1
|
Pflughaupt P, Sahakyan AB. Generalised interrelations among mutation rates drive the genomic compliance of Chargaff's second parity rule. Nucleic Acids Res 2023; 51:7409-7423. [PMID: 37293966 PMCID: PMC10415130 DOI: 10.1093/nar/gkad477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Chargaff's second parity rule (PR-2), where the complementary base and k-mer contents are matching within the same strand of a double stranded DNA (dsDNA), is a phenomenon that invited many explanations. The strict compliance of nearly all nuclear dsDNA to PR-2 implies that the explanation should also be similarly adamant. In this work, we revisited the possibility of mutation rates driving PR-2 compliance. Starting from the assumption-free approach, we constructed kinetic equations for unconstrained simulations. The results were analysed for their PR-2 compliance by employing symbolic regression and machine learning techniques. We arrived to a generalised set of mutation rate interrelations in place in most species that allow for their full PR-2 compliance. Importantly, our constraints explain PR-2 in genomes out of the scope of the prior explanations based on the equilibration under mutation rates with simpler no-strand-bias constraints. We thus reinstate the role of mutation rates in PR-2 through its molecular core, now shown, under our formulation, to be tolerant to previously noted strand biases and incomplete compositional equilibration. We further investigate the time for any genome to reach PR-2, showing that it is generally earlier than the compositional equilibrium, and well within the age of life on Earth.
Collapse
Affiliation(s)
- Patrick Pflughaupt
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
2
|
Rosandić M, Vlahović I, Pilaš I, Glunčić M, Paar V. An Explanation of Exceptions from Chargaff's Second Parity Rule/Strand Symmetry of DNA Molecules. Genes (Basel) 2022; 13:1929. [PMID: 36360166 PMCID: PMC9689577 DOI: 10.3390/genes13111929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022] Open
Abstract
In this article, we show that mono/oligonucleotide quadruplets, as basic structures of DNA, along with our classification of trinucleotides, disclose an organization of genomes based on purine-pyrimidine symmetry. Moreover, the structure and stability of DNA are influenced by the Watson-Crick pairing and the natural law of DNA creation and conservation, according to which the same mono- or oligonucleotide insertion must be inserted simultaneously into both strands of DNA. Taken together, they lead to quadruplets with central mirror symmetry and bidirectional DNA strand orientation and are incorporated into Chargaff's second parity rule (CSPR). Performing our quadruplet frequency analysis of all human chromosomes and of Neuroblastoma BreakPoint Family (NBPF) genes, which code Olduvai protein domains in the human genome, we show that the coding part of DNA violates CSPR. This may shed new light and give rise to a novel hypothesis on DNA creation and its evolution. In this framework, the logarithmic relationship between oligonucleotide order and minimal DNA sequence length, to establish the validity of CSPR, automatically follows from the quadruplet structure of the genomic sequence. The problem of the violation of CSPR in rare symbionts is discussed.
Collapse
Affiliation(s)
- Marija Rosandić
- University Hospital Centre Zagreb (Ret.), 10000 Zagreb, Croatia
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
| | - Ines Vlahović
- Faculty of Science, Algebra University College, 10000 Zagreb, Croatia
| | - Ivan Pilaš
- Forest Research Institute, 10450 Jastrebarsko, Croatia
| | - Matko Glunčić
- Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Vladimir Paar
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia
- Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Affinity and Correlation in DNA. J 2022. [DOI: 10.3390/j5020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A statistical analysis of important DNA sequences and related proteins has been performed to study the relationships between monomers, and some general considerations about these macromolecules can be provided from the results. First, the most important relationship between sites in all the DNA sequences examined is that between two consecutive base pairs. This is an indication of an energetic stabilization due to the stacking interaction of these couples of base pairs. Secondly, the difference between human chromosome sequences and their coding parts is relevant both in the relationships between sites and in some specific compositional rules, such as the second Chargaff rule. Third, the evidence of the relationship in two successive triplets of DNA coding sequences generates a relationship between two successive amino acids in the proteins. This is obviously impossible if all the relationships between the sites are statistical evidence and do not involve causes; therefore, in this article, due to stacking interactions and this relationship in coding sequences, we will divide the concept of the relationship between sites into two concepts: affinity and correlation, the first with physical causes and the second without. Finally, from the statistical analyses carried out, it will emerge that the human genome is uniform, with the only significant exception being the Y chromosome.
Collapse
|
4
|
Khandia R, Ali Khan A, Alexiou A, Povetkin SN, Nikolaevna VM. Codon Usage Analysis of Pro-Apoptotic Bim Gene Isoforms. J Alzheimers Dis 2022; 86:1711-1725. [DOI: 10.3233/jad-215691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Bim is a Bcl-2 homology 3 (BH3)-only proteins, a group of pro-apoptotic proteins involved in physiological and pathological conditions. Both the overexpression and under-expression of Bim protein are associated with the diseased condition, and various isoforms of Bim protein are present with differential apoptotic potential. Objective: The present study attempted to envisage the association of various molecular signatures with the codon choices of Bim isoforms. Methods: Molecular signatures like composition, codon usage, nucleotide skews, the free energy of mRNA transcript, physical properties of proteins, codon adaptation index, relative synonymous codon usage, and dinucleotide odds ratio were determined and analyzed for their associations with codon choices of Bim gene. Results: Skew analysis of the Bim gene indicated the preference of C nucleotide over G, A, and T and preference of G over T and A nucleotides was observed. An increase in C content at the first and third codon position increased gene expression while it decreased at the second codon position. Compositional constraints on nucleotide C at all three codon positions affected gene expression. The analysis revealed an exceptionally high usage of CpC dinucleotide in all the envisaged 31 isoforms of Bim. We correlated it with the requirement of rapid demethylation machinery to fine-tune the Bimgene expression. Also, mutational pressure played a dominant role in shaping codon usage bias in Bim isoforms. Conclusion: An exceptionally high usage of CpC dinucleotide in all the envisaged 31 isoforms of Bim indicates a high order selectional force to fine tune Bim gene expression.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Australia & AFNP Med, Austria
| | | | | |
Collapse
|
5
|
Fariselli P, Taccioli C, Pagani L, Maritan A. DNA sequence symmetries from randomness: the origin of the Chargaff's second parity rule. Brief Bioinform 2021; 22:2172-2181. [PMID: 32266404 PMCID: PMC7986665 DOI: 10.1093/bib/bbaa041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
Most living organisms rely on double-stranded DNA (dsDNA) to store their genetic information and perpetuate themselves. This biological information has been considered as the main target of evolution. However, here we show that symmetries and patterns in the dsDNA sequence can emerge from the physical peculiarities of the dsDNA molecule itself and the maximum entropy principle alone, rather than from biological or environmental evolutionary pressure. The randomness justifies the human codon biases and context-dependent mutation patterns in human populations. Thus, the DNA 'exceptional symmetries,' emerged from the randomness, have to be taken into account when looking for the DNA encoded information. Our results suggest that the double helix energy constraints and, more generally, the physical properties of the dsDNA are the hard drivers of the overall DNA sequence architecture, whereas the selective biological processes act as soft drivers, which only under extraordinary circumstances overtake the overall entropy content of the genome.
Collapse
Affiliation(s)
- Piero Fariselli
- Department of Medical Sciences of the University of Turin, Italy
| | | | - Luca Pagani
- Department of Biology of the University of Padova, Italy
| | - Amos Maritan
- Department of Physics of the University of Padova, Italy
| |
Collapse
|
6
|
Revisiting the Relationships Between Genomic G + C Content, RNA Secondary Structures, and Optimal Growth Temperature. J Mol Evol 2020; 89:165-171. [PMID: 33216148 DOI: 10.1007/s00239-020-09974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Over twenty years ago Galtier and Lobry published a manuscript entitled "Relationships between Genomic G + C Content, RNA Secondary Structure, and Optimal Growth Temperature" in the Journal of Molecular Evolution that showcased the lack of a relationship between genomic G + C content and optimal growth temperature (OGT) in a set of about 200 prokaryotes. Galtier and Lobry also assessed the relationship between RNA secondary structures (rRNA stems, tRNAs) and OGT, and in this case a clear relationship emerged. Increasing structured RNA G + C content (particularly in regions that are double-stranded) correlates with increased OGT. Both of these fundamental relationships have withstood test of many additional sequences and spawned a variety of different applications that include prediction of OGT from rRNA sequence and computational ncRNA identification approaches. In this work, I present the motivation behind Galtier and Lobry's original paper and the larger questions addressed by the work, how these questions have evolved over the last two decades, and the impact of Galtier and Lobry's manuscript in fields beyond these questions.
Collapse
|
7
|
Diversification of CpG-Island Promoters Revealed by Comparative Analysis Between Human and Rhesus Monkey Genomes. Mamm Genome 2020; 31:240-251. [PMID: 32647942 PMCID: PMC7496026 DOI: 10.1007/s00335-020-09844-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/23/2020] [Indexed: 11/02/2022]
Abstract
While CpG dinucleotides are significantly reduced compared to other dinucleotides in mammalian genomes, they can congregate and form CpG islands, which localize around the 5' regions of genes, where they function as promoters. CpG-island promoters are generally unmethylated and are often found in housekeeping genes. However, their nucleotide sequences and existence per se are not conserved between humans and mice, which may be due to evolutionary gain and loss of the regulatory regions. In this study, human and rhesus monkey genomes, with moderately conserved sequences, were compared at base resolution. Using transcription start site data, we first validated our methods' ability to identify orthologous promoters and indicated a limitation using the 5' end of curated gene models, such as NCBI RefSeq, as their transcription start sites. We found that, in addition to deamination mutations, insertions and deletions of bases, repeats, and long fragments contributed to the mutations of CpG dinucleotides. We also observed that the G + C contents tended to change in CpG-poor environments, while CpG content was altered in G + C-rich environments. While loss of CpG islands can be caused by gradual decreases in CpG sites, gain of these islands appear to require two distinct nucleotide altering steps. Taken together, our findings provide novel insights into the process of acquisition and diversification of CpG-island promoters in vertebrates.
Collapse
|
8
|
Rosandić M, Vlahović I, Paar V. Novel look at DNA and life-Symmetry as evolutionary forcing. J Theor Biol 2019; 483:109985. [PMID: 31469987 DOI: 10.1016/j.jtbi.2019.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/21/2018] [Accepted: 08/22/2019] [Indexed: 11/20/2022]
Abstract
After explanation of the Chargaff´s first parity rule in terms of the Watson-Crick base-pairing between the two DNA strands, the Chargaff´s second parity rule for each strand of DNA (also named strand symmetry), which cannot be explained by Watson-Crick base-pairing only, is still a challenging issue already fifty years. We show that during evolution DNA preserves its identity in the form of quadruplet A+T and C+G rich matrices based on purine-pyrimidine mirror symmetries of trinucleotides. Identical symmetries are present in our classification of trinucleotides and the genetic code table. All eukaryotes and almost all prokaryotes (bacteria and archaea) have quadruplet mirror symmetries in structural form and frequencies following the principle of Chargaff's second parity rule and Natural symmetry law of DNA creation and conservation. Some rare symbionts have mirror symmetry only in their structural form within each DNA strand. Based on our matrix analysis of closely related species, humans and Neanderthals, we find that the circular cycle of inverse proportionality between trinucleotides preserves identical relative frequencies of trinucleotides in each quadruplet and in the whole genome. According to our calculations, a change in frequencies in quadruplet matrices could lead to the creation of new species. Violation of quadruplet symmetries is practically inconsistent with life. DNA symmetries provide a key for understanding the restriction of disorder (entropy) due to mutations in the evolution of DNA.
Collapse
Affiliation(s)
- Marija Rosandić
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia; University hospital centre Zagreb (ret.), Zagreb, Croatia.
| | - Ines Vlahović
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; Algebra University College, 10000 Zagreb, Croatia.
| | - Vladimir Paar
- Croatian Academy of Sciences and Arts, 10000 Zagreb, Croatia; Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia.
| |
Collapse
|
9
|
Fimmel E, Gumbel M, Karpuzoglu A, Petoukhov S. On comparing composition principles of long DNA sequences with those of random ones. Biosystems 2019; 180:101-108. [DOI: 10.1016/j.biosystems.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 11/25/2022]
|
10
|
Shporer S, Chor B, Rosset S, Horn D. Inversion symmetry of DNA k-mer counts: validity and deviations. BMC Genomics 2016; 17:696. [PMID: 27580854 PMCID: PMC5006273 DOI: 10.1186/s12864-016-3012-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/11/2016] [Indexed: 01/25/2023] Open
Abstract
Background The generalization of the second Chargaff rule states that counts of any string of nucleotides of length k on a single chromosomal strand equal the counts of its inverse (reverse-complement) k-mer. This Inversion Symmetry (IS) holds for many species, both eukaryotes and prokaryotes, for ranges of k which may vary from 7 to 10 as chromosomal lengths vary from 2Mbp to 200 Mbp. The existence of IS has been demonstrated in the literature, and other pair-wise candidate symmetries (e.g. reverse or complement) have been ruled out. Results Studying IS in the human genome, we find that IS holds up to k = 10. It holds for complete chromosomes, also after applying the low complexity mask. We introduce a numerical IS criterion, and define the k-limit, KL, as the highest k for which this criterion is valid. We demonstrate that chromosomes of different species, as well as different human chromosomal sections, follow a universal logarithmic dependence of KL ~ 0.7 ln(L), where L is the length of the chromosome. We introduce a statistical IS-Poisson model that allows us to apply confidence measures to our numerical findings. We find good agreement for large k, where the variance of the Poisson distribution determines the outcome of the analysis. This model predicts the observed logarithmic increase of KL with length. The model allows us to conclude that for low k, e.g. k = 1 where IS becomes the 2nd Chargaff rule, IS violation, although extremely small, is significant. Studying this violation we come up with an unexpected observation for human chromosomes, finding a meaningful correlation with the excess of genes on particular strands. Conclusions Our IS-Poisson model agrees well with genomic data, and accounts for the universal behavior of k-limits. For low k we point out minute, yet significant, deviations from the model, including excess of counts of nucleotides T vs A and G vs C on positive strands of human chromosomes. Interestingly, this correlates with a significant (but small) excess of genes on the same positive strands. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3012-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sagi Shporer
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Benny Chor
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Saharon Rosset
- Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - David Horn
- Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
11
|
Rosandić M, Vlahović I, Glunčić M, Paar V. Trinucleotide's quadruplet symmetries and natural symmetry law of DNA creation ensuing Chargaff's second parity rule. J Biomol Struct Dyn 2016; 34:1383-94. [PMID: 26524490 DOI: 10.1080/07391102.2015.1080628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
For almost 50 years the conclusive explanation of Chargaff's second parity rule (CSPR), the equality of frequencies of nucleotides A=T and C=G or the equality of direct and reverse complement trinucleotides in the same DNA strand, has not been determined yet. Here, we relate CSPR to the interstrand mirror symmetry in 20 symbolic quadruplets of trinucleotides (direct, reverse complement, complement, and reverse) mapped to double-stranded genome. The symmetries of Q-box corresponding to quadruplets can be obtained as a consequence of Watson-Crick base pairing and CSPR together. Alternatively, assuming Natural symmetry law for DNA creation that each trinucleotide in one strand of DNA must simultaneously appear also in the opposite strand automatically leads to Q-box direct-reverse mirror symmetry which in conjunction with Watson-Crick base pairing generates CSPR. We demonstrate quadruplet's symmetries in chromosomes of wide range of organisms, from Escherichia coli to Neanderthal and human genomes, introducing novel quadruplet-frequency histograms and 3D-diagrams with combined interstrand frequencies. These "landscapes" are mutually similar in all mammals, including extinct Neanderthals, and somewhat different in most of older species. In human chromosomes 1-12, and X, Y the "landscapes" are almost identical and slightly different in the remaining smaller and telocentric chromosomes. Quadruplet frequencies could provide a new robust tool for characterization and classification of genomes and their evolutionary trajectories.
Collapse
Affiliation(s)
- Marija Rosandić
- a Croatian Academy of Sciences and Arts, HAZU, Bioinformatics and Biological Physics , Zrinski trg 11, 10000 Zagreb , Croatia
| | - Ines Vlahović
- b Faculty of Science , University of Zagreb , Bijenicka 32, 10000 Zagreb , Croatia
| | - Matko Glunčić
- b Faculty of Science , University of Zagreb , Bijenicka 32, 10000 Zagreb , Croatia
| | - Vladimir Paar
- a Croatian Academy of Sciences and Arts, HAZU, Bioinformatics and Biological Physics , Zrinski trg 11, 10000 Zagreb , Croatia.,b Faculty of Science , University of Zagreb , Bijenicka 32, 10000 Zagreb , Croatia
| |
Collapse
|
12
|
Afreixo V, Rodrigues JMOS, Bastos CAC. Analysis of single-strand exceptional word symmetry in the human genome: new measures. Biostatistics 2014; 16:209-21. [PMID: 25190514 DOI: 10.1093/biostatistics/kxu041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Some previous studies suggest the extension of Chargaff's second rule (the phenomenon of symmetry in a single DNA strand) to long DNA words. However, in random sequences generated under an independent symbol model where complementary nucleotides have equal occurrence probabilities, we expect the phenomenon of symmetry to hold for any word length. In this work, we develop new statistical methods to measure the exceptional symmetry. Exceptional symmetry is a refinement of Chargaff's second parity rule that highlights the words whose frequency of occurrence is similar to that of its reversed complement but dissimilar to the frequencies of occurrence of other words which contain the same number of nucleotides A or T. We analyze words of lengths up to 12 in the complete human genome and in each chromosome separately. We assess exceptional symmetry globally, by word group, and by word. We conclude that the global symmetry present in the human genome is clearly exceptional and significant. The chromosomes present distinct exceptional symmetry profiles. There are several exceptional word groups and exceptional words with a strong exceptional symmetry.
Collapse
Affiliation(s)
- Vera Afreixo
- Department of Mathematics, University of Aveiro, 3810-193 Aveiro, PortugalCIDMA, University of Aveiro, 3810-193 Aveiro, PortugalIEETA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João M O S Rodrigues
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, PortugalIEETA, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos A C Bastos
- Department of Electronics, Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, PortugalIEETA, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Rapoport AE, Trifonov EN. Compensatory nature of Chargaff’s second parity rule. J Biomol Struct Dyn 2013; 31:1324-36. [DOI: 10.1080/07391102.2012.736757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Zhang SH, Huang YZ. Limited contribution of stem-loop potential to symmetry of single-stranded genomic DNA. ACTA ACUST UNITED AC 2009; 26:478-85. [PMID: 20031973 DOI: 10.1093/bioinformatics/btp703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
MOTIVATION The phenomenon of strand symmetry, which may provide clues to genome evolution, exists in all prokaryotic and eukaryotic genomes studied. Several possible mechanisms for its origins have been proposed, including: no strand biases for mutation and selection, strand inversion and selection of stem-loop structures. However, the relative contributions of these mechanisms to strand symmetry are not clear. In this article, we studied specifically the role of stem-loop potential of single-stranded DNA in strand symmetry. RESULTS We analyzed the complete genomes of 90 prokaryotes. We found that most oligonucleotides (pentanucleotides and higher) do not have a reverse complement in close proximity in the genomic sequences. Combined with further analysis, we conclude that the contribution of the widespread stem-loop potential of single-stranded genomic DNA to the formation and maintenance of strand symmetry would be very limited, at least for higher-order oligonucleotides. Therefore, other possible causes for strand symmetry must be taken into account to a deeper degree.
Collapse
Affiliation(s)
- Shang-Hong Zhang
- The Key Laboratory of Gene Engineering of Ministry of Education, and Biotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, China.
| | | |
Collapse
|
15
|
Powdel BR, Satapathy SS, Kumar A, Jha PK, Buragohain AK, Borah M, Ray SK. A study in entire chromosomes of violations of the intra-strand parity of complementary nucleotides (Chargaff's second parity rule). DNA Res 2009; 16:325-43. [PMID: 19861381 PMCID: PMC2780954 DOI: 10.1093/dnares/dsp021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chargaff's rule of intra-strand parity (ISP) between complementary mono/oligonucleotides in chromosomes is well established in the scientific literature. Although a large numbers of papers have been published citing works and discussions on ISP in the genomic era, scientists are yet to find all the factors responsible for such a universal phenomenon in the chromosomes. In the present work, we have tried to address the issue from a new perspective, which is a parallel feature to ISP. The compositional abundance values of mono/oligonucleotides were determined in all non-overlapping sub-chromosomal regions of specific size. Also the frequency distributions of the mono/oligonucleotides among the regions were compared using the Kolmogorov–Smirnov test. Interestingly, the frequency distributions between the complementary mono/oligonucleotides revealed statistical similarity, which we named as intra-strand frequency distribution parity (ISFDP). ISFDP was observed as a general feature in chromosomes of bacteria, archaea and eukaryotes. Violation of ISFDP was also observed in several chromosomes. Chromosomes of different strains belonging a species in bacteria/archaea (Haemophilus influenza, Xylella fastidiosa etc.) and chromosomes of a eukaryote are found to be different among each other with respect to ISFDP violation. ISFDP correlates weakly with ISP in chromosomes suggesting that the latter one is not entirely responsible for the former. Asymmetry of replication topography and composition of forward-encoded sequences between the strands in chromosomes are found to be insufficient to explain the ISFDP feature in all chromosomes. This suggests that multiple factors in chromosomes are responsible for establishing ISFDP.
Collapse
Affiliation(s)
- B R Powdel
- 1Department of Mathematical Sciences, Tezpur University, Tezpur, Assam 784 028, India
| | | | | | | | | | | | | |
Collapse
|