1
|
Li G, Zhang W, Gong L, Huang X. MicroRNA 125a-5p Inhibits Cell Proliferation and Induces Apoptosis in Hepatitis B Virus-Related Hepatocellular Carcinoma by Downregulation of ErbB3. Oncol Res 2017; 27:449-458. [PMID: 28800792 PMCID: PMC7848293 DOI: 10.3727/096504017x15016337254623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs, a class of endogenous noncoding RNAs, regulate gene expression at the posttranscriptional level and thus take part in multiple biological processes. An increasing number of miRNAs have been found to be dysregulated in hepatocellular carcinoma (HCC) and are involved in liver tumorigenesis. In this study, miR-125a-5p was found to be obviously downregulated much more in hepatitis B virus (HBV)-related HCC. To investigate the effects of miR-125a-5p, miR-125a-5p was overexpressed in HepG2.2.15 and HepG3X cells. The findings have indicated that overexpression of miR-125a-5p dramatically inhibited cell proliferation and induced cell apoptosis. Furthermore, overexpression of miR-125a-5p could significantly decrease the secretion of HBsAg and HBeAg. In concordance to this, the expression of ErbB3 was upregulated in human HBV-related HCC tissue, HepG2.2.15 cells, and HepG3X cells. miR-125a-5p directly targeted ErbB3 and reduced both mRNA and protein levels of ErbB3, which promoted cell proliferation and suppressed cell apoptosis in HCC cells. Our results provide new insights into the function of miR-125a-5p in HBV-related HCC. It is beneficial to gain insight into the mechanism of HBV infection and pathophysiology of HBV-related HCC.
Collapse
Affiliation(s)
- Guoyun Li
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| | - Wei Zhang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| | - Li Gong
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| | - Xiaoping Huang
- Department of Infectious Diseases, The First People's Hospital of Kunshan, Kunshan, Jiangsu Province, P.R. China
| |
Collapse
|
2
|
Cao K, Gong H, Qiu Z, Wen Q, Zhang B, Tang T, Zhou X, Cao T, Wang B, Shi H, Wang R. Hepatitis B virus X protein reduces the stability of Nrdp1 to up-regulate ErbB3 in hepatocellular carcinoma cells. Tumour Biol 2016; 37:10375-82. [PMID: 26846102 DOI: 10.1007/s13277-016-4936-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) is the most widespread type of liver cancer. However, the underlying mechanism of HCC tumorigenesis is very intricate and HBV-encoded X protein (HBx) has been reported to play a key role in this process. It has been reported that HBx up-regulates the transcription of ErbB3. However, it remains unclear whether HBx can regulate ErbB3 expression at post-translational modification level. In this study, we showed that HBx interacts with ubiquitin ligase Nrdp1 (neuregulin receptor degradation protein 1) and decreases its stability, which results in the up-regulation of ErbB3 and promotion of HCC cells. Moreover, the expression of ErbB3 was almost undetectable in normal liver tissues but was relative abundant in HCC tissues, and the level of ErbB3 and Nrdp1 significantly showed a negative correlation in HCC tissues. Taken together, these findings suggest that HBx promotes the progression of HCC by decreasing the stability of Nrdp1, which results in up-regulation of ErbB3, suggesting that ErbB3 may be a target for HCC therapy.
Collapse
Affiliation(s)
- Kuan Cao
- Department of general surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.,The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hui Gong
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Neurosurgery Department of Jiangsu Haimen People's Hospital, Nantong, China
| | - Zhichao Qiu
- The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China.,Neurosurgery Department of Jiangsu Haimen People's Hospital, Nantong, China
| | - Quan Wen
- Department of general surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Bin Zhang
- Department of general surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China
| | - Tianjin Tang
- Insititute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xinyu Zhou
- Department of general surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.,The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Tong Cao
- Insititute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Bin Wang
- Insititute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China.,The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, People's Republic of China. .,The Graduate School, Xuzhou Medical College, Xuzhou, Jiangsu, China.
| | - Renhao Wang
- Department of general surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
3
|
Ewald DA, Malajian D, Krueger JG, Workman CT, Wang T, Tian S, Litman T, Guttman-Yassky E, Suárez-Fariñas M. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genomics 2015; 8:60. [PMID: 26459294 PMCID: PMC4603338 DOI: 10.1186/s12920-015-0133-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/11/2015] [Indexed: 12/24/2022] Open
Abstract
Background Atopic dermatitis (AD) is a common inflammatory skin disease with limited treatment options. Several microarray experiments have been conducted on lesional/LS and non-lesional/NL AD skin to develop a genomic disease phenotype. Although these experiments have shed light on disease pathology, inter-study comparisons reveal large differences in resulting sets of differentially expressed genes (DEGs), limiting the utility of direct comparisons across studies. Methods We carried out a meta-analysis combining 4 published AD datasets to define a robust disease profile, termed meta-analysis derived AD (MADAD) transcriptome. Results This transcriptome enriches key AD pathways more than the individual studies, and associates AD with novel pathways, such as atherosclerosis signaling (IL-37, selectin E/SELE). We identified wide lipid abnormalities and, for the first time in vivo, correlated Th2 immune activation with downregulation of key epidermal lipids (FA2H, FAR2, ELOVL3), emphasizing the role of cytokines on the barrier disruption in AD. Key AD “classifier genes” discriminate lesional from nonlesional skin, and may evaluate therapeutic responses. Conclusions Our meta-analysis provides novel and powerful insights into AD disease pathology, and reinforces the concept of AD as a systemic disease. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0133-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David A Ewald
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Molecular Biomedicine, LEO Pharma AS, Ballerup, Denmark. .,Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Dana Malajian
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Columbia University, College of Physicians and Surgeons, New York, NY, USA.
| | - James G Krueger
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA.
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Tianjiao Wang
- School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012, China.
| | - Suyan Tian
- School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, Jilin, 130012, China.
| | - Thomas Litman
- Molecular Biomedicine, LEO Pharma AS, Ballerup, Denmark.
| | - Emma Guttman-Yassky
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mayte Suárez-Fariñas
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA. .,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Icahn Institute for Genomics and Multiscale Biology at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Differential cellular gene expression in duck trachea infected with a highly or low pathogenic H5N1 avian influenza virus. Virol J 2013; 10:279. [PMID: 24015922 PMCID: PMC3848638 DOI: 10.1186/1743-422x-10-279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/06/2013] [Indexed: 12/15/2022] Open
Abstract
Background Avian influenza A (AI) viruses of subtypes H5 can cause serious disease outbreaks in poultry including panzootic due to H5N1 highly pathogenic (HP) viruses. These viruses are a threat not only for animal health but also public health due to their zoonotic potential. The domestic duck plays a major role in the epidemiological cycle of influenza virus subtypes H5 but little is known concerning host/pathogen interactions during influenza infection in duck species. In this study, a subtracted library from duck trachea (a primary site of influenza virus infection) was constructed to analyse and compare the host response after a highly or low pathogenic (LP) H5N1-infection. Results Here, we show that more than 200 different genes were differentially expressed in infected duck trachea to a significant degree. In addition, significant differentially expressed genes between LPAI- and HPAI-infected tracheas were observed. Gene ontology annotation was used and specific signalling pathways were identified. These pathways were different for LPAI and HPAI-infected tracheas, except for the CXCR4 signalling pathway which is implicated in immune response. A different modulation of genes in the CXCR4 signalling pathway and TRIM33 was induced in duck tracheas infected with a HPAI- or a LPAI-H5N1. Conclusion First, this study indicates that Suppressive Subtractive Hybridization (SSH) is an alternative approach to gain insights into the pathogenesis of influenza infection in ducks. Secondly, the results indicate that cellular gene expression in the duck trachea was differently modulated after infection with a LPAI-H5N1 or after infection with a HPAI-H5N1 virus. Such difference found in infected trachea, a primary infection site, could precede continuation of infection and could explain appearance of respiratory symptoms or not.
Collapse
|
5
|
Bizama C, Benavente F, Salvatierra E, Gutiérrez-Moraga A, Espinoza JA, Fernández EA, Roa I, Mazzolini G, Sagredo EA, Gidekel M, Podhajcer OL. The low-abundance transcriptome reveals novel biomarkers, specific intracellular pathways and targetable genes associated with advanced gastric cancer. Int J Cancer 2013; 134:755-64. [PMID: 23907728 DOI: 10.1002/ijc.28405] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022]
Abstract
Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer.
Collapse
Affiliation(s)
- Carolina Bizama
- Applied Cellular and Molecular Biology PhD Program, Agricultural and Forestry Sciences Faculty. Universidad de La Frontera, Temuco, 4811230, Chile; Creative BioScience, Santiago, 8580702, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Davies MN, Guan P, Blythe MJ, Salomon J, Toseland CP, Hattotuwagama C, Walshe V, Doytchinova IA, Flower DR. Using databases and data mining in vaccinology. Expert Opin Drug Discov 2013; 2:19-35. [PMID: 23496035 DOI: 10.1517/17460441.2.1.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Throughout time functional immunology has accumulated vast amounts of quantitative and qualitative data relevant to the design and discovery of vaccines. Such data includes, but is not limited to, components of the host and pathogen genome (including antigens and virulence factors), T- and B-cell epitopes and other components of the antigen presentation pathway and allergens. In this review the authors discuss a range of databases that archive such data. Built on such information, increasingly sophisticated data mining techniques have developed that create predictive models of utilitarian value. With special reference to epitope data, the authors discuss the strengths and weaknesses of the available techniques and how they can aid computer-aided vaccine design deliver added value for vaccinology.
Collapse
Affiliation(s)
- Matthew N Davies
- The Jenner Institute, University of Oxford, Compton, Berkshire, RG20 7NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sim WH, Wagner J, Cameron DJ, Catto‐Smith AG, Bishop RF, Kirkwood CD. Expression profile of genes involved in pathogenesis of pediatric Crohn's disease. J Gastroenterol Hepatol 2012; 27:1083-93. [PMID: 22098497 PMCID: PMC7167032 DOI: 10.1111/j.1440-1746.2011.06973.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Expression profiling of genes specific to pediatric Crohn's Disease (CD) patients was performed to elucidate the molecular mechanisms underlying disease cause and pathogenesis at disease onset. METHODS We used suppressive subtractive hybridization (SSH) and differential screening analysis to profile the mRNA expression patterns of children with CD and age- and sex-matched controls without inflammatory bowel disease (IBD). RESULTS Sequence analysis of 1000 clones enriched by SSH identified 75 functionally annotated human genes, represented by 430 clones. The 75 genes have potential involvement in gene networks, such as antigen presentation, inflammation, infection mechanism, connective tissue development, cell cycle and cancer. Twenty-eight genes were previously described in association with CD, while 47 were new genes not previously reported in the context of IBD. Additionally, 29 of the 75 genes have been previously implicated in bacterial and viral infections. Quantitative real-time reverse transcription polymerase chain reaction performed on ileal-derived RNA from 13 CD and nine non-IBD patients confirmed the upregulation of extracellular matrix gene MMP2 (P = 0.001), and cell proliferation gene REG1A (P = 0.063) in our pediatric CD cohort. CONCLUSION The retrieval of 28 genes previously reported in association with adult CD emphasizes the importance of these genes in the pediatric setting. The observed upregulation of REG1A and MMP2, and their known impact on cell proliferation and extracellular matrix remodeling, agrees with the clinical behavior of the disease. Moreover, the expressions of bacterial- and virus-related genes in our CD-patient tissues support the concept that microbial agents are important in the etiopathogenesis of CD.
Collapse
Affiliation(s)
- Winnie H Sim
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Josef Wagner
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Donald J Cameron
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anthony G Catto‐Smith
- Department of Gastroenterology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Ruth F Bishop
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Victoria, Australia
| |
Collapse
|
8
|
Hsieh SY, He JR, Yu MC, Lee WC, Chen TC, Lo SJ, Bera R, Sung CM, Chiu CT. Secreted ERBB3 isoforms are serum markers for early hepatoma in patients with chronic hepatitis and cirrhosis. J Proteome Res 2011; 10:4715-24. [PMID: 21877752 DOI: 10.1021/pr200519q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most hepatocellular carcinoma (HCC) is generated from chronic hepatitis and cirrhosis. To discover new markers for early HCC in patients with chronic hepatitis and cirrhosis, we initiated our search in the interstitial fluid of tumor (TIF) via differential gel electrophoresis and antibody arrays and identified secreted ERBB3 isoforms (sERBB3). The performance of serum sERBB3 in diagnosis of HCC was analyzed using receiver operating characteristic curves (ROC). The serum sERBB3 level was significantly higher in HCC than in cirrhosis (p < 0.001) and chronic hepatitis (p < 0.001). The accuracy of serum sERBB3 in detection of HCC was further validated in two independent sets of patients. In discrimination of early HCC from chronic hepatitis or cirrhosis, serum sERBB3 had a better performance than alpha-fetoprotein (AFP) (areas under ROC [AUC]: sERBB3 vs AFP = 93.1 vs 81.0% from chronic hepatitis and 70.9 vs 62.7% from cirrhosis). Combination of sERBB3 and AFP further improved the accuracy in detection of early HCC from chronic hepatitis (AUC = 97.1%) or cirrhosis (AUC = 77.5%). Higher serum sERBB3 levels were associated with portal-vein invasion and extrahepatic metastasis of HCC (p = 0.017). Therefore, sERBB3 are serum markers for early HCC in patients with chronic hepatitis and cirrhosis.
Collapse
Affiliation(s)
- Sen-Yung Hsieh
- Liver Research Unit, Chang Gung Memorial Hospital , Taoyuan 333, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nair S, Arathy DS, Issac A, Sreekumar E. Differential gene expression analysis of in vitro duck hepatitis B virus infected primary duck hepatocyte cultures. Virol J 2011; 8:363. [PMID: 21781334 PMCID: PMC3152538 DOI: 10.1186/1743-422x-8-363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/23/2011] [Indexed: 12/11/2022] Open
Abstract
Background The human hepatitis B virus (HBV), a member of the hepadna viridae, causes acute or chronic hepatitis B, and hepatocellular carcinoma (HCC). The duck hepatitis B virus (DHBV) infection, a dependable and reproducible model for hepadna viral studies, does not result in HCC unlike chronic HBV infection. Information on differential gene expression in DHBV infection might help to compare corresponding changes during HBV infection, and to delineate the reasons for this difference. Findings A subtractive hybridization cDNA library screening of in vitro DHBV infected, cultured primary duck hepatocytes (PDH) identified cDNAs of 42 up-regulated and 36 down-regulated genes coding for proteins associated with signal transduction, cellular respiration, transcription, translation, ubiquitin/proteasome pathway, apoptosis, and membrane and cytoskeletal organization. Those coding for both novel as well as previously reported proteins in HBV/DHBV infection were present in the library. An inverse modulation of the cDNAs of ten proteins, reported to play role in human HCC, such as that of Y-box binding protein1, Platelet-activating factor acetylhydrolase isoform 1B, ribosomal protein L35a, Ferritin, α-enolase, Acid α-glucosidase and Caspase 3, copper-zinc superoxide dismutase (CuZnSOD), Filamin and Pyruvate dehydrogenase, was also observed in this in vitro study. Conclusions The present study identified cDNAs of a number of genes that are differentially modulated in in vitro DHBV infection of primary duck hepatocytes. Further correlation of this differential gene expression in in vivo infection models would be valuable to understand the little known aspects of the hepadnavirus biology.
Collapse
Affiliation(s)
- Sajith Nair
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Kerala, India
| | | | | | | |
Collapse
|
10
|
Hsieh SY, He JR, Hsu CY, Chen WJ, Bera R, Lin KY, Shih TC, Yu MC, Lin YJ, Chang CJ, Weng WH, Huang SF. Neuregulin/erythroblastic leukemia viral oncogene homolog 3 autocrine loop contributes to invasion and early recurrence of human hepatoma. Hepatology 2011; 53:504-16. [PMID: 21246584 DOI: 10.1002/hep.24083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/09/2010] [Indexed: 12/22/2022]
Abstract
UNLABELLED Intrahepatic metastasis is the primary cause of the high recurrence and poor prognosis of human hepatocellular carcinoma (HCC). However, neither its molecular mechanisms nor markers for its prediction before hepatectomy have been identified. We recently revealed up-regulation of erythroblastic leukemia viral oncogene homolog 3 (ERBB3) in human HCC. Here we examined the clinical and biological significance of ERBB3 in HCC. Up-regulation of ERBB3 in HCC was strongly associated with male gender (P < 0.001), chronic hepatitis B (P = 0.002), microscopic vascular invasion (P = 0.034), early recurrence (P = 0.003), and worse prognosis (P = 0.004). Phosphorylated ERBB3 and its ligands [neuregulins (NRGs)] were detected in both HCC tissues and cells. Phosphorylation of ERBB3 could be induced by conditioned media of HCC cells and abolished by the pretreatment of conditioned media with anti-NRG antibodies or by the silencing of the endogenous NRG expression of the donor HCC cells. Human epidermal growth factor receptor 2 was required for ERBB3 phosphorylation. The downstream phosphoinositide 3-kinase/v-akt murine thymoma viral oncogene homolog pathways were primarily elicited by NRG1/ERBB3 signaling, whereas the mitogen-activated protein kinase/extracellular signal-regulated kinase pathways were elicited by both epidermal growth factor/epidermal growth factor receptor and NRG1/ERBB3 signaling. The activation and silencing of ERBB3-dependent signaling had potent effects on both the migration and invasion of HCC cells, but neither had significant effects on the proliferation of HCC cells, tumor formation, or tumor growth in vitro and in vivo. CONCLUSION The constitutive activation of ERBB3-dependent signaling via the NRG1/ERBB3 autocrine loop plays a crucial role in the regulation of cell motility and invasion, which contribute to intrahepatic metastasis and early recurrence of HCC. ERBB3 is a marker for the prediction of intrahepatic metastasis and early recurrence. ERBB3-dependent signaling is a candidate target for the treatment of microscopic vascular invasion and for the prevention of HCC recurrence.
Collapse
Affiliation(s)
- Sen-Yung Hsieh
- Liver Research Unit, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hsieh SY, Huang SF, Yu MC, Yeh TS, Chen TC, Lin YJ, Chang CJ, Sung CM, Lee YL, Hsu CY. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog 2010; 49:476-87. [PMID: 20232364 DOI: 10.1002/mc.20627] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Frequent intrahepatic metastasis causes early tumor recurrence and dismaying prognosis of human hepatocellular carcinoma (HCC). We recently identified overexpression of stathmin1 (STMN1) in human HCC. This study was designed to elucidate the clinical and biological significance of overexpression of STMN1 in HCC. Expression of STMN1 was conducted by quantitative reverse transcription-polymerase chain reaction and immunoblotting assays on 58 pairs of HCC and para-tumor liver tissues from patients with HCC along with normal liver tissues as the controls. Association of STMN1 overexpression with tumor recurrence and prognosis was investigated by Kaplan-Meier cumulative survival and Cox Regression analyses. Roles of STMN1 in cell cycle, cell motility, and invasion were determined by in vitro assays. STMN1 overexpression in hepatoma was strongly associated with local invasion (P = 0.031), early recurrence (P = 0.002), and poor prognosis (P = 0.005), and was an independent indicator for tumor recurrence (P = 0.0045). STMN1 overexpression further identified subgroups of HCC patients with higher tumor recurrence and worse prognosis among HCC patients with early tumor stage (T1) or intermediate histological grades (G2 and G3), both of whom represent the majority of HCC patients receiving primary curative hepatectomy. Silencing STMN1 expression via RNA interference suppressed invasion activity, while ectopic expression of STMN1 enhanced cell invasion and caused polyploidy of cells. In conclusion, STMN1 overexpression could predict early tumor recurrence and poor prognosis, particularly at early stage of hepatoma. Overexpression of STMN1 promoted polyploidy formation, tumor-cell invasion, and intrahepatic metastasis, suggesting that STMN1 can be a target for anti-cancer therapy of human hepatoma.
Collapse
Affiliation(s)
- Sen-Yung Hsieh
- Liver Research Unit, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zúñiga A, Hödar C, Hanna P, Ibáñez F, Moreno P, Pulgar R, Pastenes L, González M, Cambiazo V. Genes encoding novel secreted and transmembrane proteins are temporally and spatially regulated during Drosophila melanogaster embryogenesis. BMC Biol 2009; 7:61. [PMID: 19772636 PMCID: PMC2761875 DOI: 10.1186/1741-7007-7-61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Morphogenetic events that shape the Drosophila melanogaster embryo are tightly controlled by a genetic program in which specific sets of genes are up-regulated. We used a suppressive subtractive hybridization procedure to identify a group of developmentally regulated genes during early stages of D. melanogaster embryogenesis. We studied the spatiotemporal activity of these genes in five different intervals covering 12 stages of embryogenesis. RESULTS Microarrays were constructed to confirm induction of expression and to determine the temporal profile of isolated subtracted cDNAs during embryo development. We identified a set of 118 genes whose expression levels increased significantly in at least one developmental interval compared with a reference interval. Of these genes, 53% had a phenotype and/or molecular function reported in the literature, whereas 47% were essentially uncharacterized. Clustering analysis revealed demarcated transcript groups with maximum gene activity at distinct developmental intervals. In situ hybridization assays were carried out on 23 uncharacterized genes, 15 of which proved to have spatiotemporally restricted expression patterns. Among these 15 uncharacterized genes, 13 were found to encode putative secreted and transmembrane proteins. For three of them we validated our protein sequence predictions by expressing their cDNAs in Drosophila S2R+ cells and analyzed the subcellular distribution of recombinant proteins. We then focused on the functional characterization of the gene CG6234. Inhibition of CG6234 by RNA interference resulted in morphological defects in embryos, suggesting the involvement of this gene in germ band retraction. CONCLUSION Our data have yielded a list of developmentally regulated D. melanogaster genes and their expression profiles during embryogenesis and provide new information on the spatiotemporal expression patterns of several uncharacterized genes. In particular, we recovered a substantial number of unknown genes encoding putative secreted and transmembrane proteins, suggesting new components of signaling pathways that might be incorporated within the existing regulatory networks controlling D. melanogaster embryogenesis. These genes are also good candidates for additional targeted functional analyses similar to those we conducted for CG6234.See related minireview by Vichas and Zallen: http://www.jbiol.com/content/8/8/76.
Collapse
Affiliation(s)
- Alejandro Zúñiga
- Laboratorio de Bioinformática y Expresión Génica, INTA-Universidad de Chile, Millennium Nucleus Center for Genomics of the Cell (CGC), Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zekri ARN, Hafez MM, Bahnassy AA, Hassan ZK, Mansour T, Kamal MM, Khaled HM. Genetic profile of Egyptian hepatocellular-carcinoma associated with hepatitis C virus Genotype 4 by 15 K cDNA microarray: preliminary study. BMC Res Notes 2008; 1:106. [PMID: 18959789 PMCID: PMC2584108 DOI: 10.1186/1756-0500-1-106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 10/29/2008] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a preventable disease rather than a curable one, since there is no well-documented effective treatment modality until now, making the molecular study of this disease mandatory. Findings We studied gene expression profile of 17 Egyptian HCC patients associated with HCV genotype-4 infection by c-DNA microarray. Out of the 15,660 studied genes, 446 were differentially expressed; 180 of them were up regulated and 134 were down regulated. Seventeen genes out of the 180 up-regulated genes are involved in 28 different pathways. Protein phosphatase 3 (PPP3R1) is involved in 10 different pathways followed by fibroblast growth factor receptor 1 (FGFR1), Cas-Br-M ecotropic retroviral transforming sequence b (CBLB), spleen tyrosine kinase (SYK) involved in three pathways; bone morphogenetic protein 8a (BMP8A), laminin alpha 3 (LAMA3), cell division cycle 23 (CDC23) involved in 2 pathways and NOTCH4 which regulate Notch signaling pathway. On the other hand, 25 out of the 134 down-regulated genes are involved in 20 different pathways. Integrin alpha V alpha polypeptide antigen CD51 (ITGVA) is involved in 4 pathways followed by lymphotoxin alpha (TNF superfamily, member 1) (LTA) involved in 3 pathways and alpha-2-macroglobulin (A2M), phosphorylase kinase alpha 2-liver (PHKA2) and MAGI1 membrane associated guanylate kinase 1 (MAGI1) involved in 2 pathways. In addition, 22 genes showed significantly differential expression between HCC cases with cirrhosis and without cirrhosis. Confirmation analysis was performed on subsets of these genes by RT-PCR, including some up-regulated genes such as CDK4, Bax, NOTCH4 and some down-regulated genes such as ISGF3G, TNF, and VISA. Conclusion This is the first preliminary study on gene expression profile in Egyptian HCC patients associated with HCV-Genotype-4 using the cDNA microarray. The identified genes could provide a new gate for prognostic and diagnostic markers for HCC associated with HCV. They could also be used to identify candidate genes for molecular target therapy.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, 1st Kasr El-Aini st, Cairo, Egypt.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ray M, Ruan J, Zhang W. Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases. Genome Biol 2008; 9:R148. [PMID: 18842138 PMCID: PMC2760875 DOI: 10.1186/gb-2008-9-10-r148] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/23/2008] [Accepted: 10/08/2008] [Indexed: 12/18/2022] Open
Abstract
Analysis of microarray data reveals extensive links between Alzheimer’s disease and cardiovascular diseases. Background Because of its polygenic nature, Alzheimer's disease is believed to be caused not by defects in single genes, but rather by variations in a large number of genes and their complex interactions. A systems biology approach, such as the generation of a network of co-expressed genes and the identification of functional modules and cis-regulatory elements, to extract insights and knowledge from microarray data will lead to a better understanding of complex diseases such as Alzheimer's disease. In this study, we perform a series of analyses using co-expression networks, cis-regulatory elements, and functions of co-expressed gene modules to analyze single-cell gene expression data from normal and Alzheimer's disease-affected subjects. Results We identified six co-expressed gene modules, each of which represented a biological process perturbed in Alzheimer's disease. Alzheimer's disease-related genes, such as APOE, A2M, PON2 and MAP4, and cardiovascular disease-associated genes, including COMT, CBS and WNK1, all congregated in a single module. Some of the disease-related genes were hub genes while many of them were directly connected to one or more hub genes. Further investigation of this disease-associated module revealed cis-regulatory elements that match to the binding sites of transcription factors involved in Alzheimer's disease and cardiovascular disease. Conclusion Our results show the extensive links between Alzheimer's disease and cardiovascular disease at the co-expression and co-regulation levels, providing further evidence for the hypothesis that cardiovascular disease and Alzheimer's disease are linked. Our results support the notion that diseases in which the same set of biochemical pathways are affected may tend to co-occur with each other.
Collapse
Affiliation(s)
- Monika Ray
- Washington University School of Engineering, Department of Computer Science and Engineering, 1 Brookings Drive, Saint Louis, Missouri 63130, USA
| | | | | |
Collapse
|
15
|
Kortner TM, Rocha E, Silva P, Castro LFC, Arukwe A. Genomic approach in evaluating the role of androgens on the growth of Atlantic cod (Gadus morhua) previtellogenic oocytes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2008; 3:205-18. [DOI: 10.1016/j.cbd.2008.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 11/27/2022]
|