1
|
Hadrich I, Khemakhem N, Ilahi A, Trabelsi H, Sellami H, Makni F, Neji S, Ayadi A. Genotypic Analysis of the Population Structure in Malassezia globosa and Malassezia restricta. J Fungi (Basel) 2023; 9:jof9020263. [PMID: 36836377 PMCID: PMC9963534 DOI: 10.3390/jof9020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 02/18/2023] Open
Abstract
The molecular characterization of Malassezia spp. isolates from animals and humans has not been thoroughly studied. Although a range of molecular methods has been developed for diagnosing Malassezia species, they have several drawbacks, such as inefficiency in differentiating all the species, high cost and questionable reproducibility. The present study aimed to develop VNTR markers for genotyping Malassezia isolated from clinical and animal samples. A total of 44 M. globosa and 24 M. restricta isolates were analyzed. Twelve VNTR markers were selected on seven different chromosomes (I, II, III, IV, V, VII and IX), six for each Malassezia species. The highest discriminatory power for a single locus was obtained with the STR-MG1 marker (0.829) and STR-MR2 marker (0.818) for M. globosa and M. restricta, respectively. After the analysis of multiple loci, 24 genotypes were noted among 44 isolates in M. globosa, with a discrimination index D of 0.943 and 15 genotypes were noted among 24 isolates in M. restricta, with a discrimination index D of 0.967. An endogenous infection was detected in two patients. Different genotypes of M. globosa strains colonized one patient. Interestingly, VNTR markers analysis revealed a carriage between a breeder and his dog in three cases for M. globosa and two for M. restricta. The FST (0.018 to 0.057) values indicate a low differentiation between the three populations of M. globosa. These results suggest a dominant clonal mode of reproduction in M. globosa. The typing of M. restricta showed a genotypic diversity of the strains, which can cause various skin pathologies. However, patient five was colonized with strains having the same genotype collected from different body parts (back, shoulder). VNTR analysis was capable of identifying species with high accuracy and reliability. More importantly, the method would facilitate monitoring Malassezia colonization in domestic animals and humans. It was shown that the patterns are stable and the method is discriminant, making it a powerful tool for epidemiological purposes.
Collapse
Affiliation(s)
- Ines Hadrich
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Faculty of Science, University of Gabes, Gabes 6029, Tunisia
- Correspondence: ; Tel./Fax: +216-74-247-130
| | - Nahed Khemakhem
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Laboratory of Parasitology—Mycology, UH Habib Bourguiba, Sfax 3029, Tunisia
| | - Amin Ilahi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
| | - Houaida Trabelsi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Laboratory of Parasitology—Mycology, UH Habib Bourguiba, Sfax 3029, Tunisia
| | - Hayet Sellami
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Laboratory of Parasitology—Mycology, UH Habib Bourguiba, Sfax 3029, Tunisia
| | - Fattouma Makni
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Laboratory of Parasitology—Mycology, UH Habib Bourguiba, Sfax 3029, Tunisia
| | - Sourour Neji
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Laboratory of Parasitology—Mycology, UH Habib Bourguiba, Sfax 3029, Tunisia
| | - Ali Ayadi
- Laboratory of Fungal and Parasitic Molecular Biology, School of Medicine, University of Sfax, Sfax 3029, Tunisia
- Laboratory of Parasitology—Mycology, UH Habib Bourguiba, Sfax 3029, Tunisia
| |
Collapse
|
2
|
Cherif G, Hadrich I, Harrabi M, Kallel A, Fakhfekh N, Messaoud M, Abdallah HB, Azeiz O, Kallel K, Ranque S. Aspergillus flavus genetic structure at a turkey farm. Vet Med Sci 2022; 9:234-241. [PMID: 36445341 PMCID: PMC9857098 DOI: 10.1002/vms3.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The ubiquitous environmental fungus Aspergillus flavus is also a life-threatening avian pathogen. OBJECTIVES This study aimed to assess the genetic diversity and population structure of A. flavus isolated from turkey lung biopsy or environmental samples collected in a poultry farm. METHODS A. flavus isolates were identified using both morphological and ITS sequence features. Multilocus microsatellite genotyping was performed by using a panel of six microsatellite markers. Population genetic indices were computed using FSTAT and STRUCTURE. A minimum-spanning tree (MST) and UPGMA dendrogram were drawn using BioNumerics and NTSYS-PC, respectively. RESULTS The 63 environmental (air, surfaces, eggshells and food) A. flavus isolates clustered in 36 genotypes (genotypic diversity = 0.57), and the 19 turkey lung biopsies isolates clustered in 17 genotypes (genotypic diversity = 0.89). The genetic structure of environmental and avian A. flavus populations were clearly differentiated, according to both F-statistics and Bayesian model-based analysis' results. The Bayesian approach indicated gene flow between both A. flavus populations. The MST illustrated the genetic structure of this A. flavus population split in nine clusters, including six singletons. CONCLUSIONS Our results highlight the distinct genetic structure of environmental and avian A. flavus populations, indicative of a genome-based adaptation of isolates involved in avian aspergillosis.
Collapse
Affiliation(s)
- Ghaya Cherif
- Laboratory of Parasitology and Mycology UR17SP 03La Rabta HospitalTunisTunisia,Higher Institute of Nursing Sciences of TunisUniversity Tunis El ManarTunisTunisia
| | - Ines Hadrich
- Fungi and Parasitic Molecular Biology LaboratorySchool of MedicineUniversity of SfaxSfaxTunisia
| | - Myriam Harrabi
- Higher Institute of Nursing Sciences of TunisUniversity Tunis El ManarTunisTunisia,Laboratory of Bioinformatics, Biomathematics and Biostatistics UR16IPT09Pasteur Institute of TunisTunisTunisia
| | - Aicha Kallel
- Laboratory of Parasitology and Mycology UR17SP 03La Rabta HospitalTunisTunisia,Higher Institute of Nursing Sciences of TunisUniversity Tunis El ManarTunisTunisia
| | - Nejla Fakhfekh
- Laboratory of Parasitology and Mycology UR17SP 03La Rabta HospitalTunisTunisia,Higher Institute of Nursing Sciences of TunisUniversity Tunis El ManarTunisTunisia
| | - Mariem Messaoud
- Laboratory of Parasitology and Mycology UR17SP 03La Rabta HospitalTunisTunisia,Higher Institute of Nursing Sciences of TunisUniversity Tunis El ManarTunisTunisia
| | | | - Ons Azeiz
- Research Platform in Medicine Sciences and Technologies, Faculty of MedicineTunisTunisia
| | - Kalthoum Kallel
- Laboratory of Parasitology and Mycology UR17SP 03La Rabta HospitalTunisTunisia,Higher Institute of Nursing Sciences of TunisUniversity Tunis El ManarTunisTunisia
| | - Stéphane Ranque
- Aix‐Marseille Université, IRD, AP‐HM, SSAVITROMEMarseilleFrance,IHU Méditerranée InfectionMarseilleFrance
| |
Collapse
|
3
|
Azmanis P, Pappalardo L, Sara ZAJ, Silvanose C, Naidoo V. Disposition of posaconazole after single oral administration in large falcons (Falco spp): Effect of meal and dosage and a non-compartmental model to predict effective dosage. Med Mycol 2021; 59:901-908. [PMID: 33891699 DOI: 10.1093/mmy/myab019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/11/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Posaconazole has been used anecdotally to treat aspergillosis in falcons resistant to voriconazole. In human medicine, it is used prophylactically in immunosuppressed human subjects with invasive pulmonary aspergillosis. So far, no studies have been performed in birds. The aim of this study was to evaluate the in-vivo pharmacokinetic behavior of oral posaconazole after a single administration in six large falcons (i.e gyrfalcons, saker falcons). Posaconazole oral suspension (Noxafil, 40 mg/ml, Schering-Plough) was administered per os without meal in a single dosage of 12.5 mg/kg in 3 falcons. A comparison was done in two more falcons, one with a natural fatty meal at the same single dose, and one with a natural fatty meal and a higher dosage (20 mg/kg). Finally, six falcons received posaconazole pre-dissolved in corn oil with a natural low-fat meal in the higher single dose (20 mg/kg). No side effects were observed in the falcons in any of the experiments. In starved state posaconazole was poorly absorbed, more so than in other species. As expected, absorption of posaconazole was higher with the administration of meal or in the presence of plant (corn) oil, with a fourfold increase in apparent bioavailability. Despite the preferential absorption in the presence of fat, for both dosing schemes the AUC24 : MIC ratio was lower than described in human medicine to achieve a therapeutic effect. The AUCinf : MIC which is an indicator of efficacy after steady-state, while variable, did indicate that the drug is worth trying when susceptibility testing shows to be the only effective drug. LAY ABSTRACT The focus of this work is to determine the pharmacokinetic parameters of oral posaconazole in large falcons for the first time after a single dose. Posaconazole has higher bioavailability when administered with meal and fatty components. No adverse reactions have been observed. The ratio of the area under the curve (AUC24) to minimum inhibitory concentration was lower compared to the therapeutic level in human.
Collapse
Affiliation(s)
- Panagiotis Azmanis
- Dubai Falcon Hospital, 23919, Dubai, United Arab Emirates (Azmanis, Silvanose)
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah (AUS), United Arab Emirates (Pappalardo, Sara)
| | - Ziad A J Sara
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah (AUS), United Arab Emirates (Pappalardo, Sara)
| | | | - Vinny Naidoo
- Biomedical Research Center (BRC), Faculty of Veterinary Science, University of Pretoria, Republic of South Africa (Naidoo)
| |
Collapse
|
4
|
Azmanis P, Pappalardo L, Sara ZAJ, Silvanose C, Naidoo V. Pharmacokinetics of voriconazole after a single intramuscular injection in large falcons (Falco spp.). Med Mycol 2021; 58:661-666. [PMID: 31608415 DOI: 10.1093/mmy/myz102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/17/2019] [Accepted: 10/06/2019] [Indexed: 01/25/2023] Open
Abstract
Voriconazole is one of the main azoles used to treat invasive aspergillosis in falconry raptors and birds. Despite the fact that there are studies for oral and intravenous use of voriconazole in birds, there are none for its effect after intramuscular use. Empirical use of intramuscular voriconazole in falcons, indicated quicker therapy response than the oral one. Aim of this study is to evaluate the in vivo pharmacokinetic disposition of injectable voriconazole after a single intramuscular injection in large falcons (i.e., Gyrfalcons, Saker falcons, Peregrine falcons). No clinical side effects were observed in the falcons. Absorption of voriconazole was rapid (0.5-2 hours) and reached a plasma level (>1 μg/ml) which is above the minimal inhibitory concentration (MIC) for all known Aspergillus strains. This level was maintained for 16 to 20 hours, thus indicating that a single injection of 12.5 mg/kg is not enough if T > MIC is taken into consideration. On a newer aspect, according to the AUC24 unbound: MIC parameter would be indicated that this dose would be rather sufficient for most Aspergillus strains.
Collapse
Affiliation(s)
- P Azmanis
- Dubai Falcon Hospital, Dubai, United Arab Emirates (Azmanis, Silvanose)
| | - L Pappalardo
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah (AUS), United Arab Emirates (Pappalardo, Sara)
| | - Ziad A J Sara
- Department of Biology, Chemistry and Environmental Studies, American University of Sharjah (AUS), United Arab Emirates (Pappalardo, Sara)
| | - C Silvanose
- Dubai Falcon Hospital, Dubai, United Arab Emirates (Azmanis, Silvanose)
| | - V Naidoo
- Biomedical Research Center (BRC), Faculty of Veterinary Science, University of Pretoriaz, Republic of South Africa (Naidoo)
| |
Collapse
|
5
|
Yu SY, Guo LN, Xiao M, Zhou ML, Yuan Y, Wang Y, Zhang L, Sun TS, Ning YT, Jia PY, Kang W, Kong F, Chen SCA, Zhao Y, Xu YC. Clinical and Microbiological Characterization of Invasive Pulmonary Aspergillosis Caused by Aspergillus lentulus in China. Front Microbiol 2020; 11:1672. [PMID: 32849346 PMCID: PMC7399017 DOI: 10.3389/fmicb.2020.01672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022] Open
Abstract
Invasive aspergillosis (IA) due to Aspergillus lentulus is associated with high mortality. In this study, we investigated the clinical and microbiological characteristics of 6 fatal cases of proven or probable IA caused by A. lentulus in China. Underlying immunosuppression, prior antifungal exposure, and intensive care unit (ICU) hospitalization were important risk factors for invasive A. lentulus infection. Phenotypic differences were observed for A. lentulus isolates including slower growth, reduced sporulation, and inability to grow at 48°C, compared with Aspergillus fumigatus complex. ITS sequencing was unable to distinguish A. lentulus from A. fumigatus, but sequencing of the benA, CaM, and rod A loci enabled reliable distinction of these closely related species. Phylogenetic analysis further confirmed that the ITS region had little variation within the Aspergillus section Fumigati while the benA gene offered the highest intraspecific discrimination. Microsatellite typing results revealed that only loci on chromosomes 1, 3, 5, and 6b generated detectable amplicons for identification. All A. lentulus isolates showed in vitro resistance to multiple antifungal drugs including amphotericin B (MIC range 4 to 8 μg/ml), itraconazole (MIC 2 μg/ml), voriconazole (MIC of 4–16 μg/ml), and posaconazole (MIC of 0.5–1 μg/ml). However, MECs for the echinocandin drugs ranged from 0.03–0.25, ≤0.008–0.015, and ≤0.015–0.03 μg/ml for caspofungin, micafungin, and anidulafungin, respectively. A. lentulus is an emerging fungal pathogen in China, causing fatal disease, and clinicians as well as laboratories should be alert to their increasing presence.
Collapse
Affiliation(s)
- Shu-Ying Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Li-Na Guo
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Meng-Lan Zhou
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Ying Yuan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Yao Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Tian-Shu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China.,Department of Central Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ya-Ting Ning
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Pei-Yao Jia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR -New South Wales Health Pathology, The University of Sydney, Westmead, NSW, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR -New South Wales Health Pathology, The University of Sydney, Westmead, NSW, Australia
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing, China
| |
Collapse
|
6
|
Loeffert ST, Melloul E, Gustin MP, Hénaff L, Guillot C, Dupont D, Wallon M, Cassier P, Dananché C, Bénet T, Botterel F, Guillot J, Vanhems P. Investigation of the Relationships Between Clinical and Environmental Isolates of Aspergillus fumigatus by Multiple-locus Variable Number Tandem Repeat Analysis During Major Demolition Work in a French Hospital. Clin Infect Dis 2020; 68:321-329. [PMID: 30247539 DOI: 10.1093/cid/ciy498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/17/2018] [Indexed: 01/28/2023] Open
Abstract
Background Genotyping is needed to explore the link between clinical cases from colonization of invasive aspergillosis (IA) and major building construction. Attempts to correlate Aspergillus fumigatus strains from clinical infection or colonization with those found in the environment remain controversial due to the lack of a large prospective study. Our aim in this study was to compare the genetic diversity of clinical and environmental A. fumigatus isolates during a demolition period. Methods Fungal contamination was monitored daily for 11 months in 2015. Environmental surveillance was undertaken indoors and outdoors at 8 locations with automatic agar samplers. IA infection cases were investigated according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group criteria. Isolates were identified by amplification and sequencing of the β- tubulin gene. They were genotyped by multiple-locus variable number tandem repeat analysis (MLVA). The phylogenetic relationships between isolates were assessed by generating a minimum spanning tree. Results Based on 3885 samples, 394 A. fumigatus isolates (383 environmental and 11 clinical) were identified and genotyped using MLVA. Clinical isolates were collected from patients diagnosed as having probable IA (n = 2), possible IA (n = 1), or bronchial colonization (n = 6). MLVA generated 234 genotypes. Seven clinical isolates shared genotypes identical to environmental isolates. Conclusions Among the diversity of genotypes described, similar genotypes were found in clinical and environmental isolates, indicating that A. fumigatus infection and colonization may originate from hospital environments.
Collapse
Affiliation(s)
- Sophie T Loeffert
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon
| | - Elise Melloul
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Marie-Paule Gustin
- Département de Santé Publique, Institut des Sciences Pharmaceutiques et Biologiques-Faculté de Pharmacie, Université Claude Bernard Lyon 1
| | - Laetitia Hénaff
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon
| | - Chloé Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Damien Dupont
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon
| | - Martine Wallon
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon
| | - Pierre Cassier
- Laboratoire de Biologie Sécurité Environnement, Groupement Hospitalier Centre, Hospices Civils de Lyon
| | - Cédric Dananché
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon.,Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| | - Thomas Bénet
- Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Jacques Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil
| | - Philippe Vanhems
- Equipe Epidémiologie et Santé Internationale, Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon.,Unité d'Hygiène, Epidémiologie et Prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, France
| |
Collapse
|
7
|
Affiliation(s)
- Ruediger Hauck
- Department of Pathobiology, Auburn University, Auburn, AL, USA
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | - Carolyn Cray
- Division of Comparative Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monique França
- Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Tavakoli M, Rivero-Menendez O, Abastabar M, Hedayati MT, Sabino R, Siopi M, Zarrinfar H, Nouripour-Sisakht S, van der Lee H, Valadan R, Meletiadis J, Yazdani Charati J, Seyedmousavi S, Alastruey-Izquierdo A. Genetic diversity and antifungal susceptibility patterns of Aspergillus nidulans complex obtained from clinical and environmental sources. Mycoses 2019; 63:78-88. [PMID: 31609022 DOI: 10.1111/myc.13019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022]
Abstract
The molecular epidemiology and antifungal susceptibility of Aspergillus nidulans species complex has not been well studied. To evaluate the genetic diversity and antifungal susceptibility patterns of clinical and environmental isolates of A. nidulans complex. Sixty clinical and environmental isolates of Aspergillus section Nidulantes were collected from five countries (Iran, The Netherlands, Spain, Portugal and Greece). The species were molecularly identified by sequencing of β-tubulin gene. The genetic diversity of A nidulans complex isolates (n = 54) was determined with a microsatellite genotyping assay. Antifungal susceptibility profile was determined using EUCAST method. The isolates were classified as A nidulans (46.7%), A spinulosporus (26.6%), A quadrilineatus (10%), A pachycristatus (3.3%), A rugulosus (3.3%), A unguis (5%), A creber, (1.7%), A olivicola (1.7%) and A sydowii (1.7%). Thirty-four sequence types (STs) were identified among the 54 A nidulans complex isolates. A high level of genetic diversity was found among A nidulans sensu stricto strains but low diversity was found among A spinulosporus strains. Amphotericin B showed high MICs to all species. The most active azole was posaconazole (GM = 0.64 mg/L), while itraconazole showed the highest MICs among azoles (GM = 2.95 mg/L). A spinulosporus showed higher MICs than A nidulans sensu stricto for all antifungals except for micafungin and anidulafungin. Interspecies variations may result in differences in antifungal susceptibility patterns and challenge antifungal therapy in infections caused by A nidulans. Differences in the distribution of STs or persistence of multiple STs might be related to the sources of isolation and niche specialisation.
Collapse
Affiliation(s)
- Mahin Tavakoli
- Student Research Committee, Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Olga Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mahdi Abastabar
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad T Hedayati
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raquel Sabino
- Department of Infectious Diseases/Reference Unit for Parasitic and Fungal Infections, Lisbon, Portugal
| | - Maria Siopi
- Clinical Microbiology Laboratory, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Henrich van der Lee
- Department of Medical Microbiology, Radboud University Medical Center, Center of Expertise Mycology Radboudumc/CWZ, Nijmegen, The Netherlands
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Jamshid Yazdani Charati
- Department of Statistic, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedmojtaba Seyedmousavi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Center of Expertise in Microbiology, Infection Biology and Antimicrobial Pharmacology, Tehran, Iran.,Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Lim W, Eadie K, Horst-Kreft D, Ahmed SA, Fahal AH, van de Sande WWJ. VNTR confirms the heterogeneity of Madurella mycetomatis and is a promising typing tool for this mycetoma causing agent. Med Mycol 2019; 57:434-440. [PMID: 30085253 DOI: 10.1093/mmy/myy055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 07/10/2018] [Indexed: 01/14/2023] Open
Abstract
The neglected tropical disease mycetoma is a chronic granulomatous inflammatory and infectious disease affecting various body parts. The most common causative agent is the fungus Madurella mycetomatis. In order to study the genetic diversity of this fungus and to monitor any potential outbreaks, a good typing method that can be used in endemic settings is needed. Previous typing methods developed were not discriminative and not easy to perform in resource-limited laboratories. Variable-Number-Tandem-Repeat (VNTR) typing overcomes these difficulties and further enables interlaboratory data comparison. Therefore, in this study we developed a VNTR method for typing M. mycetomatis. Six tandem-repeats were identified in the genome of M. mycetomatis isolate MM55 using an online tandem repeats software. The variation in these repeats was determined by PCR and gel-electrophoresis on DNA obtained from 81 M. mycetomatis isolates obtained from patients. These patients originated from Sudan, Mali, Peru, and India. The 81 isolates were divided into 14 genotypes which separated into two main clusters with seven and five subdivisions, respectively. VNTR typing confirms the heterogeneity of M. mycetomatis strains and can be used to study the epidemiology of M. mycetomatis. The results presented in this article are made fully available to the scientific community on request from the Eumycetoma Working Group. We hope that this open resource approach will bridge scientific community working with mycetoma from all around the world and lead to a deeper understanding of M. mycetomatis.
Collapse
Affiliation(s)
- Wilson Lim
- Erasmus MC Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| | - Kimberly Eadie
- Erasmus MC Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| | - Deborah Horst-Kreft
- Erasmus MC Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| | | | - Ahmed H Fahal
- Mycetoma Research Centre, University of Khartoum, Khartoum, Sudan
| | - Wendy W J van de Sande
- Erasmus MC Department of Medical Microbiology & Infectious Diseases, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Loeffert ST, Melloul E, Dananché C, Hénaff L, Bénet T, Cassier P, Dupont D, Guillot J, Botterel F, Wallon M, Gustin MP, Vanhems P. Monitoring of clinical strains and environmental fungal aerocontamination to prevent invasive aspergillosis infections in hospital during large deconstruction work: a protocol study. BMJ Open 2017; 7:e018109. [PMID: 29175886 PMCID: PMC5719317 DOI: 10.1136/bmjopen-2017-018109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Monitoring fungal aerocontamination is an essential measure to prevent severe invasive aspergillosis (IA) infections in hospitals. One central block among 32 blocks of Edouard Herriot Hospital (EHH) was entirely demolished in 2015, while care activities continued in surrounding blocks. The main objective was to undertake broad environmental monitoring and clinical surveillance of IA cases to document fungal dispersion during major deconstruction work and to assess clinical risk. METHODS AND ANALYSIS A daily environmental survey of fungal loads was conducted in eight wards located near the demolition site. Air was collected inside and outside selected wards by agar impact samplers. Daily spore concentrations were monitored continuously by volumetric samplers at a flow rate of 10 L.min-1. Daily temperature, wind direction and speed as well as relative humidity were recorded by the French meteorological station Meteociel. Aspergillus fumigatus strains stored will be genotyped by multiple-locus, variable-number, tandem-repeat analysis. Antifungal susceptibility will be assessed by E-test strips on Roswell Park Memorial Institute medium supplemented with agar. Ascertaining the adequacy of current environmental monitoring techniques in hospital is of growing importance, considering the rising impact of fungal infections and of curative antifungal costs. The present study could improve the daily management of IA risk during major deconstruction work and generate new data to ameliorate and redefine current guidelines. ETHICS AND DISSEMINATION This study was approved by the clinical research and ethics committees of EHH.
Collapse
Affiliation(s)
- Sophie Tiphaine Loeffert
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
| | - Elise Melloul
- EA 7380 Dynamyc, EnvA, UPEC, Université Paris Est, Créteil, France
| | - Cédric Dananché
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Unité d'hygiène, épidémiologie et prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Laetitia Hénaff
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
| | - Thomas Bénet
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Unité d'hygiène, épidémiologie et prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Pierre Cassier
- Laboratoire de Biologie Sécurité Environnement, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| | - Damien Dupont
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon, France
| | - Jacques Guillot
- EA 7380 Dynamyc, EnvA, UPEC, Université Paris Est, Créteil, France
| | | | - Martine Wallon
- Institut de Parasitologie et de Mycologie Médicale, Hôpital de la Croix Rousse, Lyon, France
| | - Marie-Paule Gustin
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Département de santé Publique, Institut des Sciences Pharmaceutiques et Biologiques (ISPB)-Faculté de Pharmacie, Université de Lyon, Lyon, France
| | - Philippe Vanhems
- Laboratoire des Pathogènes Emergents-Fondation Mérieux, Centre International de Recherche en Infectiologie (CIRI), Université de Lyon, Lyon, France
- Unité d'hygiène, épidémiologie et prévention, Groupement Hospitalier Centre, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
11
|
Greppi MC, Guillot J, Melloul E, Bourdoiseau G, Lepage O, Cadoré JL. Experimental induction of mycotic plaques in the guttural pouches of horses. Med Mycol 2017; 55:308-313. [PMID: 27703018 DOI: 10.1093/mmy/myw073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/01/2016] [Indexed: 11/14/2022] Open
Abstract
Guttural pouch mycosis (GPM) is a rare but potentially life-threatening condition in horses. GPM is caused by a fungal invasion into the mucosal lining of the guttural pouches and, frequently, the associated neurovascular structures. Although several species of fungi have been associated with this disease, Aspergillus spp. appear to be the most common isolated from the guttural pouches. However, it remains unclear which are the predisposing factors leading to the development of the infection. The objectives of the present study were to experimentally reproduce an infection by Aspergillus fumigatus and to follow the natural evolution of the mycosis. Eight guttural pouches from four horses were experimentally infected by endoscopy-guided intrapouch inoculation of A. fumigatus culture. Horses were monitored for clinical signs and development of fungal plaques through endoscopic examination. Mycotic lesions were observed in all the horses and a spontaneous regression was observed within 15-28 days. No development of clinical signs was noticed. In conclusion, we were able to induce the development of mycotic lesions and to observe a natural regression of these lesions without clinical signs.
Collapse
Affiliation(s)
- Maria Carla Greppi
- Université de Lyon, Vetagro-sup, Campus Vétérinaire de Lyon, Equine Department, Marcy l'Etoile, France
| | - Jacques Guillot
- UPE, Ecole nationale vétérinaire d'Alfort, EA 7380 Dynamyc, EnvA, UPEC, Maisons-Alfort, France
| | - Elise Melloul
- UPE, Ecole nationale vétérinaire d'Alfort, EA 7380 Dynamyc, EnvA, UPEC, Maisons-Alfort, France
| | - Gilles Bourdoiseau
- Université de Lyon, Vetagro-sup, Campus Vétérinaire de Lyon, Parasitology, Marcy l'Etoile, France
| | - Olivier Lepage
- Université de Lyon, Vetagro-sup, Campus Vétérinaire de Lyon, Equine Department, Marcy l'Etoile, France
| | - Jean-Luc Cadoré
- Université de Lyon, Vetagro-sup, Campus Vétérinaire de Lyon, Equine Department, Marcy l'Etoile, France.,UMR754 INRA Université Lyon 1, "Rétrovirus et Pathologie Comparée," Equipe "Rétrovirus, évolution et cancer," Université Lyon 1, Lyon, France
| |
Collapse
|
12
|
Spanamberg A, Ferreiro L, Machado G, Fraga CF, Araujo R. Identification and characterization of Aspergillus fumigatus isolates from broilers. PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000700005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: Aspergillosis is one of the main causes of mortality in birds. The pulmonary system is most frequently affected, with lesions observed in the air sacs and lungs of a wide variety of bird species. The aim of this study was to confirm by molecular methods the identification and the genetic diversity of Aspergillus fumigatus isolates of lung's samples from healthy broilers (Galus galus domesticus). Forty-four (9.5%) isolates of lung's samples were confirmed as A. fumigatus by polymerase chain reaction (PCR) multiplex (amplification of β-tub and rodA gene fragments). Microsatellite typing for A. fumigatus was used to analyse all avian isolates. Among them, 40 genotypes (90.9%) were observed only one time. The results showed a high variability and multiple genotypes of de A. fumigatus collected from lung's samples of broilers.
Collapse
|
13
|
Zhang YJ, Hou JX, Zhang S, Hausner G, Liu XZ, Li WJ. The intronic minisatellite OsMin1 within a serine protease gene in the Chinese caterpillar fungus Ophiocordyceps sinensis. Appl Microbiol Biotechnol 2016; 100:3599-610. [PMID: 26754819 DOI: 10.1007/s00253-016-7287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/24/2015] [Accepted: 12/29/2015] [Indexed: 12/01/2022]
Abstract
Repetitive DNA sequences make up a significant portion of all genomes and may occur in intergenic, regulatory, coding, or even intronic regions. Partial sequences of a serine protease gene csp1 was previously used as a population genetic marker of the Chinese caterpillar fungus Ophiocordyceps sinensis, but its first intron region was excluded due to ambiguous alignment. Here in this study, we report the presence of a minisatellite OsMin1 within this intron, where a 20(19)-bp repeat motif is duplicated two to six times in different isolates. Fourteen intron alleles and 13 OsMin1 alleles were identified among 125 O. sinensis samples distributed broadly on the Tibetan Plateau. Two OsMin1 alleles were prevalent, corresponding to either two or five repeats of the core sequence motif. OsMin1 appears to be a single locus marker in the O. sinensis genome, but its origin is undetermined. Abundant recombination signals were detected between upstream and downstream flanking regions of OsMin1, suggesting that OsMin1 mutate by unequal crossing over. Geographic distribution, fungal phylogeny, and host insect phylogeny all significantly affected intron distribution patterns but with the greatest influence noted for fungal genotypes and the least for geography. As far as we know, OsMin1 is the first minisatellite found in O. sinensis and the second found in fungal introns. OsMin1 may be useful in designing an efficient protocol to discriminate authentic O. sinensis from counterfeits.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Jun-Xiu Hou
- School of Life Sciences, Shanxi University, Taiyuan, 030006, China
| | - Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Xing-Zhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wen-Jia Li
- Sunshine Lake Pharma Co., LTD, Dongguan, 523808, China
| |
Collapse
|
14
|
Wang DY, Gricourt M, Arné P, Thierry S, Seguin D, Chermette R, Huang WY, Dannaoui E, Botterel F, Guillot J. Mutations in the Cyp51A gene and susceptibility to itraconazole in Aspergillus fumigatus isolated from avian farms in France and China. Poult Sci 2014; 93:12-5. [PMID: 24570417 DOI: 10.3382/ps.2013-03541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azole resistance in the fungal pathogen Aspergillus fumigatus is an emerging problem and may develop during azole therapy in humans and animals or exposure to azole fungicides in the environment. To assess the potential risk of azole-resistance emergence in avian farms where azole compounds are used for the control of avian mycoses, we conducted a drug susceptibility study including A. fumigatus isolates from birds and avian farms in France and Southern China. A total number of 175 isolates were analyzed: 57 isolates were collected in France in avian farms where chemoprophylaxis with parconazole was performed; 51 isolates were collected in southern China in avian farms where no chemoprophylaxis was performed; and 67 additional isolates came from the collection of a mycology laboratory. No resistant isolate was detected, and the distribution of minimum inhibitory concentrations was similar for isolates collected in farms with or without azole chemoprophylaxis. For 61 randomly selected isolates, the full coding sequence of the Cyp51A gene was determined to detect mutations. Nine amino acid alterations were found in the target enzyme, 3 of which were new.
Collapse
Affiliation(s)
- Dong Ying Wang
- College of Animal Science and Technology, Guangxi University, Parasitology Department,Nanning, Guangxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Thierry S, Durand B, Melloul E, Tafani JP, Wang DY, Deville M, Cordonnier N, Chermette R, Guillot J, Arné P. Assessment of Aspergillus fumigatus pathogenicity in aerosol-challenged chickens (Gallus gallus) belonging to two lineages. Comp Immunol Microbiol Infect Dis 2013; 36:379-85. [DOI: 10.1016/j.cimid.2013.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
|
16
|
Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genet Biol 2013; 55:6-21. [DOI: 10.1016/j.fgb.2013.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
|
17
|
Wang DY, Hadj-Henni L, Thierry S, Arné P, Chermette R, Botterel F, Hadrich I, Makni F, Ayadi A, Ranque S, Huang WY, Guillot J. Simple and highly discriminatory VNTR-based multiplex PCR for tracing sources of Aspergillus flavus isolates. PLoS One 2012; 7:e44204. [PMID: 23028503 PMCID: PMC3444452 DOI: 10.1371/journal.pone.0044204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/30/2012] [Indexed: 11/26/2022] Open
Abstract
Aspergillus flavus is second only to A. fumigatus in causing invasive aspergillosis and it is the major agent responsible for fungal sinusitis, keratitis and endophthalmitis in many countries in the Middle East, Africa and Southeast Asia. Despite the growing challenge due to A. flavus, data on the molecular epidemiology of this fungus remain scarce. The objective of the present study was to develop a new typing method based on the detection of VNTR (Variable number tandem repeat) markers. Eight VNTR markers located on 6 different chromosomes (1, 2, 3, 5, 7 and 8) of A. flavus were selected, combined by pairs for multiplex amplifications and tested on 30 unrelated isolates and six reference strains. The Simpson index for individual markers ranged from 0.398 to 0.818. A combined loci index calculated with all the markers yielded an index of 0.998. The MLVA (Multiple Locus VNTR Analysis) technique proved to be specific and reproducible. In a second time, a total of 55 isolates from Chinese avian farms and from a Tunisian hospital have been evaluated. One major cluster of genotypes could be defined by using the graphing algorithm termed Minimum Spanning Tree. This cluster comprised most of the isolates collected in an avian farm in southern China. The MLVA technique should be considered as an excellent and cost-effective typing method that could be used in many laboratories without the need for sophisticated equipment.
Collapse
Affiliation(s)
- Dong Ying Wang
- Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Leila Hadj-Henni
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Simon Thierry
- ANSES, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - Pascal Arné
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | - René Chermette
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
| | | | - Inès Hadrich
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Fattouma Makni
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Ali Ayadi
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Sfax, Tunisia
| | - Stéphane Ranque
- Aix-Marseille Université, UMR MD3, Marseille, France
- APHM, Timone, Laboratoire de Parasitologie-Mycologie, Marseille, France
| | - Wei Yi Huang
- Parasitology Department, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Jacques Guillot
- ENVA, Laboratoire de Santé Animale, UMR BIPAR, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
18
|
Hadrich I, Drira I, Neji S, Mahfoud N, Ranque S, Makni F, Ayadi A. Microsatellite typing of Aspergillus flavus from clinical and environmental avian isolates. J Med Microbiol 2012; 62:121-125. [PMID: 22977077 DOI: 10.1099/jmm.0.047803-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aspergillosis is one of the most common causes of death in captive birds. Aspergillus fumigatus accounts for approximately 95 % of aspergillosis cases and Aspergillus flavus is the second most frequent organism associated with avian infections. In the present study, the fungi were grown from avian clinical samples (post-mortem lung material) and environmental samples (eggs, food and litter). Microsatellite markers were used to type seven clinical avian isolates and 22 environmental isolates of A. flavus. A. flavus was the only species (28 % prevalence) detected in the avian clinical isolates, whereas this species ranked third (19 %) after members of the genera Penicillium (39 %) and Cladosporium (21 %) in the environmental samples. Upon microsatellite analysis, five to eight distinct alleles were detected for each marker. The marker with the highest discriminatory power had eight alleles and a 0.852 D value. The combination of all six markers yielded a 0.991 D value with 25 distinct genotypes. One clinical avian isolate (lung biopsy) and one environmental isolate (egg) shared the same genotype. Microsatellite typing of A. flavus grown from avian and environmental samples displayed an excellent discriminatory power and 100 % reproducibility. This study showed a clustering of clinical and environmental isolates, which were clearly separated. Based upon these results, aspergillosis in birds may be induced by a great diversity of isolates.
Collapse
Affiliation(s)
- Inès Hadrich
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Rue Magida Boulila, 3029 Sfax, Tunisia
| | - Inès Drira
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Rue Magida Boulila, 3029 Sfax, Tunisia
| | - Sourour Neji
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Rue Magida Boulila, 3029 Sfax, Tunisia
| | - Nedia Mahfoud
- Service du Laboratoire, CHU Hèdi-Chaker, 3029 Sfax, Tunisia
| | - Stéphane Ranque
- Aix-Marseille Université, IP-TPT UMR MD3, 13885 Marseille, France.,Parasitology & Mycology, CHU Timone-Adultes, Assistance Publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - Fattouma Makni
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Rue Magida Boulila, 3029 Sfax, Tunisia
| | - Ali Ayadi
- Laboratoire de Biologie Moléculaire Parasitaire et Fongique, Faculté de Médecine de Sfax, Rue Magida Boulila, 3029 Sfax, Tunisia
| |
Collapse
|
19
|
Genetic structure of Aspergillus flavus populations in human and avian isolates. Eur J Clin Microbiol Infect Dis 2012; 32:277-82. [PMID: 22956010 DOI: 10.1007/s10096-012-1740-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
Aspergillus flavus is the second leading cause of allergic, invasive, and colonizing fungal diseases in humans, and also the second most frequent organism associated with avian infections. Currently, it is not known whether there is a link between the environmental isolates and/or human isolates of A. flavus and those responsible for aspergillosis in birds. Microsatellite typing was used to analyze 29 A. flavus clinical and environmental avian isolates and 63 human clinical isolates collected from patients with a variety of aspergillosis diseases. The combination of all six markers yielded 77 different genotypes with a 0.98 D value. A. flavus genotypes obtained from avian isolates were compared with those obtained from human clinical and environmental samples. The standardized indices of association I (A) and rBarD were significantly different from zero (p < 0.01), suggesting a prevailing clonal reproduction. There was high genetic diversity between the hospital and poultry environments of A. flavus isolates. The human environmental population was significantly differentiated from environmental and clinical avian populations (F (st) > 0.25). The avian clinical subpopulation exchanged few strains with the environmental human (N (m) = 7.24) and avian (N (m) = 6.60) populations. The minimum spanning tree analysis identified three A. flavus genotype clusters that were highly structured according to the isolation source (p < 10(-4)).
Collapse
|
20
|
Molecular epidemiology of mycobacteriosis in wildlife and pet animals. Vet Clin North Am Exot Anim Pract 2011; 15:1-23, v. [PMID: 22244110 DOI: 10.1016/j.cvex.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The ecology of mycobacteria is shifting in accordance with environmental change and new patterns of interaction between wildlife, humans, and nondomestic animals. Infection of vertebrate hosts throughout the world is greater now than ever and includes a growing prevalence in free ranging and captive wild animals. Molecular epidemiologic studies using standardized methods with high discriminatory power are useful for tracking individual cases and outbreaks, identifying reservoirs, and describing patterns of transmission and are used with increasing frequency to characterize disease wildlife. This review describes current features of mycobacteriosis in wildlife species based on traditional descriptive studies and recent molecular applications.
Collapse
|
21
|
Molecular epidemiology of Aspergillus fumigatus: an in-depth genotypic analysis of isolates involved in an outbreak of invasive aspergillosis. J Clin Microbiol 2011; 49:3498-503. [PMID: 21832010 DOI: 10.1128/jcm.01159-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported an outbreak of invasive aspergillosis in the major heart surgery unit of Hospital Gregorio Marañón, Madrid, Spain (T. Peláez, P. Muñoz, J. Guinea, M. Valerio, M. Giannella, C. H. W. Klaassen, and E. Bouza, Clin. Infect. Dis., in press). Aspergillus fumigatus was isolated from clinical samples from 10 patients admitted to the unit during the outbreak period (surgical wound invasive aspergillosis, n = 2; probable pulmonary invasive aspergillosis, n = 4; colonization, n = 4). In the study described here, we have studied the genotypic diversity of the A. fumigatus isolates found in the air and clinical samples. We used short tandem repeats of A. fumigatus (STRAf) typing to analyze the genotypes found in the 168 available A. fumigatus isolates collected from the clinical samples (n = 109) from the patients and from the environmental samples taken from the air of the unit (n = 59). The genotypic variability of A. fumigatus was higher in environmental than in clinical samples. Intrasample variability was also higher in environmental than in clinical samples: 2 or more different genotypes were found in 26% and 89% of clinical and environmental samples, respectively. We found matches between environmental and clinical isolates in 3 of the 10 patients: 1 patient with postsurgical invasive aspergillosis and 2 patients with probable pulmonary invasive aspergillosis. A total of 7 genotypes from 3 different patients and the air grouped together in 2 clusters. Clonally related genotypes and microvariants were detected in both clinical and environmental samples. STRAf typing proved to be a valuable tool for identifying the source of invasive aspergillosis outbreaks and for studying the genotypic diversity of clinical and environmental A. fumigatus isolates.
Collapse
|
22
|
Abstract
Aspergillus fumigatus remains a major respiratory pathogen in birds. In poultry, infection by A. fumigatus may induce significant economic losses particularly in turkey production. A. fumigatus develops and sporulates easily in poor quality bedding or contaminated feedstuffs in indoor farm environments. Inadequate ventilation and dusty conditions increase the risk of bird exposure to aerosolized spores. Acute cases are seen in young animals following inhalation of spores, causing high morbidity and mortality. The chronic form affects older birds and looks more sporadic. The respiratory tract is the primary site of A. fumigatus development leading to severe respiratory distress and associated granulomatous airsacculitis and pneumonia. Treatments for infected poultry are nonexistent; therefore, prevention is the only way to protect poultry. Development of avian models of aspergillosis may improve our understanding of its pathogenesis, which remains poorly understood.
Collapse
|