OS, Kolosova NG. Genes of susceptibility to early neurodegenerative changes in the rat retina and brain: analysis by means of congenic strains. BMC Genet 2016; 17:153. [PMID: 28105932 PMCID: PMC5249004 DOI: 10.1186/s12863-016-0461-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND There has been considerable interest in discovery of the genetic architecture of complex traits, particularly age-related neurodegenerative disorders. To predict disease risk and to understand its genetic basis in humans, it is necessary to study animal models. Our previous research on the accelerated-senescence OXYS strain has revealed two quantitative trait loci (QTLs) on rat chromosome 1 that are associated with early cataract and/or retinopathy as well as with behavioral abnormalities. Each locus was partially mapped within the introgressed segments in a certain congenic strain: WAG/OXYS-1.1 or WAG/OXYS-1.2. Retinal transcriptome profiling of 20-day-old congenic and OXYS rats by high-throughput RNA sequencing uncovered relevant candidate genes and pathways. Nonetheless, the question remained open whether the same genetic components simultaneously have effects on various manifestations of the accelerated-senescence phenotype in OXYS rats. The present study was designed to analyze the genes of susceptibility to early neurodegenerative processes taking place in the OXYS rat retina and brain and to assess their potential functional clustering. The study was based on the findings from recent publications (including mapping of quantitative trait loci) and on comparative phenotyping of congenic rat strains. RESULTS The backcrossing of Wistar Albino Glaxo (WAG) and OXYS strains to generate the congenics resulted in two congenic strains with high susceptibility to cataract and retinopathy but with no obvious signs of Alzheimer's disease-like brain pathology that are specific for OXYS rats. Thus, the genes of susceptibility to brain neurodegeneration were not introgressed into the congenic strains or there is a strong effect of the genetic background on the disease phenotype. Moreover, the progression of retinopathy with age was relatively less severe in the WAG background compared to the OXYS background. A comparative analysis of previously defined QTLs and congenic segments led to identification of candidate genes with a suspected effect on brain neurodegeneration including the genes showing differential expression in the congenic strains. CONCLUSION Overall, our findings suggest that the cause of the cataract and the cause of retinopathy phenotypes in OXYS rats may be genetically linked to each other within the introgressed segments in the WAG/OXYS-1.1 and/or WAG/OXYS-1.2 congenic strains.
Collapse
Affiliation(s)
- Elena E Korbolina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| | | | | | | | - Natalia G Kolosova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Eidet JR, Reppe S, Pasovic L, Olstad OK, Lyberg T, Khan AZ, Fostad IG, Chen DF, Utheim TP. The Silk-protein Sericin Induces Rapid Melanization of Cultured Primary Human Retinal Pigment Epithelial Cells by Activating the NF-κB Pathway. Sci Rep 2016; 6:22671. [PMID: 26940175 PMCID: PMC4778122 DOI: 10.1038/srep22671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Restoration of the retinal pigment epithelial (RPE) cells to prevent further loss of vision in patients with age-related macular degeneration represents a promising novel treatment modality. Development of RPE transplants, however, requires up to 3 months of cell differentiation. We explored whether the silk protein sericin can induce maturation of primary human retinal pigment epithelial (hRPE) cells. Microarray analysis demonstrated that sericin up-regulated RPE-associated transcripts (RPE65 and CRALBP). Upstream analysis identified the NF-κB pathway as one of the top sericin-induced regulators. ELISA confirmed that sericin stimulates the main NF-κB pathway. Increased levels of RPE-associated proteins (RPE65 and the pigment melanin) in the sericin-supplemented cultures were confirmed by western blot, spectrophotometry and transmission electron microscopy. Sericin also increased cell density and reduced cell death following serum starvation in culture. Inclusion of NF-κB agonists and antagonists in the culture medium showed that activation of the NF-κB pathway appears to be necessary, but not sufficient, for sericin-induced RPE pigmentation. We conclude that sericin promotes pigmentation of cultured primary hRPE cells by activating the main NF-κB pathway. Sericin’s potential role in culture protocols for rapid differentiation of hRPE cells derived from embryonic or induced pluripotent stem cells should be investigated.
Collapse
Affiliation(s)
- J R Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - S Reppe
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - L Pasovic
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - O K Olstad
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - T Lyberg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - A Z Khan
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - I G Fostad
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - D F Chen
- Schepens Eye Research Institute, Harvard Medical School/Massachusetts Eye and Ear, Boston, MA
| | - T P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|