1
|
Kaiser A, Agostinelli E. Hypusinated EIF5A as a feasible drug target for Advanced Medicinal Therapies in the treatment of pathogenic parasites and therapy-resistant tumors. Amino Acids 2022; 54:501-511. [DOI: 10.1007/s00726-021-03120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
|
2
|
Kaiser A, Heiss K, Mueller AK, Fimmers R, Matthes J, Njuguna JT. Inhibition of EIF-5A prevents apoptosis in human cardiomyocytes after malaria infection. Amino Acids 2020; 52:693-710. [PMID: 32367435 DOI: 10.1007/s00726-020-02843-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.
Collapse
Affiliation(s)
- Annette Kaiser
- Medical Research Centre, University Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- German Center for Infectious Diseases (DZIF), Heidelberg, Germany
| | - Rolf Fimmers
- Institut für Medizinische Biometrie, Informatik Und Epedimologie, Sigmund-Freud-Strasse 25, 53107, Bonn, Germany
| | - Jan Matthes
- Centre of Pharmcology, University of Cologne, Gleueler Strasse 24, 50931, Köln, Germany
| | | |
Collapse
|
3
|
Habib S, Vaishya S, Gupta K. Translation in Organelles of Apicomplexan Parasites. Trends Parasitol 2016; 32:939-952. [DOI: 10.1016/j.pt.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
|
4
|
Kersting D, Krüger M, Sattler JM, Mueller AK, Kaiser A. A suggested vital function for eIF-5A and dhs genes during murine malaria blood-stage infection. FEBS Open Bio 2016; 6:860-72. [PMID: 27516964 PMCID: PMC4971841 DOI: 10.1002/2211-5463.12093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/07/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022] Open
Abstract
The biological function of the post-translational modification hypusine in the eukaryotic initiation factor 5A (EIF-5A) in eukaryotes is still not understood. Hypusine is formed by two sequential enzymatic steps at a specific lysine residue in the precursor protein EIF-5A. One important biological function of EIF-5A which was recently identified is the translation of polyproline-rich mRNA, suggesting its biological relevance in a variety of biological processes. Hypusinated eIF-5A controls the proliferation of cancer cells and inflammatory processes in malaria. It was shown that pharmacological inhibition of the enzymes involved in this pathway, deoxyhypusine synthase (DHS) and the deoxyhypusine hydroxylase (DOHH), arrested the growth of malaria parasites. Down-regulation of both the malarial eIF-5A and dhs genes by in vitro and in vivo silencing led to decreased transcript levels and protein expression and, in turn, to low parasitemia, confirming a critical role of hypusination in eIF-5A for proliferation in Plasmodium. To further investigate whether eIF-5A and the activating enzyme DHS are essential for Plasmodium erythrocytic stages, targeted gene disruption was performed in the rodent malaria parasite Plasmodium berghei. Full disruption of both genes was not successful; instead parasites harboring the episome for eIF-5A and dhs genes were obtained, suggesting that these genes may perform vital functions during the pathogenic blood cell stage. Next, a knock-in strategy was pursued for both endogenous genes eIF-5A and dhs from P. berghei. The latter resulted in viable recombinant parasites, strengthening the observation that they might be essential for proliferation during asexual development of the malaria parasite.
Collapse
Affiliation(s)
- David Kersting
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| | - Mirko Krüger
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| | - Julia M Sattler
- Parasitology Unit Centre for Infectious Diseases University Hospital Heidelberg Germany; Centre for Infectious Diseases, Integrative Parasitology University Hospital Heidelberg Germany
| | - Ann-Kristin Mueller
- Parasitology Unit Centre for Infectious Diseases University Hospital Heidelberg Germany; German Center for Infectious Diseases Heidelberg Germany
| | - Annette Kaiser
- Institute for Pharmacogenetics Medical Research Centre University Duisburg-Essen Germany
| |
Collapse
|
5
|
Inhibition of Plasmodium falciparum proliferation in vitro by double-stranded RNA nanoparticle against malaria topoisomerase II. Exp Parasitol 2016; 164:84-90. [DOI: 10.1016/j.exppara.2016.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
|
6
|
Rubio M, Bassat Q, Estivill X, Mayor A. Tying malaria and microRNAs: from the biology to future diagnostic perspectives. Malar J 2016; 15:167. [PMID: 26979504 PMCID: PMC4793504 DOI: 10.1186/s12936-016-1222-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Symptoms caused by bacterial, viral and malarial infections usually overlap and aetiologic diagnosis is difficult. Patient management in low-resource countries with limited laboratory services has been based predominantly on clinical evaluation and syndromic approaches. However, such clinical assessment has limited accuracy both for identifying the likely aetiological cause and for the early recognition of patients who will progress to serious or fatal disease. Plasma-detectable biomarkers that rapidly and accurately diagnose severe infectious diseases could reduce morbidity and decrease the unnecessary use of usually scarce therapeutic drugs. The discovery of microRNAs (miRNAs) has opened exciting new avenues to identify blood biomarkers of organ-specific injury. This review assesses current knowledge on the relationship between malaria disease and miRNAs, and evaluates how future research might lead to the use of these small molecules for identifying patients with severe malaria disease and facilitate treatment decisions.
Collapse
Affiliation(s)
- Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Xavier Estivill
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; CIBER in Epidemiology and Public Health (CIBERESP), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Experimental Genetics, Sidra Medical and Research Centre, Doha, Qatar
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain. .,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
7
|
Choi J, Kim KT, Jeon J, Wu J, Song H, Asiegbu FO, Lee YH. funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi. BMC Genomics 2014; 15 Suppl 9:S14. [PMID: 25522231 PMCID: PMC4290597 DOI: 10.1186/1471-2164-15-s9-s14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. DESCRIPTION To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. CONCLUSIONS funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.
Collapse
Affiliation(s)
- Jaeyoung Choi
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
- Fungal Bioinformatics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Ki-Tae Kim
- Fungal Bioinformatics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Jongbum Jeon
- Fungal Bioinformatics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Jiayao Wu
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Hyeunjeong Song
- Fungal Bioinformatics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Yong-Hwan Lee
- Center for Fungal Pathogenesis, Seoul National University, Seoul 151-921, Korea
- Fungal Bioinformatics Laboratory, Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
- Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
8
|
Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. ACTA ACUST UNITED AC 2014; 21:61. [PMID: 25402734 PMCID: PMC4234044 DOI: 10.1051/parasite/2014059] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
9
|
Mittal N, Morada M, Tripathi P, Gowri VS, Mandal S, Quirch A, Park MH, Yarlett N, Madhubala R. Cryptosporidium parvum has an active hypusine biosynthesis pathway. Mol Biochem Parasitol 2014; 195:14-22. [PMID: 24893338 PMCID: PMC4176827 DOI: 10.1016/j.molbiopara.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/21/2014] [Accepted: 05/25/2014] [Indexed: 11/25/2022]
Abstract
The protozoan parasite Cryptosporidium parvum causes severe enteric infection and diarrheal disease with substantial morbidity and mortality in untreated AIDS patients and children in developing or resource-limited countries. No fully effective treatment is available. Hypusination of eIF5A is an important post-translational modification essential for cell proliferation. This modification occurs in a two step process catalyzed by deoxyhypusine synthase (DHS) followed by deoxyhypusine hydroxylase. An ORF of 1086bp was identified in the C. parvum (Cp) genome which encodes for a putative polypeptide of 362 amino acids. The recombinant CpDHS protein was purified to homogeneity and used to probe the enzyme's mechanism, structure, and inhibition profile in a series of kinetic experiments. Sequence analysis and structural modeling of CpDHS were performed to probe differences with respect to the DHS of other species. Unlike Leishmania, Trypanosomes and Entamoeba, Cryptosporidium contains only a single gene for DHS. Phylogenetic analysis shows that CpDHS is more closely related to apicomplexan DHS than kinetoplastid DHS. Important residues that are essential for the functioning of the enzyme including NAD(+) binding residues, spermidine binding residues and the active site lysine are conserved between CpDHS and human DHS. N(1)-guanyl-1,7-diaminoheptane (GC7), a potent inhibitor of DHS caused an effective inhibition of infection and growth of C. parvum in HCT-8 cells.
Collapse
Affiliation(s)
- Nimisha Mittal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Marie Morada
- Haskins Laboratories, and the Department of Chemistry and Physical Sciences, Pace University, USA
| | - Pankaj Tripathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - V S Gowri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swati Mandal
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institute of Health, Bethesda, MD 20892-4340, USA
| | - Alison Quirch
- Haskins Laboratories, and the Department of Chemistry and Physical Sciences, Pace University, USA
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institute of Health, Bethesda, MD 20892-4340, USA
| | - Nigel Yarlett
- Haskins Laboratories, and the Department of Chemistry and Physical Sciences, Pace University, USA
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
10
|
Target evaluation of deoxyhypusine synthase from Theileria parva the neglected animal parasite and its relationship to Plasmodium. Bioorg Med Chem 2014; 22:4338-46. [PMID: 24909679 DOI: 10.1016/j.bmc.2014.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 11/20/2022]
Abstract
East Coast fever (ECF) is a tick-borne disease caused by the parasite Theileria parva which infects cattle. In Sub-Saharan Africa it leads to enormous economic costs. After a bite of a tick, sporozoites invade the host lymphocytes and develop into schizonts. At this stage the parasite transforms host lymphocytes resulting in the clonal expansion of infected lymphocytes. Animals develop a lymphoma like disorder after infection which is rapidly fatal. Hitherto, a few drugs of the quinone type can cure the disease. However, therapy can only be successful after early diagnosis. The genera Theileria and Plasmodium, which includes the causative agent of human malaria, are closely related apicomplexan parasites. Enzymes of the hypusine pathway, a posttranslational modification in eukaryotic initiation factor EIF-5A, have shown to be druggable targets in Plasmodium. We identified the first enzyme of the hypusine pathway from T. parva, the deoxyhypusine synthase (DHS), which is located on chromosome 2 of the Muguga strain. Transcription is significantly increased in schizonts. The expressed T. parva DHS reveals an open reading frame (ORF) of 370 amino acids after expression in Escherichia coli Rosetta cells with a molecular size of 41.26 kDa and a theoretical pI of 5.26. Screening of the Malaria Box which consists of 400 active compounds resulted in a novel heterocyclic compound with a guanyl spacer which reduced the activity of T. parva DHS to 45%. In sum, the guanyl residue seems to be an important lead structure for inhibition of Theileria DHS. Currently, more different guanyl analogues from the Malaria Box are tested in inhibitor experiments to determine their efficacy.
Collapse
|
11
|
Nishiki Y, Farb TB, Friedrich J, Bokvist K, Mirmira RG, Maier B. Characterization of a novel polyclonal anti-hypusine antibody. SPRINGERPLUS 2013; 2:421. [PMID: 24024105 PMCID: PMC3765601 DOI: 10.1186/2193-1801-2-421] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022]
Abstract
The translation factor eIF5A is the only protein known to contain the amino acid hypusine, which is formed posttranslationally. Hypusinated eIF5A is necessary for cellular proliferation and responses to extracellular stressors, and has been proposed as a target for pharmacologic therapy. Here, we provide the first comprehensive characterization of a novel polyclonal antibody (IU-88) that specifically recognizes the hypusinated eIF5A. IU-88 will be useful for the investigation of eIF5A biology and for the development of assays recognizing hypusinated eIF5A.
Collapse
Affiliation(s)
- Yurika Nishiki
- Departments of Medicine, Cellular and Integrative Physiology, and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | | | | | | | | | |
Collapse
|
12
|
Chemical profiling of deoxyhypusine hydroxylase inhibitors for antimalarial therapy. Amino Acids 2013; 45:1047-53. [PMID: 23943044 DOI: 10.1007/s00726-013-1575-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/02/2013] [Indexed: 02/07/2023]
Abstract
A first approach to discover new antimalarials has been recently performed in a combined approach with data from GlaxoSmithKline Tres Cantos Antimalarial Set, Novartis-GNF Malaria Box Data set and St. Jude Children's Research Hospital. These data are assembled in the Malaria Box. In a first phenotypic forward chemical genetic approach, 400 chemicals were employed to eradicate the parasite in the erythrocytic stages. The advantage of phenotypic screens for the identification of novel chemotypes is that no a priori assumptions are made concerning a fixed target and that active compounds inherently have cellular bioavailability. In a first screen 40 mostly heterocyclic, highly active compounds (in nmol range of growth inhibition) were identified with EC50 values ≤2 μM against chloroquine-resistant Plasmodium falciparum strains and a therapeutic window ≥10 against two mammalian cell lines. 78 % of the compounds had no violations with the Lipinski Rule of 5 and only 1 % of the compounds showed cytotoxicity when applied at concentrations of 10 μM. This pre-selective step of parasitic eradication will be used further for a test of the Malaria Box with a potential in iron chelating capacity to inhibit deoxyhypusine hydroxylase (DOHH) from P. falciparum and vivax. DOHH, a metalloprotein which consists of ferrous iron and catalyzes the second step of the posttranslational modification at a specific lysine in eukaryotic initiation factor 5A (EIF-5A) to hypusine. Hypusine is a novel, non-proteinogenic amino acid, which is essential in eukaryotes and for parasitic proliferation. DOHH seems to be a "druggable" target, since it has only 26 % amino acid identity to its human orthologue. For a High-throughput Screening (HTS) of DOOH inhibitors, rapid and robust analytical tools are a prerequisite. A proteomic platform for the detection of hypusine metabolites is currently established. Ultra performance Liquid Chromatography enables the detection of hypusine metabolites with retention times of 7.4 min for deoxyhypusine and 7.3 min for hypusine. Alternatively, the analytes can be detected by their masses with gas chromatography/mass spectrometry or one-dimensional chromatography coupled to mass spectrometry. Moreover, the identified hits will be tracked further to test their efficacy in novel "in vitro assays". Subsequently in vivo inhibition in a humanized mouse model will be tested.
Collapse
|