1
|
Witt ASA, Carvalho JVRP, Serafim MSM, Arias NEC, Rodrigues RAL, Abrahão JS. The GC% landscape of the Nucleocytoviricota. Braz J Microbiol 2024:10.1007/s42770-024-01496-7. [PMID: 39180708 DOI: 10.1007/s42770-024-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Genomic studies on sequence composition employ various approaches, such as calculating the proportion of guanine and cytosine within a given sequence (GC% content), which can shed light on various aspects of the organism's biology. In this context, GC% can provide insights into virus-host relationships and evolution. Here, we present a comprehensive gene-by-gene analysis of 61 representatives belonging to the phylum Nucleocytoviricota, which comprises viruses with the largest genomes known in the virosphere. Parameters were evaluated not only based on the average GC% of a given viral species compared to the entire phylum but also considering gene position and phylogenetic history. Our results reveal that while some families exhibit similar GC% among their representatives (e.g., Marseilleviridae), others such as Poxviridae, Phycodnaviridae, and Mimiviridae have members with discrepant GC% values, likely reflecting adaptation to specific biological cycles and hosts. Interestingly, certain genes located at terminal regions or within specific genomic clusters show GC% values distinct from the average, suggesting recent acquisition or unique evolutionary pressures. Horizontal gene transfer and the presence of potential paralogs were also assessed in genes with the most discrepant GC% values, indicating multiple evolutionary histories. Taken together, to the best of our knowledge, this study represents the first global and gene-by-gene analysis of GC% distribution and profiles within genomes of Nucleocytoviricota members, highlighting their diversity and identifying potential new targets for future studies.
Collapse
Affiliation(s)
- Amanda Stéphanie Arantes Witt
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mateus Sá Magalhães Serafim
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nidia Esther Colquehuanca Arias
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo Araújo Lima Rodrigues
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Rahman MJ, Haller SL, Stoian AMM, Li J, Brennan G, Rothenburg S. LINE-1 retrotransposons facilitate horizontal gene transfer into poxviruses. eLife 2022; 11:63327. [PMID: 36069678 PMCID: PMC9578709 DOI: 10.7554/elife.63327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
There is ample phylogenetic evidence that many critical virus functions, like immune evasion, evolved by the acquisition of genes from their hosts through horizontal gene transfer (HGT). However, the lack of an experimental system has prevented a mechanistic understanding of this process. We developed a model to elucidate the mechanisms of HGT into vaccinia virus, the prototypic poxvirus. All identified gene capture events showed signatures of long interspersed nuclear element-1 (LINE-1)-mediated retrotransposition, including spliced-out introns, polyadenylated tails, and target site duplications. In one case, the acquired gene integrated together with a polyadenylated host U2 small nuclear RNA. Integrations occurred across the genome, in some cases knocking out essential viral genes. These essential gene knockouts were rescued through a process of complementation by the parent virus followed by nonhomologous recombination during serial passaging to generate a single, replication-competent virus. This work links multiple evolutionary mechanisms into one adaptive cascade and identifies host retrotransposons as major drivers for virus evolution.
Collapse
Affiliation(s)
- M Julhasur Rahman
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Sherry L Haller
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, United States
| | - Ana M M Stoian
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Jie Li
- Genome Center, University of California, Davis, Davis, United States
| | - Greg Brennan
- Department of Medial Microbiology and Immunology, University of California, Davis, Davis, United States
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, United States
| |
Collapse
|
3
|
Yau S, Krasovec M, Benites LF, Rombauts S, Groussin M, Vancaester E, Aury JM, Derelle E, Desdevises Y, Escande ML, Grimsley N, Guy J, Moreau H, Sanchez-Brosseau S, van de Peer Y, Vandepoele K, Gourbiere S, Piganeau G. Virus-host coexistence in phytoplankton through the genomic lens. SCIENCE ADVANCES 2020; 6:eaay2587. [PMID: 32270031 PMCID: PMC7112755 DOI: 10.1126/sciadv.aay2587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 05/02/2023]
Abstract
Virus-microbe interactions in the ocean are commonly described by "boom and bust" dynamics, whereby a numerically dominant microorganism is lysed and replaced by a virus-resistant one. Here, we isolated a microalga strain and its infective dsDNA virus whose dynamics are characterized instead by parallel growth of both the microalga and the virus. Experimental evolution of clonal lines revealed that this viral production originates from the lysis of a minority of virus-susceptible cells, which are regenerated from resistant cells. Whole-genome sequencing demonstrated that this resistant-susceptible switch involved a large deletion on one chromosome. Mathematical modeling explained how the switch maintains stable microalga-virus population dynamics consistent with their observed growth pattern. Comparative genomics confirmed an ancient origin of this "accordion" chromosome despite a lack of sequence conservation. Together, our results show how dynamic genomic rearrangements may account for a previously overlooked coexistence mechanism in microalgae-virus interactions.
Collapse
Affiliation(s)
- Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
- Corresponding author. (G.P.); (S.Y.)
| | - Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - L. Felipe Benites
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Stephane Rombauts
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square NE47-378, Cambridge, MA 02139, USA
| | - Emmelien Vancaester
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Jean-Marc Aury
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Evelyne Derelle
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Univ. Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzane, France
| | - Yves Desdevises
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Marie-Line Escande
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Julie Guy
- Genoscope, Institut de biologie François Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Hervé Moreau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Sophie Sanchez-Brosseau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
| | - Yves van de Peer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sebastien Gourbiere
- Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, UMR 5096, 52 Avenue Paul Alduy, 66860 Perpignan, France
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France
- Corresponding author. (G.P.); (S.Y.)
| |
Collapse
|
4
|
Diversity and evolution of the emerging Pandoraviridae family. Nat Commun 2018; 9:2285. [PMID: 29891839 PMCID: PMC5995976 DOI: 10.1038/s41467-018-04698-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023] Open
Abstract
With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes. Giant viruses are visible by light microscopy and have unusually long genomes. Here, the authors report three new members of the Pandoraviridae family and investigate their evolution and diversity.
Collapse
|
5
|
Smithson C, Imbery J, Upton C. Re-Assembly and Analysis of an Ancient Variola Virus Genome. Viruses 2017; 9:v9090253. [PMID: 28885569 PMCID: PMC5618019 DOI: 10.3390/v9090253] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.
Collapse
Affiliation(s)
- Chad Smithson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.
| | - Jacob Imbery
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada.
| |
Collapse
|
6
|
Ardisson-Araújo DMP, Lima RN, Melo FL, Clem RJ, Huang N, Báo SN, Sosa-Gómez DR, Ribeiro BM. Genome sequence of Perigonia lusca single nucleopolyhedrovirus: insights into the evolution of a nucleotide metabolism enzyme in the family Baculoviridae. Sci Rep 2016; 6:24612. [PMID: 27273152 PMCID: PMC4895240 DOI: 10.1038/srep24612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 04/01/2016] [Indexed: 12/19/2022] Open
Abstract
The genome of a novel group II alphabaculovirus, Perigonia lusca single nucleopolyhedrovirus (PeluSNPV), was sequenced and shown to contain 132,831 bp with 145 putative ORFs (open reading frames) of at least 50 amino acids. An interesting feature of this novel genome was the presence of a putative nucleotide metabolism enzyme-encoding gene (pelu112). The pelu112 gene was predicted to encode a fusion of thymidylate kinase (tmk) and dUTP diphosphatase (dut). Phylogenetic analysis indicated that baculoviruses have independently acquired tmk and dut several times during their evolution. Two homologs of the tmk-dut fusion gene were separately introduced into the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, which lacks tmk and dut. The recombinant baculoviruses produced viral DNA, virus progeny, and some viral proteins earlier during in vitro infection and the yields of viral occlusion bodies were increased 2.5-fold when compared to the parental virus. Interestingly, both enzymes appear to retain their active sites, based on separate modeling using previously solved crystal structures. We suggest that the retention of these tmk-dut fusion genes by certain baculoviruses could be related to accelerating virus replication and to protecting the virus genome from deleterious mutation.
Collapse
Affiliation(s)
- Daniel M P Ardisson-Araújo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil.,Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Rayane Nunes Lima
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | - Fernando L Melo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | - Rollie J Clem
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ning Huang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sônia Nair Báo
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| | | | - Bergmann M Ribeiro
- Laboratory of Baculovirus, Cell Biology Department, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
7
|
Ardisson-Araújo DMP, Pereira BT, Melo FL, Ribeiro BM, Báo SN, de A Zanotto PM, Moscardi F, Kitajima EW, Sosa-Gomez DR, Wolff JLC. A betabaculovirus encoding a gp64 homolog. BMC Genomics 2016; 17:94. [PMID: 26847652 PMCID: PMC4741009 DOI: 10.1186/s12864-016-2408-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/20/2016] [Indexed: 11/23/2022] Open
Abstract
Background A betabaculovirus (DisaGV) was isolated from Diatraea saccharalis (Lepidoptera: Crambidae), one of the most important insect pests of the sugarcane and other monocot cultures in Brazil. Results The complete genome sequence of DisaGV was determined using the 454-pyrosequencing method. The genome was 98,392 bp long, which makes it the smallest lepidopteran-infecting baculovirus sequenced to date. It had a G + C content of 29.7 % encoding 125 putative open reading frames (ORF). All the 37 baculovirus core genes and a set of 19 betabaculovirus-specific genes were found. A group of 13 putative genes was not found in any other baculovirus genome sequenced so far. A phylogenetic analysis indicated that DisaGV is a member of Betabaculovirus genus and that it is a sister group to a cluster formed by ChocGV, ErelGV, PiraGV isolates, ClanGV, CaLGV, CpGV, CrleGV, AdorGV, PhopGV and EpapGV. Surprisingly, we found in the DisaGV genome a G protein-coupled receptor related to lepidopteran and other insect virus genes and a gp64 homolog, which is likely a product of horizontal gene transfer from Group 1 alphabaculoviruses. Conclusion DisaGV represents a distinct lineage of the genus Betabaculovirus. It is closely related to the CpGV-related group and presents the smallest genome in size so far. Remarkably, we found a homolog of gp64, which was reported solely in group 1 alphabaculovirus genomes so far. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2408-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel M P Ardisson-Araújo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Bruna T Pereira
- Programa de Pós-graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, São Paulo, Brazil.
| | - Fernando L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Sônia N Báo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil.
| | - Paolo M de A Zanotto
- Laboratório de Evolução Molecular e Bioinformática (LEMB-ICB), Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Flávio Moscardi
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, Londrina, Paraná PR, Brazil
| | - Elliot W Kitajima
- NAP/MEPA, Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba, SP, Brazil.
| | - Daniel R Sosa-Gomez
- Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja, Londrina, Paraná PR, Brazil.
| | - José L C Wolff
- Laboratório de Biologia Molecular e Virologia, Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Homology-independent metrics for comparative genomics. Comput Struct Biotechnol J 2015; 13:352-7. [PMID: 26029354 PMCID: PMC4446528 DOI: 10.1016/j.csbj.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/06/2015] [Accepted: 04/18/2015] [Indexed: 11/24/2022] Open
Abstract
A mainstream procedure to analyze the wealth of genomic data available nowadays is the detection of homologous regions shared across genomes, followed by the extraction of biological information from the patterns of conservation and variation observed in such regions. Although of pivotal importance, comparative genomic procedures that rely on homology inference are obviously not applicable if no homologous regions are detectable. This fact excludes a considerable portion of “genomic dark matter” with no significant similarity — and, consequently, no inferred homology to any other known sequence — from several downstream comparative genomic methods. In this review we compile several sequence metrics that do not rely on homology inference and can be used to compare nucleotide sequences and extract biologically meaningful information from them. These metrics comprise several compositional parameters calculated from sequence data alone, such as GC content, dinucleotide odds ratio, and several codon bias metrics. They also share other interesting properties, such as pervasiveness (patterns persist on smaller scales) and phylogenetic signal. We also cite examples where these homology-independent metrics have been successfully applied to support several bioinformatics challenges, such as taxonomic classification of biological sequences without homology inference. They where also used to detect higher-order patterns of interactions in biological systems, ranging from detecting coevolutionary trends between the genomes of viruses and their hosts to characterization of gene pools of entire microbial communities. We argue that, if correctly understood and applied, homology-independent metrics can add important layers of biological information in comparative genomic studies without prior homology inference.
Collapse
|
9
|
Pagarete A, Kusonmano K, Petersen K, Kimmance SA, Martínez Martínez J, Wilson WH, Hehemann JH, Allen MJ, Sandaa RA. Dip in the gene pool: metagenomic survey of natural coccolithovirus communities. Virology 2014; 466-467:129-37. [PMID: 24947907 DOI: 10.1016/j.virol.2014.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
Abstract
Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.
Collapse
Affiliation(s)
| | | | - Kjell Petersen
- Computational Biology Unit, University of Bergen, Norway
| | | | | | - William H Wilson
- Plymouth Marine Laboratory, Plymouth, UK; Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
| | - Jan-Hendrik Hehemann
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, USA
| | | | | |
Collapse
|
10
|
Gao C, Ren X, Mason AS, Liu H, Xiao M, Li J, Fu D. Horizontal gene transfer in plants. Funct Integr Genomics 2013; 14:23-9. [PMID: 24132513 DOI: 10.1007/s10142-013-0345-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/12/2023]
Abstract
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components.
Collapse
Affiliation(s)
- Caihua Gao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics 2013; 14:537. [PMID: 23924250 PMCID: PMC3751351 DOI: 10.1186/1471-2164-14-537] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The numerous classes of repeats often impede the assembly of genome sequences from the short reads provided by new sequencing technologies. We demonstrate a simple and rapid means to ascertain the repeat structure and total size of a bacterial or archaeal genome without the need for assembly by directly analyzing the abundances of distinct k-mers among reads. RESULTS The sensitivity of this procedure to resolve variation within a bacterial species is demonstrated: genome sizes and repeat structure of five environmental strains of E. coli from short Illumina reads were estimated by this method, and total genome sizes corresponded well with those obtained for the same strains by pulsed-field gel electrophoresis. In addition, this approach was applied to read-sets for completed genomes and shown to be accurate over a wide range of microbial genome sizes. CONCLUSIONS Application of these procedures, based solely on k-mer abundances in short read data sets, allows aspects of genome structure to be resolved that are not apparent from conventional short read assemblies. This knowledge of the repetitive content of genomes provides insights into genome evolution and diversity.
Collapse
|
12
|
Abstract
The recent discovery of giant viruses exhibiting double-stranded DNA genomes larger than a million base pairs, encoding more than a thousand proteins and packed in near micron-sized icosahedral particles, opened a new and unexpected chapter in virology. As of today, these giant viruses and their closest relatives of lesser dimensions infect unicellular eukaryotes found in aquatic environments, but belonging to a wide diversity of early branching phyla. This broad phylogenetic distribution of hosts is consistent with the hypothesis that giant viruses originated prior to the radiation of the eukaryotic domain and/or might have been involved in the partition of nuclear versus cytoplasmic functions in ancestral cells. The distinctive features of the known giant viruses, in particular the recurrent presence of components of the translation apparatus in their proteome, raise a number of fundamental questions about their origin, their mode of evolution, and the relationship they may entertain with other dsDNA viruses, the genome size of which exhibits the widest distribution among all biological entities, from less than 5 kb to more than 1.25 Mb (a ratio of 1:250). At a more conceptual level, the convergence between the discovery of increasingly reduced parasitic cellular organisms and that of giant viruses exhibiting a widening array of cellular-like functions may ultimately abolish the historical discontinuity between the viral and the cellular world.
Collapse
|
13
|
Hingamp P, Grimsley N, Acinas SG, Clerissi C, Subirana L, Poulain J, Ferrera I, Sarmento H, Villar E, Lima-Mendez G, Faust K, Sunagawa S, Claverie JM, Moreau H, Desdevises Y, Bork P, Raes J, de Vargas C, Karsenti E, Kandels-Lewis S, Jaillon O, Not F, Pesant S, Wincker P, Ogata H. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME JOURNAL 2013; 7:1678-95. [PMID: 23575371 PMCID: PMC3749498 DOI: 10.1038/ismej.2013.59] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 11/17/2022]
Abstract
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.
Collapse
Affiliation(s)
- Pascal Hingamp
- CNRS, Aix-Marseille Université, Laboratoire Information Génomique et Structurale (UMR 7256), Mediterranean Institute of Microbiology (FR 3479), Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeanniard A, Dunigan DD, Gurnon JR, Agarkova IV, Kang M, Vitek J, Duncan G, McClung OW, Larsen M, Claverie JM, Van Etten JL, Blanc G. Towards defining the chloroviruses: a genomic journey through a genus of large DNA viruses. BMC Genomics 2013; 14:158. [PMID: 23497343 PMCID: PMC3602175 DOI: 10.1186/1471-2164-14-158] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/22/2013] [Indexed: 11/29/2022] Open
Abstract
Background Giant viruses in the genus Chlorovirus (family Phycodnaviridae) infect eukaryotic green microalgae. The prototype member of the genus, Paramecium bursaria chlorella virus 1, was sequenced more than 15 years ago, and to date there are only 6 fully sequenced chloroviruses in public databases. Presented here are the draft genome sequences of 35 additional chloroviruses (287 – 348 Kb/319 – 381 predicted protein encoding genes) collected across the globe; they infect one of three different green algal species. These new data allowed us to analyze the genomic landscape of 41 chloroviruses, which revealed some remarkable features about these viruses. Results Genome colinearity, nucleotide conservation and phylogenetic affinity were limited to chloroviruses infecting the same host, confirming the validity of the three previously known subgenera. Clues for the existence of a fourth new subgenus indicate that the boundaries of chlorovirus diversity are not completely determined. Comparison of the chlorovirus phylogeny with that of the algal hosts indicates that chloroviruses have changed hosts in their evolutionary history. Reconstruction of the ancestral genome suggests that the last common chlorovirus ancestor had a slightly more diverse protein repertoire than modern chloroviruses. However, more than half of the defined chlorovirus gene families have a potential recent origin (after Chlorovirus divergence), among which a portion shows compositional evidence for horizontal gene transfer. Only a few of the putative acquired proteins had close homologs in databases raising the question of the true donor organism(s). Phylogenomic analysis identified only seven proteins whose genes were potentially exchanged between the algal host and the chloroviruses. Conclusion The present evaluation of the genomic evolution pattern suggests that chloroviruses differ from that described in the related Poxviridae and Mimiviridae. Our study shows that the fixation of algal host genes has been anecdotal in the evolutionary history of chloroviruses. We finally discuss the incongruence between compositional evidence of horizontal gene transfer and lack of close relative sequences in the databases, which suggests that the recently acquired genes originate from a still largely un-sequenced reservoir of genomes, possibly other unknown viruses that infect the same hosts.
Collapse
Affiliation(s)
- Adrien Jeanniard
- Information Génomique & Structurale, IGS UMR7256, CNRS, Aix-Marseille Université, FR-13288, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Legendre M, Arslan D, Abergel C, Claverie JM. Genomics of Megavirus and the elusive fourth domain of Life. Commun Integr Biol 2012; 5:102-6. [PMID: 22482024 DOI: 10.4161/cib.18624] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently described Megavirus chilensis, a giant virus isolated off the coast of Chile, also replicating in fresh water acanthamoeba. Its 1,259,197-bp genome encodes 1,120 proteins and is the largest known viral genome. Megavirus and its closest relative Mimivirus only share 594 orthologous genes, themselves sharing only 50% of identical residues in average. Despite this divergence, comparable to the maximal divergence exhibited by bacteria within the same division (e.g., gamma proteobacteria), Megavirus retained all of the genomic features unique to Mimivirus, in particular its genes encoding key-elements of the translation apparatus, a trademark of cellular organisms. Besides homologs to the four aminoacyl-tRNA synthetases (aaRS) encoded by Mimivirus, Megavirus added three additional ones, raising the total of known virus-encoded aaRS to seven: IleRS, TrpRS, AsnRS, ArgRS, CysRS, MetRS, TyrRS. This finding strongly suggests that large DNA viruses derived from an ancestral cellular genome by reductive evolution. The nature of this cellular ancestor remains hotly debated.
Collapse
Affiliation(s)
- Matthieu Legendre
- Information Génomique et Structurale; Centre National de la Recherche Scientifique-Unité Propre de Recherche 2589; Aix-Marseille University; Institut de Microbiologie de la Méditerranée; Parc Scientifique de Luminy; Case 934; Marseille, France
| | | | | | | |
Collapse
|
16
|
Bertelli C, Greub G. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms. Front Cell Infect Microbiol 2012; 2:110. [PMID: 22919697 PMCID: PMC3423634 DOI: 10.3389/fcimb.2012.00110] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/01/2012] [Indexed: 12/05/2022] Open
Abstract
Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).
Collapse
Affiliation(s)
- Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | | |
Collapse
|
17
|
Ienne S, Pappas G, Benabdellah K, González A, Zingales B. Horizontal gene transfer confers fermentative metabolism in the respiratory-deficient plant trypanosomatid Phytomonas serpens. INFECTION GENETICS AND EVOLUTION 2012; 12:539-48. [PMID: 22293462 DOI: 10.1016/j.meegid.2012.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 11/28/2022]
Abstract
Among trypanosomatids, the genus Phytomonas is the only one specifically adapted to infect plants. These hosts provide a particular habitat with a plentiful supply of carbohydrates. Phytomonas sp. lacks a cytochrome-mediated respiratory chain and Krebs cycle, and ATP production relies predominantly on glycolysis. We have characterised the complete gene encoding a putative pyruvate/indolepyruvate decarboxylase (PDC/IPDC) (548 amino acids) of P. serpens, that displays high amino acid sequence similarity with phytobacteria and Leishmania enzymes. No orthologous PDC/IPDC genes were found in Trypanosoma cruzi or T. brucei. Conservation of the PDC/IPDC gene sequence was verified in 14 Phytomonas isolates. A phylogenetic analysis shows that Phytomonas protein is robustly monophyletic with Leishmania spp. and C. fasciculata enzymes. In the trees this clade appears as a sister group of indolepyruvate decarboxylases of γ-proteobacteria. This supports the proposition that a horizontal gene transfer event from a donor phytobacteria to a recipient ancestral trypanosome has occurred prior to the separation between Phytomonas, Leishmania and Crithidia. We have measured the PDC activity in P. serpens cell extracts. The enzyme has a Km value for pyruvate of 1.4mM. The acquisition of a PDC, a key enzyme in alcoholic fermentation, explains earlier observations that ethanol is one of the major end-products of glucose catabolism under aerobic and anaerobic conditions. This represents an alternative and necessary route to reoxidise part of the NADH produced in the highly demanding glycolytic pathway and highlights the importance of this type of event in metabolic adaptation.
Collapse
Affiliation(s)
- Susan Ienne
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | | | | | | | | |
Collapse
|
18
|
Monier A, Welsh RM, Gentemann C, Weinstock G, Sodergren E, Armbrust EV, Eisen JA, Worden AZ. Phosphate transporters in marine phytoplankton and their viruses: cross-domain commonalities in viral-host gene exchanges. Environ Microbiol 2012; 14:162-76. [PMID: 21914098 PMCID: PMC3429862 DOI: 10.1111/j.1462-2920.2011.02576.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/27/2011] [Indexed: 11/28/2022]
Abstract
Phosphate (PO(4)) is an important limiting nutrient in marine environments. Marine cyanobacteria scavenge PO(4) using the high-affinity periplasmic phosphate binding protein PstS. The pstS gene has recently been identified in genomes of cyanobacterial viruses as well. Here, we analyse genes encoding transporters in genomes from viruses that infect eukaryotic phytoplankton. We identified inorganic PO(4) transporter-encoding genes from the PHO4 superfamily in several virus genomes, along with other transporter-encoding genes. Homologues of the viral pho4 genes were also identified in genome sequences from the genera that these viruses infect. Genome sequences were available from host genera of all the phytoplankton viruses analysed except the host genus Bathycoccus. Pho4 was recovered from Bathycoccus by sequencing a targeted metagenome from an uncultured Atlantic Ocean population. Phylogenetic reconstruction showed that pho4 genes from pelagophytes, haptophytes and infecting viruses were more closely related to homologues in prasinophytes than to those in what, at the species level, are considered to be closer relatives (e.g. diatoms). We also identified PHO4 superfamily members in ocean metagenomes, including new metagenomes from the Pacific Ocean. The environmental sequences grouped with pelagophytes, haptophytes, prasinophytes and viruses as well as bacteria. The analyses suggest that multiple independent pho4 gene transfer events have occurred between marine viruses and both eukaryotic and bacterial hosts. Additionally, pho4 genes were identified in available genomes from viruses that infect marine eukaryotes but not those that infect terrestrial hosts. Commonalities in marine host-virus gene exchanges indicate that manipulation of host-PO(4) uptake is an important adaptation for viral proliferation in marine systems. Our findings suggest that PO(4) -availability may not serve as a simple bottom-up control of marine phytoplankton.
Collapse
Affiliation(s)
- Adam Monier
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Rory M Welsh
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| | - Chelle Gentemann
- Remote Sensing Systems444 Tenth Street, Suite 200, Santa Rosa, CA, 95401, USA
| | - George Weinstock
- The Genome Center, Washington University School of Medicine4444 Forest Park Avenue, St. Louis, MO 63108, USA
| | - Erica Sodergren
- The Genome Center, Washington University School of Medicine4444 Forest Park Avenue, St. Louis, MO 63108, USA
| | | | - Jonathan A Eisen
- University of California DavisDavis, CA 95616DOE Joint Genome Institute Walnut CreekCA, USA
| | - Alexandra Z Worden
- Monterey Bay Aquarium Research Institute7700 Sandholdt Road, Moss Landing, CA 95039, USA
| |
Collapse
|
19
|
Yu JF, Xiao K, Jiang DK, Guo J, Wang JH, Sun X. An integrative method for identifying the over-annotated protein-coding genes in microbial genomes. DNA Res 2011; 18:435-49. [PMID: 21903723 PMCID: PMC3223076 DOI: 10.1093/dnares/dsr030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The falsely annotated protein-coding genes have been deemed one of the major causes accounting for the annotating errors in public databases. Although many filtering approaches have been designed for the over-annotated protein-coding genes, some are questionable due to the resultant increase in false negative. Furthermore, there is no webserver or software specifically devised for the problem of over-annotation. In this study, we propose an integrative algorithm for detecting the over-annotated protein-coding genes in microorganisms. Overall, an average accuracy of 99.94% is achieved over 61 microbial genomes. The extremely high accuracy indicates that the presented algorithm is efficient to differentiate the protein-coding genes from the non-coding open reading frames. Abundant analyses show that the predicting results are reliable and the integrative algorithm is robust and convenient. Our analysis also indicates that the over-annotated protein-coding genes can cause the false positive of horizontal gene transfers detection. The webserver of the proposed algorithm can be freely accessible from www.cbi.seu.edu.cn/RPGM.
Collapse
Affiliation(s)
- Jia-Feng Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
20
|
Kuno S, Yoshida T, Kamikawa R, Hosoda N, Sako Y. The distribution of a phage-related insertion sequence element in the cyanobacterium, Microcystis aeruginosa. Microbes Environ 2011; 25:295-301. [PMID: 21576885 DOI: 10.1264/jsme2.me10125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cyanophage Ma-LMM01, specifically-infecting Microcystis aeruginosa, has an insertion sequence (IS) element that we named IS607-cp showing high nucleotide similarity to a counterpart in the genome of the cyanobacterium Cyanothece sp. We tested 21 strains of M. aeruginosa for the presence of IS607-cp using PCR and detected the element in strains NIES90, NIES112, NIES604, and RM6. Thermal asymmetric interlaced PCR (TAIL-PCR) revealed each of these strains has multiple copies of IS607-cp. Some of the ISs were classified into three types based on their inserted positions; IS607-cp-1 is common in strains NIES90, NIES112 and NIES604, whereas IS607-cp-2 and IS607-cp-3 are specific to strains NIES90 and RM6, respectively. This multiplicity may reflect the replicative transposition of IS607-cp. The sequence of IS607-cp in Ma-LMM01 showed robust affinity to those found in M. aeruginosa and Cyanothece spp. in a phylogenetic tree inferred from counterparts of various bacteria. This suggests the transfer of IS607-cp between the cyanobacterium and its cyanophage. We discuss the potential role of Ma-LMM01-related phages as donors of IS elements that may mediate the transfer of IS607-cp; and thereby partially contribute to the genome plasticity of M. aeruginosa.
Collapse
Affiliation(s)
- Sotaro Kuno
- Department of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606–8502, Japan
| | | | | | | | | |
Collapse
|
21
|
Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment. ISME JOURNAL 2011; 5:1143-51. [PMID: 21248859 DOI: 10.1038/ismej.2010.210] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses ('giruses') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from 'Candidatus Amoebophilus asiaticus', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world.
Collapse
|
22
|
Claverie JM, Abergel C. Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends Genet 2010; 26:431-7. [PMID: 20696492 DOI: 10.1016/j.tig.2010.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/04/2010] [Accepted: 07/15/2010] [Indexed: 11/16/2022]
Abstract
What is a virus? Are viruses alive? Should they be classified among microorganisms? One would expect these simple questions to have been settled a century after the discovery of the first viral disease. For years, modern virology successfully unravelled the huge diversity of viruses in terms of genetic material, replication mechanism, pathogenicity, host infection, and more recently particle structure, planet-wide distribution and ecological significance. Yet, little progress was made in understanding their evolutionary origin(s), as well as the fundamental nature of their relationship with the cellular world. Thanks to the recent studies on Mimivirus and other large DNA viruses, we are now entering a new era where the most basic concepts about viruses are revisited, including their true nature, how fundamentally different they are from cellular microorganisms, and how essential they might have been in the major innovations that punctuated the evolution of life.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, Aix-Marseille University, Mediterranean Institute of Microbiology, Parc Scientifique de Luminy, Case 934, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|
23
|
Zhang Q, Ma Q, Su D, Li Q, Yao W, Wang C. Identification of horizontal gene transfer and recombination of PsaA gene in streptococcus mitis group. Microbiol Immunol 2010; 54:313-9. [PMID: 20536729 DOI: 10.1111/j.1348-0421.2010.00216.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pneumococcal surface adhesin A (psaA) gene is universally confirmed as one of the Streptococcus pneumoniae adhesion genes, but it is disputed whether the psaA gene is a Streptococcus pneumoniae species-specific gene. In the present study, the presence of the psaA gene in 34 streptococcus mitis group isolates was identified by the PCR approach and a comparison of sequencing PCR products (Streptococcus pneumoniae R6 as the control strain). Also, the evolutionary scenarios of these psaA genes in these streptococcus mitis group isolates were analyzed by a phylogenetic tree based on the housekeeping genes (sodA and rnpB) and psaA genes. As a result, a high degree of conservation of open reading frame sequences in all six Streptococcus pneumoniae strains (100% similarity) and in the other species of the streptococcus mitis group (92.6-100% similarity) was revealed. Further genetics research based on housekeeping genes and psaA gene phylogenies showed that the psaA gene was of vertical inheritance only in Streptococcus pneumoniae; however, high-frequency horizontal psaA gene transfer and recombination occurred in the other species of the streptococcus mitis group. These findings confirmed that the psaA gene was not a Streptococcus pneumoniae species-specific gene, and high-frequency HGT and recombination events may explain the presence of the psaA gene in the other species of the streptococcus mitis group.
Collapse
Affiliation(s)
- Qiao Zhang
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, No. 183 Xinqiao Street, Chongqing 400037, China
| | | | | | | | | | | |
Collapse
|
24
|
Villarreal LP. The source of self: genetic parasites and the origin of adaptive immunity. Ann N Y Acad Sci 2009; 1178:194-232. [PMID: 19845639 DOI: 10.1111/j.1749-6632.2009.05020.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stable colonization of the host by viruses (genetic parasites) can alter the systems of host identity and provide immunity against related viruses. To attain the needed stability, some viruses of prokaryotes (P1 phage) use a strategy called an addiction module. The linked protective and destructive gene functions of an addiction module insures both virus persistence but will also destroy cells that interrupt this module and thereby prevent infection by competitors. Previously, I have generalized this concept to also include persistent and lytic states of virus infection, which can be considered as a virus addiction module. Such states often involve defective viruses. In this report, I examine the origin of the adaptive immune system from the perspective of a virus addiction module. The likely role of both endogenous and exogenous retroviruses, DNA viruses, and their defective elements is considered in the origin of all the basal components of adaptive immunity (T-cell receptor, RAG-mediated gene rearrangement, clonal lymphocyte proliferation, antigen surface presentation, apoptosis, and education of immune cells). It is concluded that colonization by viruses and their defectives provides a more coherent explanation for the origin of adaptive immunity.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA.
| |
Collapse
|
25
|
Abstract
Mimivirus, a virus infecting amoebae of the acanthamoeba genus, is the prototype member of the Mimiviridae, the latest addition to the family of the nucleocytoplasmic large DNA viruses, already including the Poxviridae, the Iridoviridae, the Asfarviridae, and the Phycodnaviridae. Because of the size of its particle-a fiber-covered icosahedral protein capsid 0.75 microm in diameter-Mimivirus was initially mistaken for a parasitic bacterium. Its 1.2-Mb genome sequence encodes more than 900 proteins, many of them associated with functions never before encountered in a virus, such as four aminoacyl-tRNA synthetases. These findings revived the debate about the origin of DNA viruses and their possible role in the emergence of the eukaryotic nucleus. The recent isolation of a new type of satellite virus, called a virophage, associated with a second strain of Mimivirus, confirmed its unique position within the virus world. Post-genomic studies are now in progress, slowly shedding some light on the physiology of the most complex virus isolated to date.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, IFR-88, Aix-Marseille University, Parc Scientifique de Luminy, Case 934, FR-13288 Marseille, France.
| | | |
Collapse
|
26
|
Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 2009; 262:698-710. [PMID: 19833132 DOI: 10.1016/j.jtbi.2009.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/06/2023]
Abstract
In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
27
|
Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol 2009; 7:615; author reply 615. [PMID: 19561626 DOI: 10.1038/nrmicro2108-c3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Fletcher GJ, Christopher S, Gnanamony M. Why does size matter for viruses – A new paradigm on viral size. Med Hypotheses 2009; 73:133-7. [DOI: 10.1016/j.mehy.2009.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 02/17/2009] [Accepted: 02/21/2009] [Indexed: 10/20/2022]
|
29
|
Abstract
Marine viruses affect Bacteria, Archaea and eukaryotic organisms and are major components of the marine food web. Most studies have focused on their role as predators and parasites, but many of the interactions between marine viruses and their hosts are much more complicated. A series of recent studies has shown that viruses have the ability to manipulate the life histories and evolution of their hosts in remarkable ways, challenging our understanding of this almost invisible world.
Collapse
|
30
|
Whole-proteome phylogeny of large dsDNA virus families by an alignment-free method. Proc Natl Acad Sci U S A 2009; 106:12826-31. [PMID: 19553209 DOI: 10.1073/pnas.0905115106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vast sequence divergence among different virus groups has presented a great challenge to alignment-based sequence comparison among different virus families. Using an alignment-free comparison method, we construct the whole-proteome phylogeny for a population of viruses from 11 viral families comprising 142 large dsDNA eukaryote viruses. The method is based on the feature frequency profiles (FFP), where the length of the feature (l-mer) is selected to be optimal for phylogenomic inference. We observe that (i) the FFP phylogeny segregates the population into clades, the membership of each has remarkable agreement with current classification by the International Committee on the Taxonomy of Viruses, with one exception that the mimivirus joins the phycodnavirus family; (ii) the FFP tree detects potential evolutionary relationships among some viral families; (iii) the relative position of the 3 herpesvirus subfamilies in the FFP tree differs from gene alignment-based analysis; (iv) the FFP tree suggests the taxonomic positions of certain "unclassified" viruses; and (v) the FFP method identifies candidates for horizontal gene transfer between virus families.
Collapse
|
31
|
Cortez D, Forterre P, Gribaldo S. A hidden reservoir of integrative elements is the major source of recently acquired foreign genes and ORFans in archaeal and bacterial genomes. Genome Biol 2009; 10:R65. [PMID: 19531232 PMCID: PMC2718499 DOI: 10.1186/gb-2009-10-6-r65] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/04/2009] [Accepted: 06/16/2009] [Indexed: 11/10/2022] Open
Abstract
A large-scale survey of potential recently acquired integrative elements in 119 archaeal and bacterial genomes reveals that many recently acquired genes have originated from integrative elements Background Archaeal and bacterial genomes contain a number of genes of foreign origin that arose from recent horizontal gene transfer, but the role of integrative elements (IEs), such as viruses, plasmids, and transposable elements, in this process has not been extensively quantified. Moreover, it is not known whether IEs play an important role in the origin of ORFans (open reading frames without matches in current sequence databases), whose proportion remains stable despite the growing number of complete sequenced genomes. Results We have performed a large-scale survey of potential recently acquired IEs in 119 archaeal and bacterial genomes. We developed an accurate in silico Markov model-based strategy to identify clusters of genes that show atypical sequence composition (clusters of atypical genes or CAGs) and are thus likely to be recently integrated foreign elements, including IEs. Our method identified a high number of new CAGs. Probabilistic analysis of gene content indicates that 56% of these new CAGs are likely IEs, whereas only 7% likely originated via horizontal gene transfer from distant cellular sources. Thirty-four percent of CAGs remain unassigned, what may reflect a still poor sampling of IEs associated with bacterial and archaeal diversity. Moreover, our study contributes to the issue of the origin of ORFans, because 39% of these are found inside CAGs, many of which likely represent recently acquired IEs. Conclusions Our results strongly indicate that archaeal and bacterial genomes contain an impressive proportion of recently acquired foreign genes (including ORFans) coming from a still largely unexplored reservoir of IEs.
Collapse
Affiliation(s)
- Diego Cortez
- Institut Pasteur, Département de Microbiologie, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France.
| | | | | |
Collapse
|
32
|
The evolution of guanylyl cyclases as multidomain proteins: conserved features of kinase-cyclase domain fusions. J Mol Evol 2009; 68:587-602. [PMID: 19495554 DOI: 10.1007/s00239-009-9242-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Accepted: 04/21/2009] [Indexed: 12/30/2022]
Abstract
Guanylyl cyclases (GCs) are enzymes that generate cyclic GMP and regulate different physiologic and developmental processes in a number of organisms. GCs possess sequence similarity to class III adenylyl cyclases (ACs) and are present as either membrane-bound receptor GCs or cytosolic soluble GCs. We sought to determine the evolution of GCs using a large-scale bioinformatic analysis and found multiple lineage-specific expansions of GC genes in the genomes of many eukaryotes. Moreover, a few GC-like proteins were identified in prokaryotes, which come fused to a number of different domains, suggesting allosteric regulation of nucleotide cyclase activity. Eukaryotic receptor GCs are associated with a kinase homology domain (KHD), and phylogenetic analysis of these proteins suggest coevolution of the KHD and the associated cyclase domain as well as a conservation of the sequence and the size of the linker region between the KHD and the associated cyclase domain. Finally, we also report the existence of mimiviral proteins that contain putative active kinase domains associated with a cyclase domain, which could suggest early evolution of the fusion of these two important domains involved in signal transduction.
Collapse
|
33
|
Odom MR, Hendrickson RC, Lefkowitz EJ. Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. Virus Res 2009; 144:233-49. [PMID: 19464330 PMCID: PMC2779260 DOI: 10.1016/j.virusres.2009.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 02/03/2023]
Abstract
To investigate the evolutionary origins of proteins encoded by the Poxviridae family of viruses, we examined all poxvirus protein coding genes using a method of characterizing and visualizing the similarity between these proteins and taxonomic subsets of proteins in GenBank. Our analysis divides poxvirus proteins into categories based on their relative degree of similarity to two different taxonomic subsets of proteins such as all eukaryote vs. all virus (except poxvirus) proteins. As an example, this allows us to identify, based on high similarity to only eukaryote proteins, poxvirus proteins that may have been obtained by horizontal transfer from their hosts. Although this method alone does not definitively prove horizontal gene transfer, it allows us to provide an assessment of the possibility of horizontal gene transfer for every poxvirus protein. Potential candidates can then be individually studied in more detail during subsequent investigation. Results of our analysis demonstrate that in general, proteins encoded by members of the subfamily Chordopoxvirinae exhibit greater similarity to eukaryote proteins than to proteins of other virus families. In addition, our results reiterate the important role played by host gene capture in poxvirus evolution; highlight the functions of many genes poxviruses share with their hosts; and illustrate which host-like genes are present uniquely in poxviruses and which are also present in other virus families.
Collapse
Affiliation(s)
- Mary R Odom
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
34
|
Langille MGI, Brinkman FSL. Bioinformatic detection of horizontally transferred DNA in bacterial genomes. F1000 BIOLOGY REPORTS 2009; 1:25. [PMID: 20948661 PMCID: PMC2920674 DOI: 10.3410/b1-25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We highlight a selection of recent research on computational methods and associated challenges surrounding the prediction of bacterial horizontal gene transfer. This research area continues to face controversy, but is becoming more critical as the importance of horizontal gene transfer in medically and ecologically important prokaryotic evolution is further appreciated.
Collapse
Affiliation(s)
- Morgan G I Langille
- Department of Molecular Biology and Biochemistry, Simon Fraser University Burnaby, BC Canada V5A 1S6
| | | |
Collapse
|
35
|
de Andrade Zanotto PM, Krakauer DC. Complete genome viral phylogenies suggests the concerted evolution of regulatory cores and accessory satellites. PLoS One 2008; 3:e3500. [PMID: 18941535 PMCID: PMC2567038 DOI: 10.1371/journal.pone.0003500] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 09/17/2008] [Indexed: 11/19/2022] Open
Abstract
We consider the concerted evolution of viral genomes in four families of DNA viruses. Given the high rate of horizontal gene transfer among viruses and their hosts, it is an open question as to how representative particular genes are of the evolutionary history of the complete genome. To address the concerted evolution of viral genes, we compared genomic evolution across four distinct, extant viral families. For all four viral families we constructed DNA-dependent DNA polymerase-based (DdDp) phylogenies and in addition, whole genome sequence, as quantitative descriptions of inter-genome relationships. We found that the history of the polymerase gene was highly predictive of the history of the genome as a whole, which we explain in terms of repeated, co-divergence events of the core DdDp gene accompanied by a number of satellite, accessory genetic loci. We also found that the rate of gene gain in baculovirus and poxviruses proceeds significantly more quickly than the rate of gene loss and that there is convergent acquisition of satellite functions promoting contextual adaptation when distinct viral families infect related hosts. The congruence of the genome and polymerase trees suggests that a large set of viral genes, including polymerase, derive from a phylogenetically conserved core of genes of host origin, secondarily reinforced by gene acquisition from common hosts or co-infecting viruses within the host. A single viral genome can be thought of as a mutualistic network, with the core genes acting as an effective host and the satellite genes as effective symbionts. Larger virus genomes show a greater departure from linkage equilibrium between core and satellites functions.
Collapse
|
36
|
Monier A, Larsen JB, Sandaa RA, Bratbak G, Claverie JM, Ogata H. Marine mimivirus relatives are probably large algal viruses. Virol J 2008; 5:12. [PMID: 18215256 PMCID: PMC2245910 DOI: 10.1186/1743-422x-5-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 01/23/2008] [Indexed: 11/23/2022] Open
Abstract
Background Acanthamoeba polyphaga mimivirus is the largest known ds-DNA virus and its 1.2 Mb-genome sequence has revealed many unique features. Mimivirus occupies an independent lineage among eukaryotic viruses and its known hosts include only species from the Acanthamoeba genus. The existence of mimivirus relatives was first suggested by the analysis of the Sargasso Sea metagenomic data. Results We now further demonstrate the presence of numerous "mimivirus-like" sequences using a larger marine metagenomic data set. We also show that the DNA polymerase sequences from three algal viruses (CeV01, PpV01, PoV01) infecting different marine algal species (Chrysochromulina ericina, Phaeocystis pouchetii, Pyramimonas orientalis) are very closely related to their homolog in mimivirus. Conclusion Our results suggest that the numerous mimivirus-related sequences identified in marine environments are likely to originate from diverse large DNA viruses infecting phytoplankton. Micro-algae thus constitute a new category of potential hosts in which to look for new species of Mimiviridae.
Collapse
Affiliation(s)
- Adam Monier
- Structural and Genomic Information Laboratory, CNRS-UPR 2589, IBSM, Parc Scientifique de Luminy, 163 avenue de Luminy, Case 934, 13288 Marseille Cedex 9, France.
| | | | | | | | | | | |
Collapse
|