1
|
Inter- and Intra-Host Nucleotide Variations in Hepatitis A Virus in Culture and Clinical Samples Detected by Next-Generation Sequencing. Viruses 2018; 10:v10110619. [PMID: 30423964 PMCID: PMC6265925 DOI: 10.3390/v10110619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 11/17/2022] Open
Abstract
The accurate virus detection, strain discrimination, and source attribution of contaminated food items remains a persistent challenge because of the high mutation rates anticipated to occur in foodborne RNA viruses, such as hepatitis A virus (HAV). This has led to predictions of the existence of more than one sequence variant between the hosts (inter-host) or within an individual host (intra-host). However, there have been no reports of intra-host variants from an infected single individual, and little is known about the accuracy of the single nucleotide variations (SNVs) calling with various methods. In this study, the presence and identity of viral SNVs, either between HAV clinical specimens or among a series of samples derived from HAV clone1-infected FRhK4 cells, were determined following analyses of nucleotide sequences generated using next-generation sequencing (NGS) and pyrosequencing methods. The results demonstrate the co-existence of inter- and intra-host variants both in the clinical specimens and the cultured samples. The discovery and confirmation of multi-viral RNAs in an infected individual is dependent on the strain discrimination at the SNV level, and critical for successful outbreak traceback and source attribution investigations. The detection of SNVs in a time series of HAV infected FRhK4 cells improved our understanding on the mutation dynamics determined probably by different selective pressures. Additionally, it demonstrated that NGS could potentially provide a valuable investigative approach toward SNV detection and identification for other RNA viruses.
Collapse
|
2
|
Kanthaswamy S, Ng J, Oldt RF, Phillippi-Falkenstein K, Kubisch HM. SNP-based genetic characterization of the Tulane National Primate Research Center's conventional and specific pathogen-free rhesus macaque (Macaca mulatta) populations. J Med Primatol 2017. [PMID: 28639374 DOI: 10.1111/jmp.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The rhesus macaque is an important biomedical model organism, and the Tulane National Primate Research Center (TNPRC) has one of the largest rhesus macaque breeding colonies in the United States. METHODS SNP profiles from 3266 rhesus macaques were used to examine the TNPRC colony genetic composition over time and across conventional or SPF animals of Chinese and Indian ancestry. RESULTS Chinese origin animals were the least genetically diverse and the most inbred; however, since their derivation from their conventional forebearers, neither the Chinese nor the Indian SPF animals exhibit any significant loss of genetic diversity or differentiation. CONCLUSIONS The TNPRC colony managers have successfully minimized loss in genetic variation across generations. Although founder effects and bottlenecks among the Indian animals have been successfully curtailed, the Chinese subpopulation still show some influences from these events.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, AZ, USA.,Evolutionary Biology PhD program, School of Life Sciences, Arizona State University, Tempe, AZ, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Jillian Ng
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Robert F Oldt
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Evolutionary Biology PhD program, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - H Michael Kubisch
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
3
|
Zhang X, Meng Y, Houghton P, Liu M, Kanthaswamy S, Oldt R, Ng J, Trask JS, Huang R, Singh B, Du H, Smith DG. Ancestry, Plasmodium cynomolgi prevalence and rhesus macaque admixture in cynomolgus macaques (Macaca fascicularis) bred for export in Chinese breeding farms. J Med Primatol 2017; 46:31-41. [PMID: 28266719 PMCID: PMC7571188 DOI: 10.1111/jmp.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most cynomolgus macaques (Macaca fascicularis) used in the United States as animal models are imported from Chinese breeding farms without documented ancestry. Cynomolgus macaques with varying rhesus macaque ancestry proportions may exhibit differences, such as susceptibility to malaria, that affect their suitability as a research model. METHODS DNA of 400 cynomolgus macaques from 10 Chinese breeding farms was genotyped to characterize their regional origin and rhesus ancestry proportion. A nested PCR assay was used to detect Plasmodium cynomolgi infection in sampled individuals. RESULTS All populations exhibited high levels of genetic heterogeneity and low levels of inbreeding and genetic subdivision. Almost all individuals exhibited an Indochinese origin and a rhesus ancestry proportion of 5%-48%. The incidence of P. cynomolgi infection in cynomolgus macaques is strongly associated with proportion of rhesus ancestry. CONCLUSIONS The varying amount of rhesus ancestry in cynomolgus macaques underscores the importance of monitoring their genetic similarity in malaria research.
Collapse
Affiliation(s)
- Xinjun Zhang
- Department of Anthropology, University of California, Davis, CA, USA
| | - Yuhuan Meng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | - Mingyu Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University (ASU West Campus), Glendale, AZ, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Robert Oldt
- School of Mathematical and Natural Sciences, Arizona State University (ASU West Campus), Glendale, AZ, USA
| | - Jillian Ng
- Department of Anthropology, University of California, Davis, CA, USA
| | - Jessica Satkoski Trask
- Department of Research Compliance & Integrity, Office of Research, University of California, Davis, CA, USA
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Hongli Du
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - David Glenn Smith
- Department of Anthropology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Ali R, Blackburn RM, Kozlakidis Z. Next-Generation Sequencing and Influenza Virus: A Short Review of the Published Implementation Attempts. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
5
|
Abstract
Viral haemorrhagic fever can be caused by one of a diverse group of viruses that come from four different families of RNA viruses. Disease severity can vary from mild self-limiting febrile illness to severe disease characterized by high fever, high-level viraemia, increased vascular permeability that can progress to shock, multi-organ failure and death. Despite the urgent need, effective treatments and preventative vaccines are currently lacking for the majority of these viruses. A number of factors preclude the effective study of these diseases in humans including the high virulence of the agents involved, the sporadic nature of outbreaks of these viruses, which are typically in geographically isolated areas with underserviced diagnostic capabilities, and the requirements for high level bio-containment. As a result, animal models that accurately mimic human disease are essential for advancing our understanding of the pathogenesis of viral haemorrhagic fevers. Moreover, animal models for viral haemorrhagic fevers are necessary to test vaccines and therapeutic intervention strategies. Here, we present an overview of the animal models that have been established for each of the haemorrhagic fever viruses and identify which aspects of human disease are modelled. Furthermore, we discuss how experimental design considerations, such as choice of species and virus strain as well as route and dose of inoculation, have an influence on animal model development. We also bring attention to some of the pitfalls that need to be avoided when extrapolating results from animal models.
Collapse
Affiliation(s)
- D Falzaran
- Special Pathogens Programme, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - D A Bente
- Special Pathogens Programme, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Ng J, Trask JS, Smith DG, Kanthaswamy S. Heterospecific SNP diversity in humans and rhesus macaque (Macaca mulatta). J Med Primatol 2015; 44:194-201. [PMID: 25963897 DOI: 10.1111/jmp.12174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conservation of single nucleotide polymorphisms (SNPs) between human and other primates (i.e., heterospecific SNPs) in candidate genes can be used to assess the utility of those organisms as models for human biomedical research. METHODS A total of 59,691 heterospecific SNPs in 22 rhesus macaques and 20 humans were analyzed for human trait associations and 4207 heterospecific SNPs biallelic in both taxa were compared for genetic variation. RESULTS Variation comparisons at the 4207 SNPs showed that humans were more genetically diverse than rhesus macaques with observed and expected heterozygosities of 0.337 and 0.323 vs. 0.119 and 0.102, and minor allele frequencies of 0.239 and 0.063, respectively. In total, 431 of the 59,691 heterospecific SNPs are reportedly associated with human-specific traits. CONCLUSION While comparisons between human and rhesus macaque genomes are plausible, functional studies of heterospecific SNPs are necessary to determine whether rhesus macaque alleles are associated with the same phenotypes as their corresponding human alleles.
Collapse
Affiliation(s)
- Jillian Ng
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
| | - Jessica Satkoski Trask
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA
| | - Sree Kanthaswamy
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA.,California National Primate Research Center, University of California, Davis, CA, USA.,School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA.,Department of Environmental Toxicology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Patterns of genetic variation and the role of selection in HTR1A and HTR1B in macaques (Macaca). BMC Genet 2014; 15:116. [PMID: 25376878 PMCID: PMC4228068 DOI: 10.1186/s12863-014-0116-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 12/01/2022] Open
Abstract
Background Research has increasingly highlighted the role of serotonin in behavior. However, few researchers have examined serotonin in an evolutionary context, although such research could provide insight into the evolution of important behaviors. The genus Macaca represents a useful model to address this, as this genus shows a wide range of behavioral variation. In addition, many genetic features of the macaque serotonin system are similar to those of humans, and as common models in biomedical research, knowledge of the genetic variation and evolution of serotonin functioning in macaques are particularly relevant for studies of human evolution. Here, we examine the role of selection in the macaque serotonin system by comparing patterns of genetic variation for two genes that code for two types of serotonin receptors – HTR1A and HTR1B – across five species of macaques. Results The pattern of variation is significantly different for HTR1A compared to HTR1B. Specifically, there is an increase in between-species variation compared to within-species variation for HTR1A. Phylogenetic analyses indicate that portions of HTR1A show an elevated level of nonsynonymous substitutions. Together these analyses are indicative of positive selection acting on HTR1A, but not HTR1B. Furthermore, the haplotype network for HTR1A is inconsistent with the species tree, potentially due to both deep coalescence and selection. Conclusions The results of this study indicate distinct evolutionary histories for HTR1A and HTR1B, with HTR1A showing evidence of selection and a high level of divergence among species, a factor which may have an impact on biomedical research that uses these species as models. The wide genetic variation of HTR1A may also explain some of the species differences in behavior, although further studies on the phenotypic effect of the sequenced polymorphisms are needed to confirm this. Electronic supplementary material The online version of this article (doi:10.1186/s12863-014-0116-5) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Kanthaswamy S, Trask JS, Ross CT, Kou A, Houghton P, Smith DG, Lerche N. A large-scale SNP-based genomic admixture analysis of the captive rhesus macaque colony at the California National Primate Research Center. Am J Primatol 2014; 74:747-57. [PMID: 24436199 DOI: 10.1002/ajp.22025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/14/2012] [Accepted: 02/17/2012] [Indexed: 12/13/2022]
Abstract
Some breeding facilities in the United States have crossbred Chinese and Indian rhesus macaque (Macaca mulatta) founders either purposefully or inadvertently. Genetic variation that reflects geographic origins among research subjects has the potential to influence experimental outcomes. The use of animals from different geographic regions, their hybrids, and animals of varying degrees of kinship in an experiment can obscure treatment effects under study because high interanimal genetic variance can increase phenotypic variance among the research subjects. The intent of this study, based on a broad genomic analysis of 2,808 single nucleotide polymorphisms (SNPs), is to ensure that only animals estimated to be of pure Indian or Chinese ancestry, based on both demographic and genetic information, are used as sources of infants for derivation and expansion of the California National Primate Research Center's (CNPRC) super-Specific Pathogen Free (SSPF) rhesus macaque colony. Studies of short tandem repeats (STRs) in Indian and Chinese rhesus macaques have reported that heterozygosity of STRs is higher in Chinese rhesus macaques than in Indian rhesus macaques. The present study shows that heterozygosity of SNPs is actually higher in Indian than in Chinese rhesus macaques and that the Chinese SSPF rhesus macaque colony is far less differentiated from their founders compared to the Indian-origin animals. The results also reveal no evidence of recent gene flow from long-tailed and pig-tailed macaques into the source populations of the SSPF rhesus macaques. This study indicates that many of the long-tailed macaques held in the CNPRC are closely related individuals. Most polymorphisms shared among the captive rhesus, long-tailed, and pig-tailed macaques likely predate the divergence among these groups.
Collapse
Affiliation(s)
- Sreetharan Kanthaswamy
- Molecular Anthropology Laboratory, University of California, Davis, California; Department of Environmental Toxicology, University of California, Davis, California; California National Primate Research Center, University of California, Davis, California
| | | | | | | | | | | | | |
Collapse
|
9
|
Smith DG, Ng J, George D, Trask JS, Houghton P, Singh B, Villano J, Kanthaswamy S. A genetic comparison of two alleged subspecies of Philippine cynomolgus macaques. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2014; 155:136-48. [PMID: 24979664 DOI: 10.1002/ajpa.22564] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 06/19/2014] [Indexed: 11/07/2022]
Abstract
Two subspecies of cynomolgus macaques (Macaca fascicularis) are alleged to co-exist in the Philippines, M. f. philippensis in the north and M. f. fascicularis in the south. However, genetic differences between the cynomolgus macaques in the two regions have never been studied to document the propriety of their subspecies status. We genotyped samples of cynomolgus macaques from Batangas in southwestern Luzon and Zamboanga in southwestern Mindanao for 15 short tandem repeat (STR) loci and sequenced an 835 bp fragment of the mtDNA of these animals. The STR genotypes were compared with those of cynomolgus macaques from southern Sumatra, Singapore, Mauritius and Cambodia, and the mtDNA sequences of both Philippine populations were compared with those of cynomolgus macaques from southern Sumatra, Indonesia and Sarawak, Malaysia. We conducted STRUCTURE and PCA analyses based on the STRs and constructed a median joining network based on the mtDNA sequences. The Philippine population from Batangas exhibited much less genetic diversity and greater genetic divergence from all other populations, including the Philippine population from Zamboanga. Sequences from both Batangas and Zamboanga were most closely related to two different mtDNA haplotypes from Sarawak from which they are apparently derived. Those from Zamboanga were more recently derived than those from Batangas, consistent with their later arrival in the Philippines. However, clustering analyses do not support a sufficient genetic distinction of cynomolgus macaques from Batangas from other regional populations assigned to subspecies M. f. fascicularis to warrant the subspecies distinction M. f. philippensis.
Collapse
Affiliation(s)
- David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, 95616; Genetics and Genomics Laboratory, California National Primate Research Center, University of California, Davis, CA, 95616
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kanthaswamy S, Johnson Z, Trask JS, Smith DG, Ramakrishnan R, Bahk J, Ng J, Wiseman R, Kubisch HM, Vallender EJ, Rogers J, Ferguson B. Development and validation of a SNP-based assay for inferring the genetic ancestry of rhesus macaques (Macaca mulatta). Am J Primatol 2014; 76:1105-13. [PMID: 24953496 DOI: 10.1002/ajp.22290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 12/15/2022]
Abstract
Rhesus macaques (Macaca mulatta) are an important primate model species in several areas of biomedical research. The wide geographic distribution of this species has led to significant genetic differentiation among local and regional populations. These regional differences can be important factors in the selection of the most appropriate subjects for particular research studies, as animals from different populations can respond differently to the same experimental treatment. Consequently, it is valuable to confirm the ancestry of individual rhesus monkeys from geographically distinct populations. Using DNA samples obtained from rhesus macaques from six National Primate Research Centers, we tested a set of 384 potential ancestry informative single nucleotide polymorphisms (SNPs) and identified a final panel of 91 SNPs that can reliably distinguish Indian-origin from Chinese-origin rhesus monkeys. This genetic test can be used to determine the ancestral origin of animals and to detect individuals that are hybrids between these two regional populations. To demonstrate use of the SNP panel, we investigated the ancestry of 480 animals from the Yerkes NPRC (YNPRC) for which the colony records were insufficient to clearly establish ancestry. Three of the YNPRC animals tested were determined to be hybrids. This SNP ancestry tool will be useful to researchers, colony managers, and others who wish to evaluate the ancestral origin of individual rhesus macaques, and therefore will facilitate more effective and efficient use of these animals in biomedical research.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- University of California and California National Primate Research Center, Davis, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bidzhieva B, Zagorodnyaya T, Karagiannis K, Simonyan V, Laassri M, Chumakov K. Deep sequencing approach for genetic stability evaluation of influenza A viruses. J Virol Methods 2014; 199:68-75. [PMID: 24406624 DOI: 10.1016/j.jviromet.2013.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
Assessment of genetic stability of viruses could be used to monitor manufacturing process of both live and inactivated viral vaccines. Until recently such studies were limited by the difficulty of detecting and quantifying mutations in heterogeneous viral populations. High-throughput sequencing technologies (deep sequencing) can generate massive amounts of genetic information and could be used to reveal and quantify mutations. Comparison of different approaches for deep sequencing of the complete influenza A genome was performed to determine the best way to detect and quantify mutants in attenuated influenza reassortant strain A/Brisbane/59/2007 (H1N1) and its passages in different cell substrates. Full-length amplicons of influenza A virus segments as well as multiple overlapping amplicons covering the entire viral genome were subjected to several ways of DNA library preparation followed by deep sequencing using Solexa (Illumina) and pyrosequencing (454 Life Science) technologies. Sequencing coverage (the number of times each nucleotide was determined) of mutational profiles generated after 454-pyrosequencing of individually synthesized overlapping amplicons were relatively low and insufficiently uniform. Amplification of the entire genome of influenza virus followed by its enzymatic fragmentation, library construction, and Illumina sequencing resulted in high and uniform sequencing coverage enabling sensitive quantitation of mutations. A new bioinformatic procedure was developed to improve the post-alignment quality control for deep-sequencing data analysis.
Collapse
Affiliation(s)
- Bella Bidzhieva
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Tatiana Zagorodnyaya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Konstantinos Karagiannis
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Vahan Simonyan
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| | - Majid Laassri
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA.
| | - Konstantin Chumakov
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 1401 Rockville Pike, HFM 470, Rockville 20852, MD, USA
| |
Collapse
|
12
|
Shattuck MR, Satkoski-Trask J, Deinard A, Tito RY, Smith DG, Malhi RS. The evolutionary history of SLC6A4 and the role of plasticity in Macaca. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:605-16. [PMID: 24375078 DOI: 10.1002/ajpa.22460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 12/03/2013] [Indexed: 11/07/2022]
Abstract
Serotonin has been repeatedly indicated as a biological marker of behavior. In particular, the serotonin transporter gene, SLC6A4, has been the focus of a large body of research. Interestingly, both rhesus macaques (Macaca mulatta) and humans have independently evolved a number of shared polymorphisms for this gene, which is indicative of parallel evolution between the two species. However, little is known about the evolution of this gene, particularly within macaques. Although there are several hypotheses as to the adaptive values of various polymorphisms, few authors have gone beyond theoretical discussion. Here, we examined the genetic variation in SLC6A4 within and between several species of macaques and investigate whether selection has played a significant role in its evolutionary history. In addition, we assayed the promoter region polymorphism, 5-HTTLPR, which is known to play a significant role in regulating both serotonin turnover and behavior. In examining the distribution of the 5-HTTLPR polymorphism, we identified significant differences between Indian and Chinese populations of Macaca mulatta; furthermore, we discovered its presence in Macaca cyclopis, which has not been described before. In regard to the evolutionary history of SLC6A4, we found little evidence for selection and conclude that SLC6A4 largely evolved through neutral processes, possibly due to its potential role in regulating behavioral plasticity. However, we also found very low levels of linkage between the coding regions and 5-HTTLPR. Because we limited evolutionary analyses to the coding regions, it is possible that the promoter region shows a distinct evolutionary history from SLC6A4.
Collapse
Affiliation(s)
- Milena R Shattuck
- Department of Anthropology, University of Illinois, Urbana, IL, 61801
| | | | | | | | | | | |
Collapse
|
13
|
Wu SJ, Luo J, Li QQ, Wang YQ, Murphy RW, Blair C, Wu SF, Yue BS, Zhang YP. Ecological genetics of Chinese rhesus macaque in response to mountain building: all things are not equal. PLoS One 2013; 8:e55315. [PMID: 23405134 PMCID: PMC3566204 DOI: 10.1371/journal.pone.0055315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pliocene uplifting of the Qinghai-Tibetan Plateau (QTP) and Quaternary glaciation may have impacted the Asian biota more than any other events. Little is documented with respect to how the geological and climatological events influenced speciation as well as spatial and genetic structuring, especially in vertebrate endotherms. Macaca mulatta is the most widely distributed non-human primate. It may be the most suitable model to test hypotheses regarding the genetic consequences of orogenesis on an endotherm. METHODOLOGY AND PRINCIPAL FINDINGS Using a large dataset of maternally inherited mitochondrial DNA gene sequences and nuclear microsatellite DNA data, we discovered two maternal super-haplogroups exist, one in western China and the other in eastern China. M. mulatta formed around 2.31 Ma (1.51-3.15, 95%), and divergence of the two major matrilines was estimated at 1.15 Ma (0.78-1.55, 95%). The western super-haplogroup exhibits significant geographic structure. In contrast, the eastern super-haplogroup has far greater haplotypic variability with little structure based on analyses of six variable microsatellite loci using Structure and Geneland. Analysis using Migrate detected greater gene flow from WEST to EAST than vice versa. We did not detect signals of bottlenecking in most populations. CONCLUSIONS Analyses of the nuclear and mitochondrial datasets obtained large differences in genetic patterns for M. mulatta. The difference likely reflects inheritance mechanisms of the maternally inherited mtDNA genome versus nuclear biparentally inherited STRs and male-mediated gene flow. Dramatic environmental changes may be responsible for shaping the matrilineal history of macaques. The timing of events, the formation of M. mulatta, and the divergence of the super-haplogroups, corresponds to both the uplifting of the QTP and Quaternary climatic oscillations. Orogenesis likely drove divergence of western populations in China, and Pleistocene glaciations are likely responsible for genetic structuring in the eastern super-haplogroup via geographic isolation and secondary contact.
Collapse
Affiliation(s)
- Shan-Jin Wu
- Laboratory for Conservation and Utilization of Bio-resources, School of Life Science, Yunnan University, Kunming, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| | - Jing Luo
- Laboratory for Conservation and Utilization of Bio-resources, School of Life Science, Yunnan University, Kunming, China
| | - Qing-Qing Li
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Yan-Qin Wang
- Laboratory for Conservation and Utilization of Bio-resources, School of Life Science, Yunnan University, Kunming, China
| | - Robert W. Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
- Centre for Biodiversity and Conservation Biology, Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Christopher Blair
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Shi-Fang Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| | - Bi-Song Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
14
|
Shen S, Pyo CW, Vu Q, Wang R, Geraghty DE. The Essential Detail: The Genetics and Genomics of the Primate Immune Response. ILAR J 2013; 54:181-95. [DOI: 10.1093/ilar/ilt043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Genetic diversity and population structure in wild Sichuan rhesus macaques. Mol Biol Rep 2012; 40:3033-41. [PMID: 23269618 DOI: 10.1007/s11033-012-2377-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Because wild rhesus macaque (Macaca mulatta) populations have suffered major declines, there is a growing need to characterize their genetic and population structure in order to protect the genetic integrity of this species. In this study, we genotyped a sample comprising 120 wild rhesus macaques from six sites in Sichuan Province for 30 nuclear microsatellite (STR) loci using an ABI 3130xl genetic analyzer. Bayesian analyses and PCA clearly differentiated monkeys from Heishui from those at other sites. The samples from all six sites exhibited high gene diversity suggesting that the Sichuan wild rhesus macaque populations are not threatened by a lack of genetic diversity. Deviation from Hardy-Weinberg equilibrium was more frequent in the Danba and Heishui populations. This may be due to the more fragmented habitat and less disturbance by humans in this area that foster greater subpopulation structuring than occurs in eastern China. We suggest that this population subdivision is the result of both long-term geographic barriers and human activity.
Collapse
|
16
|
Satkoski Trask JA, Garnica WT, Smith DG, Houghton P, Lerche N, Kanthaswamy S. Single-nucleotide polymorphisms reveal patterns of allele sharing across the species boundary between rhesus (Macaca mulatta) and cynomolgus (M. fascicularis) macaques. Am J Primatol 2012; 75:135-44. [PMID: 23165690 DOI: 10.1002/ajp.22091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/20/2012] [Accepted: 09/30/2012] [Indexed: 12/21/2022]
Abstract
Both phenotypic and genetic evidence for asymmetric hybridization between rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques has been observed in the region of Indochina where both species are sympatric. The large-scale sharing of major histocompatibility complex (MHC) class II alleles between the two species in this region supports the hypothesis that genes, and especially genes involved in immune response, are being transferred across the species boundary. This differential introgression has important implications for the incorporation of cynomolgus macaques of unknown geographic origin in biomedical research protocols. Our study found that for 2,808 single-nucleotide polymorphism (SNP) markers, the minor allele frequencies (MAF) and observed heterozygosity calculated from a sample of Vietnamese cynomolgus macaques was significantly different from those calculated from samples of both Chinese rhesus and Indonesian cynomolgus macaques. SNP alleles from Chinese rhesus macaques were overrepresented in a sample of Vietnamese cynomolgus macaques relative to their Indonesian conspecifics and located in genes functionally related to the primary immune system. These results suggest that Indochinese cynomolgus macaques represent a genetically and immunologically distinct entity from Indonesian cynomolgus macaques.
Collapse
|
17
|
Kanthaswamy S, Ng J, Ross CT, Trask JS, Smith DG, Buffalo VS, Fass JN, Lin D. Identifying human-rhesus macaque gene orthologs using heterospecific SNP probes. Genomics 2012; 101:30-7. [PMID: 22982528 DOI: 10.1016/j.ygeno.2012.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/27/2012] [Accepted: 09/04/2012] [Indexed: 02/07/2023]
Abstract
We genotyped a Chinese and an Indian-origin rhesus macaque using the Affymetrix Genome-Wide Human SNP Array 6.0 and cataloged 85,473 uniquely mapping heterospecific SNPs. These SNPs were assigned to rhesus chromosomes according to their probe sequence alignments as displayed in the human and rhesus reference sequences. The conserved gene order (synteny) revealed by heterospecific SNP maps is in concordance with that of the published human and rhesus macaque genomes. Using these SNPs' original human rs numbers, we identified 12,328 genes annotated in humans that are associated with these SNPs, 3674 of which were found in at least one of the two rhesus macaques studied. Due to their density, the heterospecific SNPs allow fine-grained comparisons, including approximate boundaries of intra- and extra-chromosomal rearrangements involving gene orthologs, which can be used to distinguish rhesus macaque chromosomes from human chromosomes.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- Molecular Anthropology Lab., Dept. of Anthropology, UC Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Almiñana C, Fazeli A. Exploring the application of high-throughput genomics technologies in the field of maternal-embryo communication. Theriogenology 2012; 77:717-37. [PMID: 22217573 DOI: 10.1016/j.theriogenology.2011.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/30/2011] [Accepted: 09/02/2011] [Indexed: 01/23/2023]
Abstract
Deciphering the complex molecular dialogue between the maternal tract and embryo is crucial to increasing our understanding of pregnancy failure, infertility problems and in the modulation of embryo development, which has consequences through adulthood. High-throughput genomic technologies have been applied to look for a holistic view of the molecular interactions occurring during this dialogue. Among these technologies, microarrays have been widely used, being one of the most popular tools in maternal-embryo communication. Today, next generation sequencing technologies are dwarfing the capabilities of microarrays. The application of these new technologies has broadened to almost all areas of genomics research, because of their massive sequencing capacity. We review the current status of high-throughput genomic technologies and their application to maternal-embryo communication research. We also survey next generation technologies and their huge potential in many research areas. Given the diversity of unanswered questions in the field of maternal-embryo communication and the wide range of possibilities that these technologies offer, here we discuss future perspectives on the use of these technologies to enhance maternal-embryo research.
Collapse
Affiliation(s)
- Carmen Almiñana
- Academic Unit of Reproductive and Development Medicine, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
19
|
Trask JS, Garnica WT, Kanthaswamy S, Malhi RS, Smith DG. 4040 SNPs for genomic analysis in the rhesus macaque (Macaca mulatta). Genomics 2011; 98:352-8. [PMID: 21907785 PMCID: PMC3207016 DOI: 10.1016/j.ygeno.2011.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 11/17/2022]
Abstract
Although the rhesus macaque (Macaca mulatta) is commonly used for biomedical research and becoming a preferred model for translational medicine, quantification of genome-wide variation has been slow to follow the publication of the genome in 2007. Here we report the properties of 4040 single nucleotide polymorphisms discovered and validated in Chinese and Indian rhesus macaques from captive breeding colonies in the United States. Frequency-matched measures of linkage disequilibrium were much greater in the Indian sample. Although the majority of polymorphisms were shared between the two populations, rare alleles were over twice as common in the Chinese sample. Indian rhesus had higher rates of heterozygosity, as well as previously undetected substructure, potentially due to admixture from Burma in wild populations and demographic events post-captivity.
Collapse
Affiliation(s)
- J Satkoski Trask
- Department of Anthropology, University of California, Davis, USA.
| | | | | | | | | |
Collapse
|
20
|
Carrion R, Ro Y, Hoosien K, Ticer A, Brasky K, de la Garza M, Mansfield K, Patterson JL. A small nonhuman primate model for filovirus-induced disease. Virology 2011; 420:117-24. [PMID: 21959017 PMCID: PMC3195836 DOI: 10.1016/j.virol.2011.08.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/21/2011] [Accepted: 08/29/2011] [Indexed: 01/02/2023]
Abstract
Ebolavirus and Marburgvirus are members of the filovirus family and induce a fatal hemorrhagic disease in humans and nonhuman primates with 90% case fatality. To develop a small nonhuman primate model for filovirus disease, common marmosets (Callithrix jacchus) were intramuscularly inoculated with wild type Marburgvirus Musoke or Ebolavirus Zaire. The infection resulted in a systemic fatal disease with clinical and morphological features closely resembling human infection. Animals experienced weight loss, fever, high virus titers in tissue, thrombocytopenia, neutrophilia, high liver transaminases and phosphatases and disseminated intravascular coagulation. Evidence of a severe disseminated viral infection characterized principally by multifocal to coalescing hepatic necrosis was seen in EBOV animals. MARV-infected animals displayed only moderate fibrin deposition in the spleen. Lymphoid necrosis and lymphocytic depletion observed in spleen. These findings provide support for the use of the common marmoset as a small nonhuman primate model for filovirus induced hemorrhagic fever.
Collapse
Affiliation(s)
- Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, 7620 NW Loop 410, San Antonio, TX 78227, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Trask JS, Garnica WT, Malhi RS, Kanthaswamy S, Smith DG. High-throughput single-nucleotide polymorphism discovery and the search for candidate genes for long-term SIVmac nonprogression in Chinese rhesus macaques (Macaca mulatta). J Med Primatol 2011; 40:224-32. [PMID: 21781130 PMCID: PMC3144501 DOI: 10.1111/j.1600-0684.2011.00486.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Genetic differences between Indian and Chinese rhesus macaques contribute to the phenotypic variance of clinical trials, including infection with SIVmac. The completion of the rhesus genome has facilitated the discovery of several thousand markers. METHODS We developed a genome-wide SNP map for rhesus macaques containing 3869 validated markers with an average distance of 0.88 Mb and used the program VarLD to identify genomic areas with significant differences in linkage disequilibrium (LD) between Indian-derived and Chinese rhesus macaques. RESULTS Forty-one statistically significant differences in LD between Chinese and Indian-origin rhesus were detected on chromosomes 1, 4, 5 and 11. The region of greatest LD difference was located on the proximal end of chromosome one, which also contained the genes ELAVL4, MAST2 and HIVEP3. CONCLUSION These genomic areas provide entry to more detailed studies of gene function. This method is also applicable to the study of differences in biomarkers between regional populations of other species.
Collapse
Affiliation(s)
- J Satkoski Trask
- Department of Anthropology, University of California, Davis, 95616, USA.
| | | | | | | | | |
Collapse
|
22
|
Fang X, Zhang Y, Zhang R, Yang L, Li M, Ye K, Guo X, Wang J, Su B. Genome sequence and global sequence variation map with 5.5 million SNPs in Chinese rhesus macaque. Genome Biol 2011; 12:R63. [PMID: 21733155 PMCID: PMC3218825 DOI: 10.1186/gb-2011-12-7-r63] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/01/2011] [Accepted: 07/06/2011] [Indexed: 11/25/2022] Open
Abstract
Background Rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate animal in biomedical research. A global map of genetic variations in rhesus macaque is valuable for both evolutionary and functional studies. Results Using next-generation sequencing technology, we sequenced a Chinese rhesus macaque genome with 11.56-fold coverage. In total, 96% of the reference Indian macaque genome was covered by at least one read, and we identified 2.56 million homozygous and 2.94 million heterozygous SNPs. We also detected a total of 125,150 structural variations, of which 123,610 were deletions with a median length of 184 bp (ranging from 25 bp to 10 kb); 63% of these deletions were located in intergenic regions and 35% in intronic regions. We further annotated 5,187 and 962 nonsynonymous SNPs to the macaque orthologs of human disease and drug-target genes, respectively. Finally, we set up a genome-wide genetic variation database with the use of Gbrowse. Conclusions Genome sequencing and construction of a global sequence variation map in Chinese rhesus macaque with the concomitant database provide applicable resources for evolutionary and biomedical research.
Collapse
Affiliation(s)
- Xiaodong Fang
- Beijing Genomics Institute-Shenzhen, Chinese Academy of Sciences, Shenzhen 518083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fawcett GL, Raveendran M, Deiros DR, Chen D, Yu F, Harris RA, Ren Y, Muzny DM, Reid JG, Wheeler DA, Worley KC, Shelton SE, Kalin NH, Milosavljevic A, Gibbs R, Rogers J. Characterization of single-nucleotide variation in Indian-origin rhesus macaques (Macaca mulatta). BMC Genomics 2011; 12:311. [PMID: 21668978 PMCID: PMC3141668 DOI: 10.1186/1471-2164-12-311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/13/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Rhesus macaques are the most widely utilized nonhuman primate model in biomedical research. Previous efforts have validated fewer than 900 single nucleotide polymorphisms (SNPs) in this species, which limits opportunities for genetic studies related to health and disease. Extensive information about SNPs and other genetic variation in rhesus macaques would facilitate valuable genetic analyses, as well as provide markers for genome-wide linkage analysis and the genetic management of captive breeding colonies. RESULTS We used the available rhesus macaque draft genome sequence, new sequence data from unrelated individuals and existing published sequence data to create a genome-wide SNP resource for Indian-origin rhesus monkeys. The original reference animal and two additional Indian-origin individuals were resequenced to low coverage using SOLiD™ sequencing. We then used three strategies to validate SNPs: comparison of potential SNPs found in the same individual using two different sequencing chemistries, and comparison of potential SNPs in different individuals identified with either the same or different sequencing chemistries. Our approach validated approximately 3 million SNPs distributed across the genome. Preliminary analysis of SNP annotations suggests that a substantial number of these macaque SNPs may have functional effects. More than 700 non-synonymous SNPs were scored by Polyphen-2 as either possibly or probably damaging to protein function and these variants now constitute potential models for studying functional genetic variation relevant to human physiology and disease. CONCLUSIONS Resequencing of a small number of animals identified greater than 3 million SNPs. This provides a significant new information resource for rhesus macaques, an important research animal. The data also suggests that overall genetic variation is high in this species. We identified many potentially damaging non-synonymous coding SNPs, providing new opportunities to identify rhesus models for human disease.
Collapse
Affiliation(s)
- Gloria L Fawcett
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Malhi RS, Trask JS, Shattuck M, Johnson J, Chakraborty D, Kanthaswamy S, Ramakrishnan U, Smith DG. Genotyping single nucleotide polymorphisms (SNPs) across species in Old World Monkeys. Am J Primatol 2011; 73:1031-40. [PMID: 21630301 DOI: 10.1002/ajp.20969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 05/02/2011] [Accepted: 05/02/2011] [Indexed: 02/01/2023]
Abstract
The development of DNA markers is becoming increasingly useful in the field of primatology for studies on paternity, population history, and biomedical research. In this study, we determine the efficacy of using cross-species amplification to identify single nucleotide polymorphisms (SNPs) in closely related species. The DNA of 93 individuals representing seven Old World Monkey species was analyzed to identify SNPs using cross-species amplification and genotyping. The loci genotyped were 653 SNPs identified and validated in rhesus macaques. Of the 653 loci analyzed, 27% were estimated to be polymorphic in the samples studied. SNPs identified at the same locus among different species (coincident SNPs) were found in six of the seven species studied with longtail macaques exhibiting the highest number of coincident SNPs (84). The distribution of coincident SNPs among species is not biased based on proximity to genes in the samples studied. In addition, the frequency of coincident SNPs is not consistent with expectations based on their phylogenetic relationships. This study demonstrates that cross-species amplification and genotyping using the Illumina Golden Gate Array is a useful method to identify a large number of SNPs in closely related species, although issues with ascertainment bias may limit the type of studies where this method can be applied.
Collapse
Affiliation(s)
- Ripan S Malhi
- Department of Anthropology, University of Illinois Urbana-Champaign, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Li DY, Xu HL, Smith DG, Cheng AC, Trask JS, Zhu Q, Yao YF, Du DD, Ni QY. Phylogenetic analysis of chinese rhesus macaques (Macaca mulatta) based on mitochondrial control region sequences. Am J Primatol 2011; 73:883-95. [DOI: 10.1002/ajp.20956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 02/08/2011] [Accepted: 03/20/2011] [Indexed: 11/08/2022]
|
26
|
Trask JAS, Malhi RS, Kanthaswamy S, Johnson J, Garnica WT, Malladi VS, Smith DG. The effect of SNP discovery method and sample size on estimation of population genetic data for Chinese and Indian rhesus macaques (Macaca mulatta). Primates 2011; 52:129-38. [PMID: 21207104 DOI: 10.1007/s10329-010-0232-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/25/2010] [Indexed: 11/28/2022]
Abstract
This study was designed to address issues regarding sample size and marker location that have arisen from the discovery of SNPs in the genomes of poorly characterized primate species and the application of these markers to the study of primate population genetics. We predict the effect of discovery sample size on the probability of discovering both rare and common SNPs and then compare this prediction with the proportion of common and rare SNPs discovered when different numbers of individuals are sequenced. Second, we examine the effect of genomic region on estimates of common population genetic data, comparing markers from both coding and non-coding regions of the rhesus macaque genome and the population genetic data calculated from these markers, to measure the degree and direction of bias introduced by SNPs located in coding versus non-coding regions of the genome. We found that both discovery sample size and genomic region surveyed affect SNP marker attributes and population genetic estimates, even when these are calculated from an expanded data set containing more individuals than the original discovery data set. Although none of the SNP detection methods or genomic regions tested in this study was completely uninformative, these results show that each has a different kind of genetic variation that is suitable for different purposes, and each introduces specific types of bias. Given that each SNP marker has an individual evolutionary history, we calculated that the most complete and unbiased representation of the genetic diversity present in the individual can be obtained by incorporating at least 10 individuals into the discovery sample set, to ensure the discovery of both common and rare polymorphisms.
Collapse
Affiliation(s)
- Jessica A Satkoski Trask
- Department of Anthropology, University of California, Davis, 330 Young Hall, One Shields Avenue, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kanthaswamy S, Satkoski J, Kou A, Malladi V, Glenn Smith D. Detecting signatures of inter-regional and inter-specific hybridization among the Chinese rhesus macaque specific pathogen-free (SPF) population using single nucleotide polymorphic (SNP) markers. J Med Primatol 2010; 39:252-65. [PMID: 20618591 DOI: 10.1111/j.1600-0684.2010.00430.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND While rates of gene flow between rhesus and longtail macaque populations near their hybrid zone in Indochina have been quantified elsewhere, this study demonstrates that the inter-specific introgression is not limited to the Indochinese hybrid zone but is more geographically widespread. METHODS Twelve rhesus and longtail macaque populations were analyzed using single nucleotide polymorphic (SNP) loci. RESULTS There is evidence for inter-specific admixture between Chinese rhesus and mainland longtails, with implications for genetic diversity both in the Chinese super-SPF population at the California National Primate Research Center and in other primate facilities. Eastern Chinese rhesus appeared more highly derived than western Chinese rhesus, and allele sharing between longtails and Chinese rhesus was not random with regard to geographic distance, but no significant nuclear genetic differences between eastern and western Chinese rhesus were detected among the 245 genic SNPs assayed. CONCLUSION The implications of this inter-specific admixture for the use of Chinese rhesus and mainland longtail in biomedical research should be considered.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- Department of Anthropology, University of California-Davis, Davis, CA, USA.
| | | | | | | | | |
Collapse
|
28
|
Kanthaswamy S, Capitanio JP, Dubay CJ, Ferguson B, Folks T, Ha JC, Hotchkiss CE, Johnson ZP, Katze MG, Kean LS, Kubisch HM, Lank S, Lyons LA, Miller GM, Nylander J, O'Connor DH, Palermo RE, Smith DG, Vallender EJ, Wiseman RW, Rogers J. Resources for genetic management and genomics research on non-human primates at the National Primate Research Centers (NPRCs). J Med Primatol 2010; 38 Suppl 1:17-23. [PMID: 19863674 DOI: 10.1111/j.1600-0684.2009.00371.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The National Primate Research Centers (NPRCs) established Working Groups (WGs) for developing resources and mechanisms to facilitate collaborations among non-human primate (NHP) researchers. Here we report the progress of the Genome Banking and the Genetics and Genomics WGs in developing resources to advance the exchange, analysis and comparison of NHP genetic and genomic data across the NPRCs. The Genome Banking WG has established a National NHP DNA bank comprising 1250 DNA samples from unrelated animals and family trios from the 10 NHP species housed within the NPRC system. The Genetics and Genomics WG is developing SNP arrays that will provide a uniform, highly informative, efficient and low-cost method for rhesus and long-tailed macaque genotyping across the eight NPRCs. This WG is also establishing a Biomedical Informatics Research Network-based portal for shared bioinformatics resources including vital statistics, genotype and population data and information on the National NHP DNA bank.
Collapse
Affiliation(s)
- S Kanthaswamy
- Department of Anthropology, University of California-Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Modes of Differentiation in Japanese Macaques: Perspectives from Population Genetics. THE JAPANESE MACAQUES 2010. [DOI: 10.1007/978-4-431-53886-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Bente D, Gren J, Strong JE, Feldmann H. Disease modeling for Ebola and Marburg viruses. Dis Model Mech 2009; 2:12-7. [PMID: 19132113 DOI: 10.1242/dmm.000471] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The filoviruses Ebola and Marburg are zoonotic agents that are classified as both biosafety level 4 and category A list pathogens. These viruses are pathogenic in humans and cause isolated infections or epidemics of viral hemorrhagic fever, mainly in Central Africa. Their natural reservoir has not been definitely identified, but certain species of African bat have been associated with Ebola and Marburg infections. Currently, there are no licensed options available for either treatment or prophylaxis. Different animal models have been developed for filoviruses including mouse, guinea pig and nonhuman primates. The 'gold standard' animal models for pathogenesis, treatment and vaccine studies are rhesus and cynomolgus macaques. This article provides a brief overview of the clinical picture and the pathology/pathogenesis of human filovirus infections. The current animal model options are discussed and compared with regard to their value in different applications. In general, the small animal models, in particular the mouse, are the most feasible for high biocontainment facilities and they offer the most options for research owing to the greater availability of immunologic and genetic tools. However, their mimicry of the human diseases as well as their predictive value for therapeutic efficacy in primates is limited, thereby making them, at best, valuable initial screening tools for pathophysiology, treatment and vaccine studies.
Collapse
Affiliation(s)
- Dennis Bente
- Laboratory for Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
31
|
Platts AE, Land SJ, Chen L, Page GP, Rasouli P, Wang L, Lu X, Ruden DM. Massively parallel resequencing of the isogenic Drosophila melanogaster strain w(1118); iso-2; iso-3 identifies hotspots for mutations in sensory perception genes. Fly (Austin) 2009; 3:192-203. [PMID: 19690466 DOI: 10.4161/fly.3.3.9652] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used the Illumina reversible-short sequencing technology to obtain 17-fold average depth (s.d. approximately 8) of approximately 94% of the euchromatic genome and approximately 1-5% of the heterochromatin sequence of the Drosophila melanogaster isogenic strain w(1118); iso-2; iso-3. We show that this strain has a approximately 9 kb deletion that uncovers the first exon of the white (w) gene, approximately 4 kb of downstream promoter sequences, and most of the first intron, thus demonstrating that whole-genome sequencing can be used for mutation characterization. We chose this strain because there are thousands of transposon insertion lines and hundreds of isogenic deficiency lines available with this genetic background, such as the Exelixis, Inc., and the DrosDEL collections. We compared our sequence to Release 5 of the finished reference genome sequence which was made from the isogenic strain y(1); cn(1) bw(1) sp(1) and identified 356,614 candidate SNPs in the approximately 117 Mb unique sequence genome, which represents a substitution rate of approximately 1/305 nucleotides ( approximately 0.30%). The distribution of SNPs is not uniform, but rather there is a approximately 2-fold increase in SNPs on the autosome arms compared with the X chromosome and a approximately 7-fold increase when compared to the small 4(th) chromosome. This is consistent with previous analyses that demonstrated a correlation between recombination frequency and SNP frequency. An unexpected finding was a SNP hotpot in a approximately 20 Mb central region of the 4(th) chromosome, which might indicate higher than expected recombination frequency in this region of this chromosome. Interestingly, genes involved in sensory perception are enriched in SNP hotspots and genes encoding developmental genes are enriched in SNP coldspots, which suggests that recombination frequencies might be proportional to the evolutionary selection coefficient. There are currently 12 Drosophila species sequenced, and this represents one of many isogenic Drosophila melanogaster genome sequences that are in progress. Because of the dramatic increase in power in using isogenic lines rather than outbred individuals, the SNP information should be valuable as a test bed for understanding genotype-by-environment interactions in human population studies.
Collapse
Affiliation(s)
- Adrian E Platts
- The Center for Molecular Medicine and Genetics, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem 2009; 55:641-58. [PMID: 19246620 DOI: 10.1373/clinchem.2008.112789] [Citation(s) in RCA: 433] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND For the past 30 years, the Sanger method has been the dominant approach and gold standard for DNA sequencing. The commercial launch of the first massively parallel pyrosequencing platform in 2005 ushered in the new era of high-throughput genomic analysis now referred to as next-generation sequencing (NGS). CONTENT This review describes fundamental principles of commercially available NGS platforms. Although the platforms differ in their engineering configurations and sequencing chemistries, they share a technical paradigm in that sequencing of spatially separated, clonally amplified DNA templates or single DNA molecules is performed in a flow cell in a massively parallel manner. Through iterative cycles of polymerase-mediated nucleotide extensions or, in one approach, through successive oligonucleotide ligations, sequence outputs in the range of hundreds of megabases to gigabases are now obtained routinely. Highlighted in this review are the impact of NGS on basic research, bioinformatics considerations, and translation of this technology into clinical diagnostics. Also presented is a view into future technologies, including real-time single-molecule DNA sequencing and nanopore-based sequencing. SUMMARY In the relatively short time frame since 2005, NGS has fundamentally altered genomics research and allowed investigators to conduct experiments that were previously not technically feasible or affordable. The various technologies that constitute this new paradigm continue to evolve, and further improvements in technology robustness and process streamlining will pave the path for translation into clinical diagnostics.
Collapse
Affiliation(s)
- Karl V Voelkerding
- ARUP Institute for Experimental and Clinical Pathology, Salt Lake City, Utah 84108, USA.
| | | | | |
Collapse
|