1
|
Silva S, Altmannova V, Eckert-Boulet N, Kolesar P, Gallina I, Hang L, Chung I, Arneric M, Zhao X, Buron LD, Mortensen UH, Krejci L, Lisby M. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair (Amst) 2016; 42:11-25. [PMID: 27130983 DOI: 10.1016/j.dnarep.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
Abstract
Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Veronika Altmannova
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Nadine Eckert-Boulet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Peter Kolesar
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Irene Gallina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Lisa Hang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Inn Chung
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Milica Arneric
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Line Due Buron
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
2
|
Lee M, Lee CH, Demin AA, Munashingha PR, Amangyeld T, Kwon B, Formosa T, Seo YS. Rad52/Rad59-dependent recombination as a means to rectify faulty Okazaki fragment processing. J Biol Chem 2014; 289:15064-79. [PMID: 24711454 DOI: 10.1074/jbc.m114.548388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism. We found that the recombination-defective Rad52-QDDD/AAAA mutant did not rescue dna2-K1080E, suggesting that Rad52-mediated recombination is important for suppression. The Rad52-mediated enzymatic stimulation of Dna2 or Rad27 is not a direct cause of suppression observed in vivo, as both Rad52 and Rad52-QDDD/AAAA proteins stimulated the endonuclease activities of both Dna2 and Rad27 to a similar extent. The recombination mediator activity of Rad52 was dispensable for the suppression, whereas both the DNA annealing activity and its ability to interact with Rad59 were essential. In addition, we found that several cohesion establishment factors, including Rsc2 and Elg1, were required for the Rad52-dependent suppression of dna2-K1080E. Our findings suggest a novel Rad52/Rad59-dependent, but Rad51-independent recombination pathway that could ultimately lead to the removal of faulty flaps in conjunction with cohesion establishment factors.
Collapse
Affiliation(s)
- Miju Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Chul-Hwan Lee
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Annie Albert Demin
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Palinda Ruvan Munashingha
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tamir Amangyeld
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Buki Kwon
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| | - Tim Formosa
- the Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Yeon-Soo Seo
- From the Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea and
| |
Collapse
|