1
|
Kögler A, Seibt KM, Heitkam T, Morgenstern K, Reiche B, Brückner M, Wolf H, Krabel D, Schmidt T. Divergence of 3' ends as a driver of short interspersed nuclear element (SINE) evolution in the Salicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:443-458. [PMID: 32056333 DOI: 10.1111/tpj.14721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Short interspersed nuclear elements (SINEs) are small, non-autonomous and heterogeneous retrotransposons that are widespread in plants. To explore the amplification dynamics and evolutionary history of SINE populations in representative deciduous tree species, we analyzed the genomes of the six following Salicaceae species: Populus deltoides, Populus euphratica, Populus tremula, Populus tremuloides, Populus trichocarpa, and Salix purpurea. We identified 11 Salicaceae SINE families (SaliS-I to SaliS-XI), comprising 27 077 full-length copies. Most of these families harbor segmental similarities, providing evidence for SINE emergence by reshuffling or heterodimerization. We observed two SINE groups, differing in phylogenetic distribution pattern, similarity and 3' end structure. These groups probably emerged during the 'salicoid duplication' (~65 million years ago) in the Salix-Populus progenitor and during the separation of the genus Salix (45-65 million years ago), respectively. In contrast to conserved 5' start motifs across species and SINE families, the 3' ends are highly variable in sequence and length. This extraordinary 3'-end variability results from mutations in the poly(A) tail, which were fixed by subsequent amplificational bursts. We show that the dissemination of newly evolved 3' ends is accomplished by a displacement of older motifs, leading to various 3'-end subpopulations within the SaliS families.
Collapse
Affiliation(s)
- Anja Kögler
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kathrin M Seibt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Tony Heitkam
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kristin Morgenstern
- Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany
| | - Birgit Reiche
- Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany
| | | | - Heino Wolf
- Staatsbetrieb Sachsenforst, 01796, Pirna, Germany
| | - Doris Krabel
- Department of Forest Sciences, Institute of Forest Botany and Forest Zoology, Technische Universität Dresden, 01735, Tharandt, Germany
| | - Thomas Schmidt
- Faculty of Biology, Institute of Botany, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Drost HG, Sanchez DH. Becoming a Selfish Clan: Recombination Associated to Reverse-Transcription in LTR Retrotransposons. Genome Biol Evol 2020; 11:3382-3392. [PMID: 31755923 PMCID: PMC6894440 DOI: 10.1093/gbe/evz255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA bits capable of mobilization and mutagenesis, typically suppressed by host’s epigenetic silencing. Since the selfish DNA concept, it is appreciated that genomes are also molded by arms-races against natural TE inhabitants. However, our understanding of evolutionary processes shaping TEs adaptive populations is scarce. Here, we review the events of recombination associated to reverse-transcription in LTR retrotransposons, a process shuffling their genetic variants during replicative mobilization. Current evidence may suggest that recombinogenic retrotransposons could beneficially exploit host suppression, where clan behavior facilitates their speciation and diversification. Novel refinements to retrotransposons life-cycle and evolution models thus emerge.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, United Kingdom.,Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Lee SC, Ernst E, Berube B, Borges F, Parent JS, Ledon P, Schorn A, Martienssen RA. Arabidopsis retrotransposon virus-like particles and their regulation by epigenetically activated small RNA. Genome Res 2020; 30:576-588. [PMID: 32303559 PMCID: PMC7197481 DOI: 10.1101/gr.259044.119] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
In Arabidopsis, LTR retrotransposons are activated by mutations in the chromatin gene DECREASE in DNA METHYLATION 1 (DDM1), giving rise to 21- to 22-nt epigenetically activated siRNA (easiRNA) that depend on RNA DEPENDENT RNA POLYMERASE 6 (RDR6). We purified virus-like particles (VLPs) from ddm1 and ddm1rdr6 mutants in which genomic RNA is reverse transcribed into complementary DNA. High-throughput short-read and long-read sequencing of VLP DNA (VLP DNA-seq) revealed a comprehensive catalog of active LTR retrotransposons without the need for mapping transposition, as well as independent of genomic copy number. Linear replication intermediates of the functionally intact COPIA element EVADE revealed multiple central polypurine tracts (cPPTs), a feature shared with HIV in which cPPTs promote nuclear localization. For one member of the ATCOPIA52 subfamily (SISYPHUS), cPPT intermediates were not observed, but abundant circular DNA indicated transposon "suicide" by auto-integration within the VLP. easiRNA targeted EVADE genomic RNA, polysome association of GYPSY (ATHILA) subgenomic RNA, and transcription via histone H3 lysine-9 dimethylation. VLP DNA-seq provides a comprehensive landscape of LTR retrotransposons and their control at transcriptional, post-transcriptional, and reverse transcriptional levels.
Collapse
Affiliation(s)
- Seung Cho Lee
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Benjamin Berube
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Filipe Borges
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Jean-Sebastien Parent
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Paul Ledon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Andrea Schorn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
4
|
Inpactor, Integrated and Parallel Analyzer and Classifier of LTR Retrotransposons and Its Application for Pineapple LTR Retrotransposons Diversity and Dynamics. BIOLOGY 2018; 7:biology7020032. [PMID: 29799487 PMCID: PMC6022998 DOI: 10.3390/biology7020032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
Abstract
One particular class of Transposable Elements (TEs), called Long Terminal Repeats (LTRs), retrotransposons, comprises the most abundant mobile elements in plant genomes. Their copy number can vary from several hundreds to up to a few million copies per genome, deeply affecting genome organization and function. The detailed classification of LTR retrotransposons is an essential step to precisely understand their effect at the genome level, but remains challenging in large-sized genomes, requiring the use of optimized bioinformatics tools that can take advantage of supercomputers. Here, we propose a new tool: Inpactor, a parallel and scalable pipeline designed to classify LTR retrotransposons, to identify autonomous and non-autonomous elements, to perform RT-based phylogenetic trees and to analyze their insertion times using High Performance Computing (HPC) techniques. Inpactor was tested on the classification and annotation of LTR retrotransposons in pineapple, a recently-sequenced genome. The pineapple genome assembly comprises 44% of transposable elements, of which 23% were classified as LTR retrotransposons. Exceptionally, 16.4% of the pineapple genome assembly corresponded to only one lineage of the Gypsy superfamily: Del, suggesting that this particular lineage has undergone a significant increase in its copy numbers. As demonstrated for the pineapple genome, Inpactor provides comprehensive data of LTR retrotransposons’ classification and dynamics, allowing a fine understanding of their contribution to genome structure and evolution. Inpactor is available at https://github.com/simonorozcoarias/Inpactor.
Collapse
|
5
|
Choudhury RR, Neuhaus JM, Parisod C. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:979-993. [PMID: 28244250 DOI: 10.1111/tpj.13524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Transposable elements support genome diversification, but comparison of their proliferation and genomic distribution within and among species is necessary to characterize their role in evolution. Such inferences are challenging because of potential bias with incomplete sampling of repetitive genome regions. Here, using the assembled genome as well as genome skimming datasets in Arabis alpina, we assessed the limits of current approaches inferring the biology of transposable elements. Long terminal repeat retrotransposons (LTR-RTs) identified in the assembled genome were classified into monophyletic lineages (here called tribes), including families of similar copies in Arabis along with elements from related Brassicaceae. Inference of their dynamics using divergence of LTRs in full-length copies and mismatch distribution of genetic variation among all copies congruently highlighted recent transposition bursts, although ancient proliferation events were apparent only with mismatch distribution. Similar inferences of LTR-RT dynamics based on random sequences from genome skimming were highly correlated with assembly-based estimates, supporting accurate analyses from shallow sequencing. Proportions of LTR-RT copies next to genes from both assembled genomes and genome skimming were congruent, pointing to tribes being over- or under-represented in the vicinity of genes. Finally, genome skimming at low coverage revealed accurate inferences of LTR-RT dynamics and distribution, although only the most abundant families appeared robustly analysed at 0.1X. Examining the pitfalls and benefits of approaches relying on different genomic resources, we highlight that random sequencing reads represent adequate data suitably complementing biased samples of LTR-RT copies retrieved from assembled genomes towards comprehensive surveys of the biology of transposable elements.
Collapse
Affiliation(s)
| | - Jean-Marc Neuhaus
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christian Parisod
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
6
|
Bardil A, Tayalé A, Parisod C. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:621-31. [PMID: 25823965 DOI: 10.1111/tpj.12837] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 05/21/2023]
Abstract
Long terminal repeat retrotransposons (LTR-RTs) represent a major fraction of plant genomes, but processes leading to transposition bursts remain elusive. Polyploidy expectedly leads to LTR-RT proliferation, as the merging of divergent diploids provokes a genome shock activating LTR-RTs and/or genetic redundancy supports the accumulation of active LTR-RTs through relaxation of selective constraints. Available evidence supports interspecific hybridization as the main trigger of genome dynamics, but few studies have addressed the consequences of intraspecific polyploidy (i.e. autopolyploidy), where the genome shock is expectedly minimized. The dynamics of LTR-RTs was thus here evaluated through low coverage 454 sequencing of three closely related diploid progenitors and three independent autotetraploids from the young Biscutella laevigata species complex. Genomes from this early diverging Brassicaceae lineage presented a minimum of 40% repeats and a large diversity of transposable elements. Differential abundances and patterns of sequence divergence among genomes for 37 LTR-RT families revealed contrasted dynamics during species diversification. Quiescent LTR-RT families with limited genetic variation among genomes were distinguished from active families (37.8%) having proliferated in specific taxa. Specific families proliferated in autopolyploids only, but most transpositionally active families in polyploids were also differentiated among diploids. Low expression levels of transpositionally active LTR-RT families in autopolyploids further supported that genome shock and redundancy are non-mutually exclusive triggers of LTR-RT proliferation. Although reputed stable, autopolyploid genomes show LTR-RT fractions presenting analogies with polyploids between widely divergent genomes.
Collapse
Affiliation(s)
- Amélie Bardil
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Alexandre Tayalé
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Christian Parisod
- Laboratory of Evolutionary Botany, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| |
Collapse
|
7
|
Metcalfe CJ, Casane D. Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements. Mob DNA 2014; 5:19. [PMID: 25093042 PMCID: PMC4120745 DOI: 10.1186/1759-8753-5-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/30/2014] [Indexed: 02/03/2023] Open
Abstract
Background Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. Results Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. Conclusions The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- Universidade de São Paulo, Instituto de Biociências, Rua do Matão 277, Cidade Universitária, São Paulo 05508-090 SP, Brazil
| | - Didier Casane
- Laboratoire Evolution, Génomes et Spéciation, UPR9034 CNRS, 1 avenue de la terrasse, 91198 Gif-sur-Yvette, France ; Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas-Mann, 75205 Paris, France
| |
Collapse
|
8
|
Abstract
Centromeric retrotransposons (CRs) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates HT, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant long terminal repeat retrotransposons represent the mosaic products of HT and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres.
Collapse
Affiliation(s)
- Anupma Sharma
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Mānoa
| | - Gernot G Presting
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Mānoa
| |
Collapse
|
9
|
Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T. Evolutionary reshuffling in the Errantivirus lineage Elbe within the Beta vulgaris genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:636-51. [PMID: 22804913 DOI: 10.1111/j.1365-313x.2012.05107.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
LTR retrotransposons and retroviruses are closely related. Although a viral envelope gene is found in some LTR retrotransposons and all retroviruses, only the latter show infectivity. The identification of Ty3-gypsy-like retrotransposons possessing putative envelope-like open reading frames blurred the taxonomical borders and led to the establishment of the Errantivirus, Metavirus and Chromovirus genera within the Metaviridae. Only a few plant Errantiviruses have been described, and their evolutionary history is not well understood. In this study, we investigated 27 retroelements of four abundant Elbe retrotransposon families belonging to the Errantiviruses in Beta vulgaris (sugar beet). Retroelements of the Elbe lineage integrated between 0.02 and 5.59 million years ago, and show family-specific variations in autonomy and degree of rearrangements: while Elbe3 members are highly fragmented, often truncated and present in a high number of solo LTRs, Elbe2 members are mainly autonomous. We observed extensive reshuffling of structural motifs across families, leading to the formation of new retrotransposon families. Elbe retrotransposons harbor a typical envelope-like gene, often encoding transmembrane domains. During the course of Elbe evolution, the additional open reading frames have been strongly modified or independently acquired. Taken together, the Elbe lineage serves as retrotransposon model reflecting the various stages in Errantivirus evolution, and allows a detailed analysis of retrotransposon family formation.
Collapse
Affiliation(s)
- Cora Wollrab
- Department of Biology, Dresden University of Technology, D-01062, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
11
|
Llorens C, Futami R, Covelli L, Domínguez-Escribá L, Viu JM, Tamarit D, Aguilar-Rodríguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 2011; 39:D70-4. [PMID: 21036865 PMCID: PMC3013669 DOI: 10.1093/nar/gkq1061] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.
Collapse
Affiliation(s)
- Carlos Llorens
- Biotechvana, Parc Científic, Universitat de València, Calle Catedrático José Beltrán 2, 46980 Paterna, València, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 2009; 4:41. [PMID: 19883502 PMCID: PMC2774666 DOI: 10.1186/1745-6150-4-41] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. RESULTS We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. CONCLUSION The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. REVIEWERS This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan).
Collapse
Affiliation(s)
- Carlos Llorens
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Alfonso Muñoz-Pomer
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
- Departamento de Sistemas Informáticos y Computación (DSIC), Universitat Politècnica de València, Valencia, Spain
| | - Lucia Bernad
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Hector Botella
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Área de Paleontología, Dpto. Geología, Universitat de València, Paterna, Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Centro Superior de Investigación en Salud Pública (CSISP), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|