1
|
Li W, Wang Y, Gao J, Wang A. Antimicrobial resistance and its risks evaluation in wetlands on the Qinghai-Tibetan Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116699. [PMID: 38981389 DOI: 10.1016/j.ecoenv.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
Amidst the global antimicrobial resistance (AMR) crisis, antibiotic resistance has permeated even the most remote environments. To understand the dissemination and evolution of AMR in minimally impacted ecosystems, the resistome and mobilome of wetlands across the Qinghai-Tibetan Plateau and its marginal regions were scrutinized using metagenomic sequencing techniques. The composition of wetland microbiomes exhibits significant variability, with dominant phyla including Proteobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia. Notably, a substantial abundance of Antibiotic Resistance Genes (ARGs) and Mobile Genetic Elements (MGEs) was detected, encompassing 17 ARG types, 132 ARG subtypes, and 5 types of MGEs (Insertion Sequences, Insertions Sequences, Genomic Islands, Transposons, and Integrative Conjugative Elements). No significant variance was observed in the prevalence of resistome and mobilome across different wetland types (i.e., the Yellow River, other rivers, lakes, and marshes) (R=-0.5882, P=0.607). The co-occurrence of 74 ARG subtypes and 22 MGEs was identified, underscoring the pivotal role of MGEs in shaping ARG pools within the Qinghai-Tibetan Plateau wetlands. Metagenomic binning and analysis of assembled genomes (MAGs) revealed that 93 out of 206 MAGs harbored ARGs (45.15 %). Predominantly, Burkholderiales, Pseudomonadales, and Enterobacterales were identified as the primary hosts of these ARGs, many of which represent novel species. Notably, a substantial proportion of ARG-carrying MAGs also contained MGEs, reaffirming the significance of MGEs in AMR dissemination. Furthermore, utilizing the arg_ranker framework for risk assessment unveiled severe contamination of high-risk ARGs across most plateau wetlands. Moreover, some prevalent human pathogens were identified as potential hosts for these high-risk ARGs, posing substantial transmission risks. This study aims to investigate the prevalence of resistome and mobilome in wetlands, along with evaluating the risk posed by high-risk ARGs. Such insights are crucial for informing environmental protection strategies and facilitating the management of water resources on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China
| | - Yanfang Wang
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China
| | - Jianxin Gao
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China
| | - Ailan Wang
- School of Life Sciences, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Pawełczyk J, Brzostek A, Minias A, Płociński P, Rumijowska-Galewicz A, Strapagiel D, Zakrzewska-Czerwińska J, Dziadek J. Cholesterol-dependent transcriptome remodeling reveals new insight into the contribution of cholesterol to Mycobacterium tuberculosis pathogenesis. Sci Rep 2021; 11:12396. [PMID: 34117327 PMCID: PMC8196197 DOI: 10.1038/s41598-021-91812-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen that can adapt to the various nutrients available during its life cycle. However, in the nutritionally stringent environment of the macrophage phagolysosome, Mtb relies mainly on cholesterol. In previous studies, we demonstrated that Mtb can accumulate and utilize cholesterol as the sole carbon source. However, a growing body of evidence suggests that a lipid-rich environment may have a much broader impact on the pathogenesis of Mtb infection than previously thought. Therefore, we applied high-resolution transcriptome profiling and the construction of various mutants to explore in detail the global effect of cholesterol on the tubercle bacillus metabolism. The results allow re-establishing the complete list of genes potentially involved in cholesterol breakdown. Moreover, we identified the modulatory effect of vitamin B12 on Mtb transcriptome and the novel function of cobalamin in cholesterol metabolite dissipation which explains the probable role of B12 in Mtb virulence. Finally, we demonstrate that a key role of cholesterol in mycobacterial metabolism is not only providing carbon and energy but involves also a transcriptome remodeling program that helps in developing tolerance to the unfavorable host cell environment far before specific stress-inducing phagosomal signals occur.
Collapse
Affiliation(s)
- Jakub Pawełczyk
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Anna Brzostek
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Alina Minias
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Przemysław Płociński
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland ,grid.10789.370000 0000 9730 2769Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Anna Rumijowska-Galewicz
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Dominik Strapagiel
- grid.10789.370000 0000 9730 2769Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Poland
| | - Jolanta Zakrzewska-Czerwińska
- grid.8505.80000 0001 1010 5103Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jarosław Dziadek
- grid.413454.30000 0001 1958 0162Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
3
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JH. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:60482. [PMID: 32924932 DOI: 10.1101/2020.06.26.174334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 05/24/2023] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
- Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Environmental Science, Policy and Management, University of California Berkeley, Berkeley, United States
| | - Jamie Hd Cate
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
4
|
Watson ZL, Ward FR, Méheust R, Ad O, Schepartz A, Banfield JF, Cate JHD. Structure of the bacterial ribosome at 2 Å resolution. eLife 2020; 9:e60482. [PMID: 32924932 PMCID: PMC7550191 DOI: 10.7554/elife.60482] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Using cryo-electron microscopy (cryo-EM), we determined the structure of the Escherichia coli 70S ribosome with a global resolution of 2.0 Å. The maps reveal unambiguous positioning of protein and RNA residues, their detailed chemical interactions, and chemical modifications. Notable features include the first examples of isopeptide and thioamide backbone substitutions in ribosomal proteins, the former likely conserved in all domains of life. The maps also reveal extensive solvation of the small (30S) ribosomal subunit, and interactions with A-site and P-site tRNAs, mRNA, and the antibiotic paromomycin. The maps and models of the bacterial ribosome presented here now allow a deeper phylogenetic analysis of ribosomal components including structural conservation to the level of solvation. The high quality of the maps should enable future structural analyses of the chemical basis for translation and aid the development of robust tools for cryo-EM structure modeling and refinement.
Collapse
Affiliation(s)
- Zoe L Watson
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Fred R Ward
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Raphaël Méheust
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
| | - Omer Ad
- Department of Chemistry, Yale UniversityNew HavenUnited States
| | - Alanna Schepartz
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Earth and Planetary Science, University of California, BerkeleyBerkeleyUnited States
- Environmental Science, Policy and Management, University of California BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| |
Collapse
|
5
|
Studies on Aminoglycoside Susceptibility Identify a Novel Function of KsgA To Secure Translational Fidelity during Antibiotic Stress. Antimicrob Agents Chemother 2018; 62:AAC.00853-18. [PMID: 30082289 DOI: 10.1128/aac.00853-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has become a global crisis. Studies on the mechanism of bacterial tolerance to antibiotics will not only increase our conceptual understanding of bacterial death but also provide potential targets for novel inhibitors. We screened a mutant library containing a full set of in-frame deletion mutants of Escherichia coli K-12 and identified 140 genes that possibly contribute to gentamicin tolerance. The deletion of ksgA increased the inhibition and killing potency against mid-log-phase bacteria by aminoglycosides. Initially identified as a 16S rRNA methyltransferase, KsgA also has additional functions as a ribosomal biogenesis factor and a DNA glycosylase. We found that the methyltransferase activity of KsgA is responsible for the tolerance, as demonstrated by a site-directed mutagenesis analysis. In contrast to the mechanism for cold sensitivity, the decreased tolerance to aminoglycoside is not related to the failure of ribosomal biogenesis. Furthermore, the DNA glycosylase activity of KsgA contributes minimally to kanamycin tolerance. Importantly, we discovered that KsgA secures protein translational fidelity upon kanamycin killing, in contrast to its role during cold stress and kasugamycin treatment. The results suggest that the compromise in protein translational fidelity in the absence of KsgA is the root cause of an increased sensitivity to a bactericidal aminoglycoside. In addition, KsgA in the pathogenic Acinetobacter baumannii contributes not only to the tolerance against aminoglycoside killing but also to virulence in the host, warranting its potential application as a target for inhibitors that potentiate aminoglycoside therapeutic killing as well as disarm bacterial virulence simultaneously.
Collapse
|
6
|
Chiok KL, Paul NC, Adekanmbi EO, Srivastava SK, Shah DH. Dimethyl adenosine transferase (KsgA) contributes to cell-envelope fitness in Salmonella Enteritidis. Microbiol Res 2018; 216:108-119. [PMID: 30269850 DOI: 10.1016/j.micres.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023]
Abstract
We previously reported that inactivation of a universally conserved dimethyl adenosine transferase (KsgA) attenuates virulence and increases sensitivity to oxidative and osmotic stress in Salmonella Enteritidis. Here, we show a role of KsgA in cell-envelope fitness as a potential mechanism underlying these phenotypes in Salmonella. We assessed structural integrity of the cell-envelope by transmission electron microscopy, permeability barrier function by determining intracellular accumulation of ethidium bromide and electrophysical properties by dielectrophoresis, an electrokinetic tool, in wild-type and ksgA knock-out mutants of S. Enteritidis. Deletion of ksgA resulted in disruption of the structural integrity, permeability barrier and distorted electrophysical properties of the cell-envelope. The cell-envelope fitness defects were alleviated by expression of wild-type KsgA (WT-ksgA) but not by its catalytically inactive form (ksgAE66A), suggesting that the dimethyl transferase activity of KsgA is important for cell-envelope fitness in S. Enteritidis. Upon expression of WT-ksgA and ksgAE66A in inherently permeable E. coli cells, the former strengthened and the latter weakened the permeability barrier, suggesting that KsgA also contributes to the cell-envelope fitness in E. coli. Lastly, expression of ksgAE66A exacerbated the cell-envelope fitness defects, resulting in impaired S. Enteritidis interactions with human intestinal epithelial cells, and human and avian phagocytes. This study shows that KsgA contributes to cell-envelope fitness and opens new avenues to modulate cell-envelopes via use of KsgA-antagonists.
Collapse
Affiliation(s)
- Kim Lam Chiok
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA
| | - Ezekiel O Adekanmbi
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, Idaho 83844-1021, USA
| | - Soumya K Srivastava
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, Idaho 83844-1021, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164-7040, USA; Paul Allen School for Global Animal Health, Washington State University, Pullman, WA 99164-7040, USA.
| |
Collapse
|
7
|
Smith BA, Gupta N, Denny K, Culver GM. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli. J Mol Biol 2018; 430:1745-1759. [PMID: 29660326 DOI: 10.1016/j.jmb.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/02/2023]
Abstract
Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway.
Collapse
Affiliation(s)
- Brian A Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Neha Gupta
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Denny
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Chemistry and Biochemistry Department, Nazareth College, Pittsford, NY 14618, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA; Center for RNA Biology: from Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
8
|
16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus. Biochimie 2015; 119:166-74. [PMID: 26545800 DOI: 10.1016/j.biochi.2015.10.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/28/2015] [Indexed: 11/21/2022]
Abstract
We previously reported that the rRNA methyltransferases RsmI and RsmH, which are responsible for cytidine dimethylation at position 1402 of 16S rRNA in the decoding center of the ribosome, contribute to Staphylococcus aureus virulence. Here we evaluated other 16S rRNA methyltransferases, including KsgA (RsmA), RsmB/F, RsmC, RsmD, RsmE, and RsmG. Knockout of KsgA, which methylates two adjacent adenosines at positions 1518 and 1519 of 16S rRNA in the intersubunit bridge of the ribosome, attenuated the S. aureus killing ability against silkworms. The ksgA knockout strain was sensitive to oxidative stress and had a lower survival rate in murine macrophages than the parent strain. The ksgA knockout strain exhibited decreased translational fidelity in oxidative stress conditions. Administration of N-acetyl-l-cysteine, a free-radical scavenger, restored the killing ability of the ksgA knockout strain against silkworms. These findings suggest that the methyl-modifications of 16S rRNA by KsgA contribute to maintain ribosome function under oxidative conditions and thus to S. aureus virulence.
Collapse
|
9
|
Wall EA, Caufield JH, Lyons CE, Manning KA, Dokland T, Christie GE. Specific N-terminal cleavage of ribosomal protein L27 in Staphylococcus aureus and related bacteria. Mol Microbiol 2014; 95:258-69. [PMID: 25388641 DOI: 10.1111/mmi.12862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
Abstract
Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram-negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.
Collapse
Affiliation(s)
- Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
10
|
Dimethyl adenosine transferase (KsgA) deficiency in Salmonella enterica Serovar Enteritidis confers susceptibility to high osmolarity and virulence attenuation in chickens. Appl Environ Microbiol 2013; 79:7857-66. [PMID: 24123731 DOI: 10.1128/aem.03040-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dimethyl adenosine transferase (KsgA) performs diverse roles in bacteria, including ribosomal maturation and DNA mismatch repair, and synthesis of KsgA is responsive to antibiotics and cold temperature. We previously showed that a ksgA mutation in Salmonella enterica serovar Enteritidis results in impaired invasiveness in human and avian epithelial cells. In this study, we tested the virulence of a ksgA mutant (the ksgA::Tn5 mutant) of S. Enteritidis in orally challenged 1-day-old chickens. The ksgA::Tn5 mutant showed significantly reduced intestinal colonization and organ invasiveness in chickens compared to those of the wild-type (WT) parent. Phenotype microarray (PM) was employed to compare the ksgA::Tn5 mutant and its isogenic wild-type strain for 920 phenotypes at 28°C, 37°C, and 42°C. At chicken body temperature (42°C), the ksgA::Tn5 mutant showed significantly reduced respiratory activity with respect to a number of carbon, nitrogen, phosphate, sulfur, and peptide nitrogen nutrients. The greatest differences were observed in the osmolyte panel at concentrations of ≥6% NaCl at 37°C and 42°C. In contrast, no major differences were observed at 28°C. In independent growth assays, the ksgA::Tn5 mutant displayed a severe growth defect in high-osmolarity (6.5% NaCl) conditions in nutrient-rich (LB) and nutrient-limiting (M9 minimum salts) media at 42°C. Moreover, the ksgA::Tn5 mutant showed significantly reduced tolerance to oxidative stress, but its survival within macrophages was not impaired. Unlike Escherichia coli, the ksgA::Tn5 mutant did not display a cold-sensitivity phenotype; however, it showed resistance to kasugamycin and increased susceptibility to chloramphenicol. To the best of our knowledge, this is the first report showing the role of ksgA in S. Enteritidis virulence in chickens, tolerance to high osmolarity, and altered susceptibility to kasugamycin and chloramphenicol.
Collapse
|