1
|
Teragawa S, Wang L. ConF: A Deep Learning Model Based on BiLSTM, CNN, and Cross Multi-Head Attention Mechanism for Noncoding RNA Family Prediction. Biomolecules 2023; 13:1643. [PMID: 38002325 PMCID: PMC10669714 DOI: 10.3390/biom13111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This paper presents ConF, a novel deep learning model designed for accurate and efficient prediction of noncoding RNA families. NcRNAs are essential functional RNA molecules involved in various cellular processes, including replication, transcription, and gene expression. Identifying ncRNA families is crucial for comprehensive RNA research, as ncRNAs within the same family often exhibit similar functionalities. Traditional experimental methods for identifying ncRNA families are time-consuming and labor-intensive. Computational approaches relying on annotated secondary structure data face limitations in handling complex structures like pseudoknots and have restricted applicability, resulting in suboptimal prediction performance. To overcome these challenges, ConF integrates mainstream techniques such as residual networks with dilated convolutions and cross multi-head attention mechanisms. By employing a combination of dual-layer convolutional networks and BiLSTM, ConF effectively captures intricate features embedded within RNA sequences. This feature extraction process leads to significantly improved prediction accuracy compared to existing methods. Experimental evaluations conducted using a single, publicly available dataset and applying ten-fold cross-validation demonstrate the superiority of ConF in terms of accuracy, sensitivity, and other performance metrics. Overall, ConF represents a promising solution for accurate and efficient ncRNA family prediction, addressing the limitations of traditional experimental and computational methods.
Collapse
Affiliation(s)
- Shoryu Teragawa
- School of Software, Dalian University of Technology, Dalian 116024, China;
| | | |
Collapse
|
2
|
Park S, Sohn J, Kwon S, Kim EJE, Jung Y, Park HEH, Kim SS, Lee SJV. Age-dependent upregulation of Y RNAs in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34604714 PMCID: PMC8477234 DOI: 10.17912/micropub.biology.000452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/10/2022]
Abstract
Y RNA is a conserved small non-coding RNA whose functions in aging remain unknown. Here, we sought to determine the role of C. elegans Y RNA homologs, CeY RNA (CeY) and stem-bulge RNAs (sbRNAs), in aging. We found that the levels of CeY and sbRNAs generally increased during aging. We showed that CeY was downregulated by oxidative and thermal stresses, whereas several sbRNAs were upregulated by oxidative stress. We did not observe lifespan phenotypes by mutations in CeY-coding yrn-1. Future research under various genetic and environmental conditions is required to further evaluate the role of Y RNA in C. elegans aging.
Collapse
Affiliation(s)
- Sangsoon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jooyeon Sohn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sujeong Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Eun Ji E Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yoonji Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Hae-Eun H Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sieun S Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
3
|
Identification of a short form of a Caenorhabditis elegans Y RNA homolog Cel7 RNA. Biochem Biophys Res Commun 2021; 557:104-109. [PMID: 33862452 DOI: 10.1016/j.bbrc.2021.03.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/23/2022]
Abstract
Cel7 RNA is a member of the Caenorhabditis elegans stem-bulge RNAs (sbRNAs) that are classified into the Y RNA family based on their structural similarity. We identified a 15-nucleotide-shorter form of Cel7 RNA and designated it Cel7s RNA. Both Cel7 and Cel7s RNAs increased during the development of worms from L1 to adult. Cel7s RNA was notably more abundant in embryos than in L1 to L3 larvae. Cel7 RNA in embryo was less than those in L2 to adult. The ratio of cellular level of Cel7 RNA to that of Cel7s RNA was higher in L1 to L4, but reversed in embryos and adults. In rop-1 mutants, in which the gene for the C. elegans Ro60 homolog, ROP-1, was disrupted, Cel7s RNA decreased similar to CeY RNA, another C. elegans Y RNA homolog. Surprisingly, Cel7 RNA, existed stably in the absence of ROP-1, unlike Cel7s and CeY RNAs. Gel-shift assays demonstrated that Cel7 and Cel7s RNAs bound to ROP-1 in a similar manner, which was much weaker than CeY RNA. The 5'-terminal 15-nt of Cel7 RNA could be folded into a short stem-loop structure, probably contributing to the stability of Cel7 RNA in vivo and the distinct expression patterns of the 2 RNAs.
Collapse
|
4
|
Duan J, Wang X, Kizer ME. Biotechnological and Therapeutic Applications of Natural Nucleic Acid Structural Motifs. Top Curr Chem (Cham) 2020; 378:26. [PMID: 32067108 DOI: 10.1007/s41061-020-0290-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/11/2020] [Indexed: 11/28/2022]
Abstract
Genetic information and the blueprint of life are stored in the form of nucleic acids. The primary sequence of DNA, read from the canonical double helix, provides the code for RNA and protein synthesis. Yet these already-information-rich molecules have higher-order structures which play critical roles in transcription and translation. Uncovering the sequences, parameters, and conditions which govern the formation of these structural motifs has allowed researchers to study them and to utilize them in biotechnological and therapeutic applications in vitro and in vivo. This review covers both DNA and RNA structural motifs found naturally in biological systems including catalytic nucleic acids, non-coding RNA, aptamers, G-quadruplexes, i-motifs, and Holliday junctions. For each category, an overview of the structural characteristics, biological prevalence, and function will be discussed. The biotechnological and therapeutic applications of these structural motifs are highlighted. Future perspectives focus on the addition of proteins and unnatural modifications to enhance structural stability for greater applicability.
Collapse
Affiliation(s)
- Jinwei Duan
- Department of Chemistry and Materials Science, College of Sciences, Chang'an University, Xi'an, 710064, Shaanxi, People's Republic of China.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Xing Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Megan E Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
5
|
Duarte Junior FF, Bueno PSA, Pedersen SL, Rando FDS, Pattaro Júnior JR, Caligari D, Ramos AC, Polizelli LG, Lima AFDS, de Lima Neto QA, Krude T, Seixas FAV, Fernandez MA. Identification and characterization of stem-bulge RNAs in Drosophila melanogaster. RNA Biol 2019; 16:330-339. [PMID: 30666901 DOI: 10.1080/15476286.2019.1572439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Non-coding Y RNAs and stem-bulge RNAs are homologous small RNAs in vertebrates and nematodes, respectively. They share a conserved function in the replication of chromosomal DNA in these two groups of organisms. However, functional homologues have not been found in insects, despite their common early evolutionary history. Here, we describe the identification and functional characterization of two sbRNAs in Drosophila melanogaster, termed Dm1 and Dm2. The genes coding for these two RNAs were identified by a computational search in the genome of D. melanogaster for conserved sequence motifs present in nematode sbRNAs. The predicted secondary structures of Dm1 and Dm2 partially resemble nematode sbRNAs and show stability in molecular dynamics simulations. Both RNAs are phylogenetically closer related to nematode sbRNAs than to vertebrate Y RNAs. Dm1, but not Dm2 sbRNA is abundantly expressed in D. melanogaster S2 cells and adult flies. Only Dm1, but not Dm2 sbRNA can functionally replace Y RNAs in a human cell-free DNA replication initiation system. Therefore, Dm1 is the first functional sbRNA described in insects, allowing future investigations into the physiological roles of sbRNAs in the genetically tractable model organism D. melanogaster.
Collapse
Affiliation(s)
| | - Paulo Sérgio Alves Bueno
- b Departamento de Tecnologia , Universidade Estadual de Maringá, campus Umuarama , Umuarama , Paraná , Brazil
| | - Sofia L Pedersen
- c Department of Zoology , University of Cambridge , Cambridge , UK
| | - Fabiana Dos Santos Rando
- d Center for Molecular, Structural and Functional Biology - CBM/COMCAP , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - José Renato Pattaro Júnior
- b Departamento de Tecnologia , Universidade Estadual de Maringá, campus Umuarama , Umuarama , Paraná , Brazil
| | - Daniel Caligari
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - Anelise Cardoso Ramos
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - Lorena Gomes Polizelli
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | | | - Quirino Alves de Lima Neto
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| | - Torsten Krude
- c Department of Zoology , University of Cambridge , Cambridge , UK
| | | | - Maria Aparecida Fernandez
- a Departamento de Biotecnologia, Genética e Biologia Celular , Universidade Estadual de Maringá , Maringá , Paraná , Brazil
| |
Collapse
|
6
|
SMORE: Synteny Modulator of Repetitive Elements. Life (Basel) 2017; 7:life7040042. [PMID: 29088079 PMCID: PMC5745555 DOI: 10.3390/life7040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/27/2017] [Accepted: 10/28/2017] [Indexed: 12/19/2022] Open
Abstract
Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the basis of sequence similarity alone. Synteny, the preservation of relative genomic locations, however, also remains informative for the disambiguation of evolutionary relationships in this situation. In this contribution, we describe an automatic pipeline for the evolutionary analysis of such cases that use genome-wide alignments as a starting point to assign orthology relationships determined by synteny. The evolution of tRNAs in primates as well as the history of the Y RNA family in vertebrates and nematodes are used to showcase the method. The pipeline is freely available.
Collapse
|
7
|
Kowalski MP, Krude T. Functional roles of non-coding Y RNAs. Int J Biochem Cell Biol 2015; 66:20-9. [PMID: 26159929 PMCID: PMC4726728 DOI: 10.1016/j.biocel.2015.07.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
8
|
Kowalski MP, Baylis HA, Krude T. Non-coding stem-bulge RNAs are required for cell proliferation and embryonic development in C. elegans. J Cell Sci 2015; 128:2118-29. [PMID: 25908866 PMCID: PMC4450293 DOI: 10.1242/jcs.166744] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
Stem bulge RNAs (sbRNAs) are a family of small non-coding stem-loop RNAs present in Caenorhabditis elegans and other nematodes, the function of which is unknown. Here, we report the first functional characterisation of nematode sbRNAs. We demonstrate that sbRNAs from a range of nematode species are able to reconstitute the initiation of chromosomal DNA replication in the presence of replication proteins in vitro, and that conserved nucleotide sequence motifs are essential for this function. By functionally inactivating sbRNAs with antisense morpholino oligonucleotides, we show that sbRNAs are required for S phase progression, early embryonic development and the viability of C. elegans in vivo. Thus, we demonstrate a new and essential role for sbRNAs during the early development of C. elegans. sbRNAs show limited nucleotide sequence similarity to vertebrate Y RNAs, which are also essential for the initiation of DNA replication. Our results therefore establish that the essential function of small non-coding stem-loop RNAs during DNA replication extends beyond vertebrates.
Collapse
Affiliation(s)
- Madzia P Kowalski
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Howard A Baylis
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Torsten Krude
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
9
|
Duarte Junior FF, de Lima Neto QA, Rando FDS, de Freitas DVB, Pattaro Júnior JR, Polizelli LG, Munhoz REF, Seixas FAV, Fernandez MA. Identification and molecular structure analysis of a new noncoding RNA, a sbRNA homolog, in the silkworm Bombyx mori genome. MOLECULAR BIOSYSTEMS 2014; 11:801-8. [PMID: 25521575 DOI: 10.1039/c4mb00595c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The small noncoding group of RNAs called stem-bulge RNAs (sbRNAs), first reported in Caenorhabditis elegans, is described as molecules homologous to the Y RNAs, a specific class of noncoding RNAs that is present in vertebrates. This homology indicates the possibility of the existence of sbRNAs in other invertebrate organisms. In this work, we used bioinformatic tools and conserved sequences of sbRNAs from C. Elegans and Y RNAs to search for homologous sbRNA sequences in the Bombyx mori genome. This analysis led to the discovery of one noncoding gene, which was translated into RNA segments and comparatively analysed with segments from human and hamster Y RNAs and C. elegans sbRNAs in molecular dynamic simulations. This gene represents the first evidence for a new sbRNA-like noncoding RNA, the BmsbRNA gene, in this Lepidoptera genome.
Collapse
Affiliation(s)
- Francisco Ferreira Duarte Junior
- Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900, Maringá, Paraná, Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Research into small non-coding RNAs (ncRNA) has fundamentally transformed our understanding of gene regulatory networks, especially at the post-transcriptional level. Although much is now known about the basic biology of small ncRNAs, our ability to recognize the impact of small ncRNA in disease states is preliminary, and the ability to effectively target them in vivo is very limited. However, given the larger and growing focus on targeting RNAs for disease therapeutics, what we do know about the intrinsic biology of these small RNAs makes them potentially attractive targets for pharmacologic manipulation. With that in mind, this review provides an introduction to the biology of small ncRNA, using microRNA (miRNA) and small nucleolar RNA (snoRNA) as examples.
Collapse
|
11
|
Wang Y, Chen J, Wei G, He H, Zhu X, Xiao T, Yuan J, Dong B, He S, Skogerbø G, Chen R. The Caenorhabditis elegans intermediate-size transcriptome shows high degree of stage-specific expression. Nucleic Acids Res 2011; 39:5203-14. [PMID: 21378118 PMCID: PMC3130273 DOI: 10.1093/nar/gkr102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Earlier studies have revealed a substantial amount of transcriptional activity occurring outside annotated protein-coding genes of the Caenorhabditis elegans genome. One important fraction of this transcriptional activity relates to intermediate-size (70–500 nt) transcripts (is-ncRNAs) of mostly unknown function. Profiling the expression of this segment of the transcriptome on a tiling array through the C. elegans life cycle identified 5866 hitherto unannotated transcripts. The novel loci were distributed across intronic and intergenic space, with some enrichment toward protein-coding gene termini. The majority of the putative is-ncRNAs showed either stage-specific expression, or distinct developmental variation in their expression levels. More than 200 loci showed male-specific expression, and conserved loci were significantly enriched on the X chromosome, both observations strongly suggesting involvement of is-ncRNAs in sex-specific functions. Half of the novel loci were conserved in other nematodes, and numerous loci showed significant conservational correlations to nearby coding genes. Assuming functional roles for most of the novel loci, the data imply a nematode is-ncRNA tool kit of considerable size and variety.
Collapse
Affiliation(s)
- Yunfei Wang
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hokii Y, Sasano Y, Sato M, Sakamoto H, Sakata K, Shingai R, Taneda A, Oka S, Himeno H, Muto A, Fujiwara T, Ushida C. A small nucleolar RNA functions in rRNA processing in Caenorhabditis elegans. Nucleic Acids Res 2010; 38:5909-18. [PMID: 20460460 PMCID: PMC2943600 DOI: 10.1093/nar/gkq335] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CeR-2 RNA is one of the newly identified Caenorhabditis elegans noncoding RNAs (ncRNAs). The characterization of CeR-2 by RNomic studies has failed to classify it into any known ncRNA family. In this study, we examined the spatiotemporal expression patterns of CeR-2 to gain insight into its function. CeR-2 is expressed in most cells from the early embryo to adult stages. The subcellular localization of this RNA is analogous to that of fibrillarin, a major protein of the nucleolus. It was observed that knockdown of C/D small nucleolar ribonucleoproteins (snoRNPs), but not of H/ACA snoRNPs, resulted in the aberrant nucleolar localization of CeR-2 RNA. A mutant worm with a reduced amount of cellular CeR-2 RNA showed changes in its pre-rRNA processing pattern compared with that of the wild-type strain N2. These results suggest that CeR-2 RNA is a C/D snoRNA involved in the processing of rRNAs.
Collapse
Affiliation(s)
- Yusuke Hokii
- Functional Genomics and Technology, United Graduate School of Agricultural Science, Iwate University, 18-8 Ueda 3-chome, Morioka 020-8550
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boria I, Gruber AR, Tanzer A, Bernhart SH, Lorenz R, Mueller MM, Hofacker IL, Stadler PF. Nematode sbRNAs: Homologs of Vertebrate Y RNAs. J Mol Evol 2010; 70:346-58. [DOI: 10.1007/s00239-010-9332-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 03/01/2010] [Indexed: 01/20/2023]
|