1
|
Soheili-Nezhad S, Ibáñez-Solé O, Izeta A, Hoeijmakers JHJ, Stoeger T. Time is ticking faster for long genes in aging. Trends Genet 2024; 40:299-312. [PMID: 38519330 PMCID: PMC11003850 DOI: 10.1016/j.tig.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/24/2024]
Abstract
Recent studies of aging organisms have identified a systematic phenomenon, characterized by a negative correlation between gene length and their expression in various cell types, species, and diseases. We term this phenomenon gene-length-dependent transcription decline (GLTD) and suggest that it may represent a bottleneck in the transcription machinery and thereby significantly contribute to aging as an etiological factor. We review potential links between GLTD and key aging processes such as DNA damage and explore their potential in identifying disease modification targets. Notably, in Alzheimer's disease, GLTD spotlights extremely long synaptic genes at chromosomal fragile sites (CFSs) and their vulnerability to postmitotic DNA damage. We suggest that GLTD is an integral element of biological aging.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Olga Ibáñez-Solé
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Ander Izeta
- Stem Cells & Aging Group, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Tecnun-University of Navarra, 20018 Donostia-San Sebastian, Spain.
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; University of Cologne, Faculty of Medicine, Cluster of Excellence for Aging Research, Institute for Genome Stability in Ageing and Disease, Cologne, Germany; Princess Maxima Center for Pediatric Oncology, Oncode Institute, Utrecht, The Netherlands.
| | - Thomas Stoeger
- Feinberg School of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA; Potocsnak Longevity Institute, Northwestern University, Chicago, IL, USA; Simpson Querrey Lung Institute for Translational Science, Chicago, IL, USA.
| |
Collapse
|
2
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
3
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
4
|
Abstract
Transcription is an intricate mechanism and is orchestrated at the promoter region. The cognate motifs in the promoters are observed in only a subset of total genes across different domains of life. Hence, sequence-motif based promoter prediction may not be a holistic approach for whole genomes. Conversely, the DNA structural property, duplex stability is a characteristic of promoters and can be used to delineate them from other genomic sequences. In this study, we have used a DNA duplex stability based algorithm ‘PromPredict’ for promoter prediction in a broad range of eukaryotes, representing various species of yeast, worm, fly, fish, and mammal. Efficiency of the software has been tested in promoter regions of 48 eukaryotic systems. PromPredict achieves recall values, which range from 68 to 92% in various eukaryotes. PromPredict performs well in mammals, although their core promoter regions are GC rich. ‘PromPredict’ has also been tested for its ability to predict promoter regions for various transcript classes (coding and non-coding), TATA-containing and TATA-less promoters as well as on promoter sequences belonging to different gene expression variability categories. The results support the idea that differential DNA duplex stability is a potential predictor of promoter regions in various genomes.
Collapse
|
5
|
Tokizawa M, Kusunoki K, Koyama H, Kurotani A, Sakurai T, Suzuki Y, Sakamoto T, Kurata T, Yamamoto YY. Identification of Arabidopsis genic and non-genic promoters by paired-end sequencing of TSS tags. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:587-605. [PMID: 28214361 DOI: 10.1111/tpj.13511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Information about transcription start sites (TSSs) provides baseline data for the analysis of promoter architecture. In this paper we used paired- and single-end deep sequencing to analyze Arabidopsis TSS tags from several libraries prepared from roots, shoots, flowers and etiolated seedlings. The clustering of approximately 33 million mapped TSS tags led to the identification of 324 461 promoters that covered 79.7% (21 672/27 206) of protein-coding genes in the Arabidopsis genome. In addition we identified intragenic, antisense and orphan promoters that were not associated with any gene models. Of these, intragenic promoters exhibited unique characteristics regarding dinucleotide sequences at TSSs and core promoter element composition, suggesting that these promoters use different mechanisms of transcriptional initiation. An analysis of base composition with regard to promoter position revealed a low GC content throughout the promoter region and several local strand biases that were evident for TATA-type promoters, but not for Coreless-type promoters. Most observed strand biases coincided with strand biases of single nucleotide polymorphism rate. Our analysis also revealed that transcription of a gene is supported by an average of 2.7 genic promoters, among which one specific promoter, designated as a top promoter, substantially determines the expression level of the gene.
Collapse
Affiliation(s)
- Mutsutomo Tokizawa
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
| | - Kazutaka Kusunoki
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
| | - Hiroyuki Koyama
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yutaka Suzuki
- Institute of Medical Science, University of Tokyo, Shiroganedai 4-6-1, Minato-ku, Tokyo, 108-8639, Japan
| | - Tomoaki Sakamoto
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayam-cho 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Tetsuya Kurata
- Plant Global Education Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayam-cho 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Yoshiharu Y Yamamoto
- United Graduate School of Agriculture, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu City, Gifu, 501-1193, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- JST ALCA, Tokyo, Japan
| |
Collapse
|
6
|
Yella VR, Bansal M. DNA structural features of eukaryotic TATA-containing and TATA-less promoters. FEBS Open Bio 2017; 7:324-334. [PMID: 28286728 PMCID: PMC5337902 DOI: 10.1002/2211-5463.12166] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic genes can be broadly classified as TATA‐containing and TATA‐less based on the presence of TATA box in their promoters. Experiments on both classes of genes have revealed a disparity in the regulation of gene expression and cellular functions between the two classes. In this study, we report characteristic differences in promoter sequences and associated structural properties of the two categories of genes in six different eukaryotes. We have analyzed three structural features, DNA duplex stability, bendability, and curvature along with the distribution of A‐tracts, G‐quadruplex motifs, and CpG islands. The structural feature analyses reveal that while the two classes of gene promoters are distinctly different from each other, the properties are also distinguishable across the six organisms.
Collapse
Affiliation(s)
- Venkata Rajesh Yella
- Molecular Biophysics Unit Indian Institute of Science Bangalore India; Present address: Department of Biotechnology K L University, Vaddeswaram Guntur 522502 India
| | - Manju Bansal
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
7
|
Marbach-Bar N, Bahat A, Ashkenazi S, Golan-Mashiach M, Haimov O, Wu SY, Chiang CM, Puzio-Kuter A, Hirshfield KM, Levine AJ, Dikstein R. DTIE, a novel core promoter element that directs start site selection in TATA-less genes. Nucleic Acids Res 2015; 44:1080-94. [PMID: 26464433 PMCID: PMC4756809 DOI: 10.1093/nar/gkv1032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022] Open
Abstract
The transcription start site (TSS) determines the length and composition of the 5′ UTR and therefore can have a profound effect on translation. Yet, little is known about the mechanism underlying start site selection, particularly from promoters lacking conventional core elements such as TATA-box and Initiator. Here we report a novel mechanism of start site selection in the TATA- and Initiator-less promoter of miR-22, through a strictly localized downstream element termed DTIE and an upstream distal element. Changing the distance between them reduced promoter strength, altered TSS selection and diminished Pol II recruitment. Biochemical assays suggest that DTIE does not serve as a docking site for TFIID, the major core promoter-binding factor. TFIID is recruited to the promoter through DTIE but is dispensable for TSS selection. We determined DTIE consensus and found it to be remarkably prevalent, present at the same TSS downstream location in ≈20.8% of human promoters, the vast majority of which are TATA-less. Analysis of DTIE in the tumor suppressor p53 confirmed a similar function. Our findings reveal a novel mechanism of transcription initiation from TATA-less promoters.
Collapse
Affiliation(s)
- Nadav Marbach-Bar
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anat Bahat
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaked Ashkenazi
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Golan-Mashiach
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Puzio-Kuter
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Kim M Hirshfield
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Arnold J Levine
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Rivka Dikstein
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
9
|
Tamarkin-Ben-Harush A, Schechtman E, Dikstein R. Co-occurrence of transcription and translation gene regulatory features underlies coordinated mRNA and protein synthesis. BMC Genomics 2014; 15:688. [PMID: 25134423 PMCID: PMC4158080 DOI: 10.1186/1471-2164-15-688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023] Open
Abstract
Background Variability in protein levels is generated through intricate control of the different gene decoding phases. Presently little is known about the links between the various gene expression stages. Here we investigated the relationship between transcription and translation regulatory properties encoded in mammalian genes. Results We found that the TATA-box, a core promoter element known to enhance transcriptional output, is associated not only with higher mRNA levels but also with positive translation regulatory features and elevated translation efficiency. Further investigation revealed general association between transcription and translation regulatory trends. Specifically, translation inhibitory features such as the presence of upstream AUG (uAUG) and increased lengths of the 5′UTR, the coding sequence and the 3′UTR, are strongly associated with lower translation as well as lower transcriptional rate. Conclusions Our findings reveal that co-occurrence of several gene-encoded transcription and translation regulatory features with the same trend substantially contributes to the final mRNA and protein expression levels and enables their coordination. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-688) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
10
|
Ohadi M, Valipour E, Ghadimi-Haddadan S, Namdar-Aligoodarzi P, Bagheri A, Kowsari A, Rezazadeh M, Darvish H, Kazeminasab S. Core promoter short tandem repeats as evolutionary switch codes for primate speciation. Am J Primatol 2014; 77:34-43. [PMID: 25099915 DOI: 10.1002/ajp.22308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 05/16/2014] [Indexed: 01/27/2023]
Abstract
Alteration in gene expression levels underlies many of the phenotypic differences across species. Because of their highly mutable nature, proximity to the +1 transcription start site (TSS), and the emerging evidence of functional impact on gene expression, core promoter short tandem repeats (STRs) may be considered an ideal source of variation across species. In a genome-scale analysis of the entire Homo sapiens protein-coding genes, we have previously identified core promoters with at least one STR of ≥ 6-repeats, with possible selective advantage in this species. In the current study, we performed reverse analysis of the entire Homo sapiens orthologous genes in mouse in the Ensembl database, in order to identify conserved STRs that have shrunk as an evolutionary advantage to humans. Two protocols were used to minimize ascertainment bias. Firstly, two species sharing a more recent ancestor with Homo sapiens (i.e. Pan troglodytes and Gorilla gorilla gorilla) were also included in the study. Secondly, four non-primate species encompassing the major orders across Mammals, including Scandentia, Laurasiatheria, Afrotheria, and Xenarthra were analyzed as out-groups. We introduce STR evolutionary events specifically identical in primates (i.e. Homo sapiens, Pan troglodytes, and Gorilla gorilla gorilla) vs. non-primate out-groups. The average frequency of the identically shared STR motifs across those primates ranged between 0.00005 and 0.06. The identified genes are involved in important evolutionary and developmental processes, such as normal craniofacial development (TFAP2B), regulation of cell shape (PALMD), learning and long-term memory (RGS14), nervous system development (GFRA2), embryonic limb morphogenesis (PBX2), and forebrain development (APAF1). We provide evidence of core promoter STRs as evolutionary switch codes for primate speciation, and the first instance of identity-by-descent for those motifs at the interspecies level.
Collapse
Affiliation(s)
- Mina Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Disparity between microRNA levels and promoter strength is associated with initiation rate and Pol II pausing. Nat Commun 2014; 4:2118. [PMID: 23831825 DOI: 10.1038/ncomms3118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 06/06/2013] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs are transcribed by RNA polymerase II but the transcriptional features influencing their synthesis are poorly defined. Here we report that a TATA box in microRNA and protein-coding genes is associated with increased sensitivity to slow RNA polymerase II. Promoters driven by TATA box or NF-κB elicit high re-initiation rates, but paradoxically lower microRNA levels. MicroRNA synthesis becomes more productive by decreasing the initiation rate, but less productive when the re-initiation rate increases. This phenomenon is associated with a delay in miR-146a induction by NF-κB. Finally, we demonstrate that microRNAs are remarkably strong pause sites. Our findings suggest that lower efficiency of microRNA synthesis directed by TATA box or NF-κB is a consequence of frequent transcription initiations that lead to RNA polymerase II crowding at pause sites, thereby increasing the chance of collision and premature termination. These findings highlight the importance of the transcription initiation mechanism for microRNA synthesis, and have implications for TATA-box promoters in general.
Collapse
|
12
|
YELLA VENKATARAJESH, BANSAL MANJU. DNA STRUCTURAL FEATURES AND ARCHITECTURE OF PROMOTER REGIONS PLAY A ROLE IN GENE RESPONSIVENESS OF S. cerevisiae. J Bioinform Comput Biol 2013; 11:1343001. [DOI: 10.1142/s0219720013430014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene expression is the most fundamental biological process, which is essential for phenotypic variation. It is regulated by various external (environment and evolution) and internal (genetic) factors. The level of gene expression depends on promoter architecture, along with other external factors. Presence of sequence motifs, such as transcription factor binding sites (TFBSs) and TATA-box, or DNA methylation in vertebrates has been implicated in the regulation of expression of some genes in eukaryotes, but a large number of genes lack these sequences. On the other hand, several experimental and computational studies have shown that promoter sequences possess some special structural properties, such as low stability, less bendability, low nucleosome occupancy, and more curvature, which are prevalent across all organisms. These structural features may play role in transcription initiation and regulation of gene expression. We have studied the relationship between the structural features of promoter DNA, promoter directionality and gene expression variability in S. cerevisiae. This relationship has been analyzed for seven different measures of gene expression variability, along with two different regulatory effect measures. We find that a few of the variability measures of gene expression are linked to DNA structural properties, nucleosome occupancy, TATA-box presence, and bidirectionality of promoter regions. Interestingly, gene responsiveness is most intimately correlated with DNA structural features and promoter architecture.
Collapse
Affiliation(s)
- VENKATA RAJESH YELLA
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - MANJU BANSAL
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
13
|
Han HW, Bae SH, Jung YH, Moon J. Genome-wide characterization of the relationship between essential and TATA-containing genes. FEBS Lett 2013; 587:444-51. [DOI: 10.1016/j.febslet.2012.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
|
14
|
Abstract
The core promoter of eukaryotic coding and non-coding genes that are transcribed by RNA polymerase II (RNAP II) is composed of DNA elements surrounding the transcription start site. These elements serve as the docking site of the basal transcription machinery and have an important role in determining the position and directing the rate of transcription initiation. This review summarizes the current knowledge about core promoter elements and focuses on several unexpected links between core promoter structure and certain gene features. These include the association between the presence or absence of a TATA-box and gene length, gene structure, gene function, evolution rate and transcription elongation.
Collapse
Affiliation(s)
- Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science; Rehovot, Israel.
| |
Collapse
|
15
|
Blazek D, Kohoutek J, Bartholomeeusen K, Johansen E, Hulinkova P, Luo Z, Cimermancic P, Ule J, Peterlin BM. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 2011; 25:2158-72. [PMID: 22012619 PMCID: PMC3205586 DOI: 10.1101/gad.16962311] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 09/12/2011] [Indexed: 12/16/2022]
Abstract
Various cyclin-dependent kinase (Cdk) complexes have been implicated in the regulation of transcription. In this study, we identified a 70-kDa Cyclin K (CycK) that binds Cdk12 and Cdk13 to form two different complexes (CycK/Cdk12 or CycK/Cdk13) in human cells. The CycK/Cdk12 complex regulates phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and expression of a small subset of human genes, as revealed in expression microarrays. Depletion of CycK/Cdk12 results in decreased expression of predominantly long genes with high numbers of exons. The most prominent group of down-regulated genes are the DNA damage response genes, including the critical regulators of genomic stability: BRCA1 (breast and ovarian cancer type 1 susceptibility protein 1), ATR (ataxia telangiectasia and Rad3-related), FANCI, and FANCD2. We show that CycK/Cdk12, rather than CycK/Cdk13, is necessary for their expression. Nuclear run-on assays and chromatin immunoprecipitations with RNA polymerase II on the BRCA1 and FANCI genes suggest a transcriptional defect in the absence of CycK/Cdk12. Consistent with these findings, cells without CycK/Cdk12 induce spontaneous DNA damage and are sensitive to a variety of DNA damage agents. We conclude that through regulation of expression of DNA damage response genes, CycK/Cdk12 protects cells from genomic instability. The essential role of CycK for organisms in vivo is further supported by the result that genetic inactivation of CycK in mice causes early embryonic lethality.
Collapse
Affiliation(s)
- Dalibor Blazek
- Department of Medicine, Microbiology, and Immunology, Rosalind Russell Medical Research Center, University of California at San Francisco (UCSF), USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dikstein R. Transcription and translation in a package deal: the TISU paradigm. Gene 2011; 491:1-4. [PMID: 21983420 DOI: 10.1016/j.gene.2011.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 09/06/2011] [Accepted: 09/15/2011] [Indexed: 12/17/2022]
Abstract
The major strategy for cap dependent translation involves ribosomal scanning. In the scanning mechanism the small ribosomal subunit is recruited to the mRNA through the m7G cap and then scans the 5' UTR until it reaches an AUG codon. This short review focuses on a recently discovered alternative strategy of cap-dependent translation that operates without scanning, but nonetheless is highly efficient and accurate. This non-scanning translation is directed by the Translation Initiator of Short 5' UTR (TISU) element. TISU is strictly located close to the 5' end of the mRNA, resulting in a very short 5' UTR. It is present in a sizable number of mammalian genes, many of them with fundamental cellular functions. In addition to its unique translational activity, TISU is also a transcription regulatory element that is specifically enriched in TATA-less promoters. Thus TISU represents a prototype regulatory element that links mammalian transcription to a specific mode of translation initiation.
Collapse
Affiliation(s)
- Rivka Dikstein
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
17
|
Yamamoto YY, Yoshioka Y, Hyakumachi M, Obokata J. Characteristics of core promoter types with respect to gene structure and expression in Arabidopsis thaliana. DNA Res 2011; 18:333-42. [PMID: 21745829 PMCID: PMC3190954 DOI: 10.1093/dnares/dsr020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is now well known that vertebrates use multiple types of core promoter to accomplish differentiated tasks in Pol II-dependent transcription. Several transcriptional characteristics are known to be associated with core types, including distribution patterns of transcription start sites (TSSs) and selection between tissue-specific and constitutive expression profiles. However, their relationship to gene structure is poorly understood. In this report, we carried a comparative analysis of three Arabidopsis core types, TATA, GA, and Coreless, with regard to gene structure. Our genome-wide investigation was based on the peak TSS positions in promoters that had been identified in a large-scale experimental analysis. This analysis revealed that the types of core promoter are related with the room for promoters that is measured as the distance from the TSS to the end of the upstream gene, the distance from the TSS to the start position of the coding sequence (CDS), and the number and species of the cis-regulatory elements. Of these, it was found that the distance from the TSS to the CDS has a tight, inverse correlation to the expression level, and thus the observed relationship to the core type appears to be indirect. However, promoter length and preference of cis-elements are thought to be a direct reflection of core type-specific transcriptional initiation mechanisms.
Collapse
Affiliation(s)
- Yoshiharu Y Yamamoto
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu City, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
18
|
Tatarinova TV, Alexandrov NN, Bouck JB, Feldmann KA. GC3 biology in corn, rice, sorghum and other grasses. BMC Genomics 2010; 11:308. [PMID: 20470436 PMCID: PMC2895627 DOI: 10.1186/1471-2164-11-308] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 05/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The third, or wobble, position in a codon provides a high degree of possible degeneracy and is an elegant fault-tolerance mechanism. Nucleotide biases between organisms at the wobble position have been documented and correlated with the abundances of the complementary tRNAs. We and others have noticed a bias for cytosine and guanine at the third position in a subset of transcripts within a single organism. The bias is present in some plant species and warm-blooded vertebrates but not in all plants, or in invertebrates or cold-blooded vertebrates. RESULTS Here we demonstrate that in certain organisms the amount of GC at the wobble position (GC3) can be used to distinguish two classes of genes. We highlight the following features of genes with high GC3 content: they (1) provide more targets for methylation, (2) exhibit more variable expression, (3) more frequently possess upstream TATA boxes, (4) are predominant in certain classes of genes (e.g., stress responsive genes) and (5) have a GC3 content that increases from 5'to 3'. These observations led us to formulate a hypothesis to explain GC3 bimodality in grasses. CONCLUSIONS Our findings suggest that high levels of GC3 typify a class of genes whose expression is regulated through DNA methylation or are a legacy of accelerated evolution through gene conversion. We discuss the three most probable explanations for GC3 bimodality: biased gene conversion, transcriptional and translational advantage and gene methylation.
Collapse
Affiliation(s)
- Tatiana V Tatarinova
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | | | | | |
Collapse
|
19
|
Bernard V, Brunaud V, Lecharny A. TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation. BMC Genomics 2010; 11:166. [PMID: 20222994 PMCID: PMC2842252 DOI: 10.1186/1471-2164-11-166] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 03/12/2010] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The TATA-box and TATA-variants are regulatory elements involved in the formation of a transcription initiation complex. Both have been conserved throughout evolution in a restricted region close to the Transcription Start Site (TSS). However, less than half of the genes in model organisms studied so far have been found to contain either one of these elements. Indeed different core-promoter elements are involved in the recruitment of the TATA-box-binding protein. Here we assessed the possibility of identifying novel functional motifs in plant genes, sharing the TATA-box topological constraints. RESULTS We developed an ab-initio approach considering the preferential location of motifs relative to the TSS. We identified motifs observed at the TATA-box expected location and conserved in both Arabidopsis thaliana and Oryza sativa promoters. We identified TC-elements within non-TA-rich promoters 30 bases upstream of the TSS. As with the TATA-box and TATA-variant sequences, it was possible to construct a unique distance graph with the TC-element sequences. The structural and functional features of TC-element-containing genes were distinct from those of TATA-box- or TATA-variant-containing genes. Arabidopsis thaliana transcriptome analysis revealed that TATA-box-containing genes were generally those showing relatively high levels of expression and that TC-element-containing genes were generally those expressed in specific conditions. CONCLUSIONS Our observations suggest that the TC-elements might constitute a class of novel regulatory elements participating towards the complex modulation of gene expression in plants.
Collapse
Affiliation(s)
- Virginie Bernard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165-CNRS 8114-UEVE, 2 Rue Gaston Crémieux, 91057 Evry Cedex, France
| | | | | |
Collapse
|
20
|
Gazit K, Moshonov S, Elfakess R, Sharon M, Mengus G, Davidson I, Dikstein R. TAF4/4b x TAF12 displays a unique mode of DNA binding and is required for core promoter function of a subset of genes. J Biol Chem 2009; 284:26286-96. [PMID: 19635797 DOI: 10.1074/jbc.m109.011486] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The major core promoter-binding factor in polymerase II transcription machinery is TFIID, a complex consisting of TBP, the TATA box-binding protein, and 13 to 14 TBP-associated factors (TAFs). Previously we found that the histone H2A-like TAF paralogs TAF4 and TAF4b possess DNA-binding activity. Whether TAF4/TAF4b DNA binding directs TFIID to a specific core promoter element or facilitates TFIID binding to established core promoter elements is not known. Here we analyzed the mode of TAF4b.TAF12 DNA binding and show that this complex binds DNA with high affinity. The DNA length required for optimal binding is approximately 70 bp. Although the complex displays a weak sequence preference, the nucleotide composition is less important than the length of the DNA for high affinity binding. Comparative expression profiling of wild-type and a DNA-binding mutant of TAF4 revealed common core promoter features in the down-regulated genes that include a TATA-box and an Initiator. Further examination of the PEL98 gene from this group showed diminished Initiator activity and TFIID occupancy in TAF4 DNA-binding mutant cells. These findings suggest that DNA binding by TAF4/4b-TAF12 facilitates the association of TFIID with the core promoter of a subset of genes.
Collapse
Affiliation(s)
- Kfir Gazit
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
21
|
Yarden G, Elfakess R, Gazit K, Dikstein R. Characterization of sINR, a strict version of the Initiator core promoter element. Nucleic Acids Res 2009; 37:4234-46. [PMID: 19443449 PMCID: PMC2715227 DOI: 10.1093/nar/gkp315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The proximal promoter consists of binding sites for transcription regulators and a core promoter. We identified an overrepresented motif in the proximal promoter of human genes with an Initiator (INR) positional bias. The core of the motif fits the INR consensus but its sequence is more strict and flanked by additional conserved sequences. This strict INR (sINR) is enriched in TATA-less genes that belong to specific functional categories. Analysis of the sINR-containing DHX9 and ATP5F1 genes showed that the entire sINR sequence, including the strict core and the conserved flanking sequences, is important for transcription. A conventional INR sequence could not substitute for DHX9 sINR whereas, sINR could replace a conventional INR. The minimal region required to create the major TSS of the DHX9 promoter includes the sINR and an upstream Sp1 site. In a heterologous context, sINR substituted for the TATA box when positioned downstream to several Sp1 sites. Consistent with that the majority of sINR promoters contain at least one Sp1 site. Thus, sINR is a TATA-less-specific INR that functions in cooperation with Sp1. These findings support the idea that the INR is a family of related core promoter motifs.
Collapse
Affiliation(s)
- Ganit Yarden
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
22
|
Lampo E, Van Poucke M, Vandesompele J, Erkens T, Van Zeveren A, Peelman LJ. Positive correlation between relative mRNA expression of PRNP and SPRN in cerebral and cerebellar cortex of sheep. Mol Cell Probes 2008; 23:60-4. [PMID: 19059475 DOI: 10.1016/j.mcp.2008.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
SPRN is an interesting new member of the PRNP family because of its sequence homology with the hydrophobic region of PRNP, its expression in brain tissue and its PrP-like properties in functional experiments on Prnp(0/0) mice. In this study, we investigated by quantitative real-time PCR the relative mRNA expression levels of SPRN and PRNP in sheep cerebrum and cerebellum and the mutual relationship between these expression levels. Analysis of PRNP and SPRN mRNA expression levels in 45 cerebral cortex and 47 cerebellar cortex samples showed that the PRNP expression level was significantly higher (p<0.05) in cerebellum than in cerebrum, while no significant difference was detected for SPRN between these tissues. The expression level varied clearly more in cerebrum than in cerebellum for both genes tested, and the variation was larger for SPRN than for PRNP in both types of brain tissue. Remarkably, the mRNA expression levels of PRNP and SPRN showed a highly significant positive correlation in both cerebrum (p<0.0001) and cerebellum (p<0.001). This positive correlation might indicate co-regulation between these genes. Further investigation on the causal nature of this correlation may provide new insights into prion pathogenesis.
Collapse
Affiliation(s)
- Evelyne Lampo
- Department of Nutrition, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Armisén D, Lecharny A, Aubourg S. Unique genes in plants: specificities and conserved features throughout evolution. BMC Evol Biol 2008; 8:280. [PMID: 18847470 PMCID: PMC2576244 DOI: 10.1186/1471-2148-8-280] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes. Results We identified the unique genes within both A. thaliana and O. sativa genomes and classified them according to the number of homologs in the alternative species: none (U{1:0}), one (U{1:1}) or several (U{1:m}). Regardless of the species, all the genes in these groups present some conserved characteristics, such as small average protein size and abnormal intron number. In order to understand the origin and function of unique genes, we further characterized the U{1:1} gene pairs. The possible involvement of sequence convergence in the creation of U{1:1} pairs was discarded due to the frequent conservation of intron positions. Furthermore, an orthology relationship between the two members of each U{1:1} pair was strongly supported by a high conservation in the protein sizes and transcription levels. Within the promoter of the unique conserved genes, we found a number of TATA and TELO boxes that specifically differed from their mean number in the whole genome. Many unique genes have been conserved as unique through evolution from the green alga Ostreococcus lucimarinus to higher plants. Plant unique genes may also have homologs in bacteria and we showed a link between the targeting towards plastids of proteins encoded by plant nuclear unique genes and their homology with a bacterial protein. Conclusion Many of the A. thaliana and O. sativa unique genes are conserved in plants for which the ancestor diverged at least 725 million years ago (MYA). Half of these genes are also present in other eukaryotic and/or prokaryotic species. Thus, our results indicate that (i) a strong negative selection pressure has conserved a number of genes as unique in genomes throughout evolution, (ii) most unique genes are subjected to a low divergence rate, (iii) they have some features observed in housekeeping genes but for most of them there is no functional annotation and (iv) they may have an ancient origin involving a possible gene transfer from ancestral chloroplasts or bacteria to the plant nucleus.
Collapse
Affiliation(s)
- David Armisén
- Unité de Recherche en Génomique Végetale , UMR INRA 1165 - CNRS 8114 - Université d'Evry Val d'Essonne, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France.
| | | | | |
Collapse
|
24
|
Boorsma A, Lu XJ, Zakrzewska A, Klis FM, Bussemaker HJ. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression. PLoS One 2008; 3:e3112. [PMID: 18769540 PMCID: PMC2518834 DOI: 10.1371/journal.pone.0003112] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 08/07/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A key goal of systems biology is to understand how genomewide mRNA expression levels are controlled by transcription factors (TFs) in a condition-specific fashion. TF activity is frequently modulated at the post-translational level through ligand binding, covalent modification, or changes in sub-cellular localization. In this paper, we demonstrate how prior information about regulatory network connectivity can be exploited to infer condition-specific TF activity as a hidden variable from the genomewide mRNA expression pattern in the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS We first validate experimentally that by scoring differential expression at the level of gene sets or "regulons" comprised of the putative targets of a TF, we can accurately predict modulation of TF activity at the post-translational level. Next, we create an interactive database of inferred activities for a large number of TFs across a large number of experimental conditions in S. cerevisiae. This allows us to perform TF-centric analysis of the yeast regulatory network. CONCLUSIONS/SIGNIFICANCE We analyze the degree to which the mRNA expression level of each TF is predictive of its regulatory activity. We also organize TFs into "co-modulation networks" based on their inferred activity profile across conditions, and find that this reveals functional and mechanistic relationships. Finally, we present evidence that the PAC and rRPE motifs antagonize TBP-dependent regulation, and function as core promoter elements governed by the transcription regulator NC2. Regulon-based monitoring of TF activity modulation is a powerful tool for analyzing regulatory network function that should be applicable in other organisms. Tools and results are available online at http://bussemakerlab.org/RegulonProfiler/.
Collapse
Affiliation(s)
- André Boorsma
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anna Zakrzewska
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, Amsterdam, The Netherlands
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
A translation initiation element specific to mRNAs with very short 5'UTR that also regulates transcription. PLoS One 2008; 3:e3094. [PMID: 18769482 PMCID: PMC2518114 DOI: 10.1371/journal.pone.0003094] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 08/07/2008] [Indexed: 12/18/2022] Open
Abstract
Transcription is controlled by cis regulatory elements, which if localized downstream to the transcriptional start site (TSS), in the 5′UTR, could influence translation as well. However presently there is little evidence for such composite regulatory elements. We have identified by computational analysis an abundant element located downstream to the TSS up to position +30, which controls both transcription and translation. This element has an invariable ATG sequence, which serves as the translation initiation codon in 64% of the genes bearing it. In these genes the initiating AUG is preceded by an extremely short 5′UTR. We show that translation in vitro and in vivo is initiated exclusively from the AUG of this motif, and that the AUG flanking sequences create a strong translation initiation context. This motif is distinguished from the well-known Kozak in its unique ability to direct efficient and accurate translation initiation from mRNAs with a very short 5′UTR. We therefore named it TISU for Translation Initiator of Short 5′UTR. Interestingly, this translation initiation element is also an essential transcription regulatory element of Yin Yang 1. Our characterization of a common transcription and translation element points to a link between mammalian transcription and translation initiation.
Collapse
|