1
|
Wang F. Sending Out Alarms: A Perspective on Intercellular Communications in Insect Antiviral Immune Response. Front Immunol 2021; 12:613729. [PMID: 33708207 PMCID: PMC7940532 DOI: 10.3389/fimmu.2021.613729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Viral infection triggers insect immune response, including RNA interference, apoptosis and autophagy, and profoundly changes the gene expression profiles in infected cells. Although intracellular degradation is crucial for restricting viral infection, intercellular communication is required to mount a robust systemic immune response. This review focuses on recent advances in understanding the intercellular communications in insect antiviral immunity, including protein-based and virus-derived RNA based cell-cell communications, with emphasis on the signaling pathway that induces the production of the potential cytokines. The prospects and challenges of future work are also discussed.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Amoa-Bosompem M, Kobayashi D, Itokawa K, Faizah AN, Kuwata R, Dadzie S, Hayashi T, Yamaoka S, Sawabe K, Iwanaga S, Isawa H. Establishment and characterization of a cell line from Ghanaian Aedes aegypti (Diptera: Culicidae) focusing on Aedes-borne flavivirus susceptibility. In Vitro Cell Dev Biol Anim 2020; 56:792-798. [PMID: 33000384 DOI: 10.1007/s11626-020-00504-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Mosquitoes are generally considered one of the most important vectors of arboviruses, with Aedes aegypti regarded as the most important in transmission of yellow fever and dengue viruses. To investigate why there are differences in the incidence of dengue fever and Zika in different geographical areas and an absence of outbreaks in Ghana in spite of an abundance of A. aegypti mosquitoes, we established a continuous cell line from embryonic cells of A. aegypti collected in Ghana and assessed its susceptibility to dengue, yellow fever, and Zika viruses. The new cell line (designated AeAe-GH98), having an adhesive spindle-shaped web-like morphology, was serially subcultured in both VP-12 and Schneider's medium supplemented with 10% heat-inactivated fetal bovine serum. AeAe-GH98 cells were found to have a population doubling time of 1.3 d during exponential growth. The mosquito colony used to establish the cell line was confirmed to have originated from Africa using microsatellite assay. In terms of susceptibility to Aedes-borne flaviviruses, AeAe-GH98 cells were found to have different degrees of susceptibility to yellow fever, Zika, and dengue virus infection and propagation. While susceptibility of AeAe-GH98 cells to yellow fever and Zika viruses was comparable with that of C6/36 cells, susceptibility to dengue virus was significantly lower. This cell line will serve as a useful tool for determining molecular factors influencing virus-vector susceptibility in vitro.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan.,Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O.Box LG581, Legon, Accra, Ghana
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ryusei Kuwata
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, Japan
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O.Box LG581, Legon, Accra, Ghana
| | - Takaya Hayashi
- Department of Molecular Virology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-850, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
3
|
Vial T, Tan WL, Wong Wei Xiang B, Missé D, Deharo E, Marti G, Pompon J. Dengue virus reduces AGPAT1 expression to alter phospholipids and enhance infection in Aedes aegypti. PLoS Pathog 2019; 15:e1008199. [PMID: 31815960 PMCID: PMC6922471 DOI: 10.1371/journal.ppat.1008199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/19/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022] Open
Abstract
More than half of the world population is at risk of dengue virus (DENV) infection because of the global distribution of its mosquito vectors. DENV is an envelope virus that relies on host lipid membranes for its life-cycle. Here, we characterized how DENV hijacks the mosquito lipidome to identify targets for novel transmission-blocking interventions. To describe metabolic changes throughout the mosquito DENV cycle, we deployed a Liquid chromatography-high resolution mass spectrometry (LC-HRMS) workflow including spectral similarity annotation in cells, midguts and whole mosquitoes at different times post infection. We revealed a major aminophospholipid reconfiguration with an overall early increase, followed by a reduction later in the cycle. We phylogenetically characterized acylglycerolphosphate acyltransferase (AGPAT) enzyme isoforms to identify those that catalyze a rate-limiting step in phospholipid biogenesis, the acylation of lysophosphatidate to phosphatidate. We showed that DENV infection decreased AGPAT1, but did not alter AGPAT2 expression in cells, midguts and mosquitoes. Depletion of either AGPAT1 or AGPAT2 increased aminophospholipids and partially recapitulated DENV-induced reconfiguration before infection in vitro. However, only AGPAT1 depletion promoted infection by maintaining high aminophospholipid concentrations. In mosquitoes, AGPAT1 depletion also partially recapitulated DENV-induced aminophospholipid increase before infection and enhanced infection by maintaining high aminophospholipid concentrations. These results indicate that DENV inhibition of AGPAT1 expression promotes infection by increasing aminophospholipids, as observed in the mosquito's early DENV cycle. Furthermore, in AGPAT1-depleted mosquitoes, we showed that enhanced infection was associated with increased consumption/redirection of aminophospholipids. Our study suggests that DENV regulates aminophospholipids, especially phosphatidylcholine and phosphatidylethanolamine, by inhibiting AGPAT1 expression to increase aminophospholipid availability for virus multiplication.
Collapse
Affiliation(s)
- Thomas Vial
- UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | | | - Dorothée Missé
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Eric Deharo
- UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France
| | - Guillaume Marti
- UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| |
Collapse
|
4
|
Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD. High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 2017; 98:2993-3007. [PMID: 29182510 DOI: 10.1099/jgv.0.000981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
Collapse
Affiliation(s)
- Hui Jen Soe
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Serdang, Selangor, Malaysia
| | - Rishya Manikam
- Trauma and Emergency (Academic), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Hong Kong SAR
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Mosquito immunity against arboviruses. Viruses 2014; 6:4479-504. [PMID: 25415198 PMCID: PMC4246235 DOI: 10.3390/v6114479] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/03/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector.
Collapse
|
6
|
Laosutthipong C, Kanthong N, Flegel TW. Novel, anionic, antiviral septapeptides from mosquito cells also protect monkey cells against dengue virus. Antiviral Res 2013; 98:449-56. [PMID: 23603496 DOI: 10.1016/j.antiviral.2013.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 10/26/2022]
Abstract
We have shown previously that ultrafiltrates (5 kDa cutoff) of cell-free medium from mosquito cell cultures persistently infected with DENV serotype 2 (DENV-2) contained a novel antiviral agent (called viprolaxikine) that could protect pre-treated, naïve mosquito cells from DENV infection. Here, we show that viprolaxikine also reduced DENV-2 titers by almost 4 logs (>99.9%) when compared to Vero cells mock-treated with ultrafiltrates from cultures of uninfected mosquito cells. Protease treatment removed the anti-DENV-2 activity. Pre-incubation for 48-h was required to obtain the maximum, dose-dependent protection against DENV-2, indicating that the antiviral activity was based on the interaction between Vero cells and viprolaxikine rather than direct action of viprolaxikine on DENV-2. Activity was highest against DENV-2, but there was also significant activity against the 3 other DENV serotypes. LC-MS-MS analysis revealed that the active viprolaxikine fraction contained anionic, antiviral peptides, each comprised of 7 amino acids (DDHELQD, DETELQD and DEVMLQD or DEVLMQD) and with a common sequence motif of D-D/E-X-X-X-Q-D. These sequences do not occur in the dengue virus genome, suggesting that the peptides are produced by the host insect cells when persistently infected with DENV-2. These peptides represent a new class of anionic, insect-derived, antiviral peptides with activity against a flavivirus in both mammalian and insect cells.
Collapse
|
7
|
Tuiskunen A, Monteil V, Plumet S, Boubis L, Wahlström M, Duong V, Buchy P, Lundkvist A, Tolou H, Leparc-Goffart I. Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Arch Virol 2011; 156:2023-32. [PMID: 21922323 DOI: 10.1007/s00705-011-1100-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Dengue viruses (DENV) cause 50-100 million cases of acute febrile disease every year, including 500,000 reported cases of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Viral factors have been proposed to influence the severity of the disease, but markers of virulence have never been identified on DENV. Three DENV serotype-1 isolates from the 2007 epidemic in Cambodia that are derived from patients experiencing the various clinical forms of dengue were characterized both phenotypically and genetically. Phenotypic characteristics in vitro, based on replication kinetics in different cell lines and apoptosis response, grouped isolates from DF and DHF patients together, whereas the virus isolate from a DSS patient showed unique features: a lower level of replication in mammalian cells and extensive apoptosis in mosquito cells. Genomic comparison of viruses revealed six unique amino acid residues in the membrane, envelope, and in non-structural genes in the virus isolated from the DSS patient.
Collapse
Affiliation(s)
- Anne Tuiskunen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|