1
|
Mirershadi F, Ahmadi M, Rahbarghazi R, Heiran H, Keyhanmanesh R. C-Kit + cells can modulate asthmatic condition via differentiation into pneumocyte-like cells and alteration of inflammatory responses via ERK/NF-ƙB pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:96-102. [PMID: 35656445 PMCID: PMC9118279 DOI: 10.22038/ijbms.2021.59946.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/21/2021] [Indexed: 11/06/2022]
Abstract
Objectives The exact role of the progenitor cell types in the dynamic healing of asthmatic lungs is lacking. This investigation was proposed to evaluate the effect of intratracheally administered rat bone marrow-derived c-kit+ cells on ovalbumin-induced sensitized male rats. Materials and Methods Forty rats were randomly divided into 4 groups; healthy rats received phosphate-buffered saline (PBS) (C); sensitized rats received PBS (S); PBS containing C-kit- cells (S+C-kit-); and PBS containing C-kit+ cells (S+C-kit+). After two weeks, circulatory CD4+/CD8+ T-cell counts and pulmonary ERK/NF-ƙB signaling pathway as well as the probability of cellular differentiation were assessed. Results The results showed that transplanted C-Kit+ cells were engrafted into pulmonary tissue and differentiated into epithelial cells. C-Kit+ cells could increase the number of CD4+ cells in comparison with the S group (P<0.001); however, they diminished the level of CD8+ cells (P<0.01). Moreover, data demonstrated increased p-ERK/ERK ratio (P<0.001) and NF-ƙB level (P<0.05) in sensitized rats compared with the C group. The administration of C-kit+, but not C-Kit-, decreased p-ERK/ERK ratio and NF-ƙB level compared with those of the S group (P<0.05). Conclusion The study revealed that C-Kit+ cells engrafted into pulmonary tissue reduced the NF-ƙB protein level and diminished p-ERK/ERK ratio, leading to suppression of inflammatory response in asthmatic lungs.
Collapse
Affiliation(s)
- Fatemeh Mirershadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Department of Physiology, Ardabil Branch, Islamic Azad University, Ardabil, Iran, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Rana Keyhanmanesh. Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran. Tel/Fax: +98-4133364664; ; and Reza Rahbarghazi. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hossein Heiran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Rana Keyhanmanesh. Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran. Tel/Fax: +98-4133364664; ; and Reza Rahbarghazi. Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Rahmatelahi H, El-Matbouli M, Menanteau-Ledouble S. Delivering the pain: an overview of the type III secretion system with special consideration for aquatic pathogens. Vet Res 2021; 52:146. [PMID: 34924019 PMCID: PMC8684695 DOI: 10.1186/s13567-021-01015-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs.
Collapse
Affiliation(s)
- Hadis Rahmatelahi
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria.
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Ø, Denmark.
| |
Collapse
|
3
|
Rouka E, Hatzoglou C, Gourgoulianis KI, Zarogiannis SG. Interactome networks between the human respiratory syncytial virus (HRSV), the human metapneumovirus (ΗMPV), and their host: In silico investigation and comparative functional enrichment analysis. Microb Pathog 2020; 141:104000. [PMID: 31988005 DOI: 10.1016/j.micpath.2020.104000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/16/2019] [Accepted: 01/23/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVES Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are leading causes of upper and lower respiratory tract infections in non-immunocompetent subjects, yet the mechanisms by which they induce their pathogenicity differ significantly and remain elusive. In this study we aimed at identifying the gene interaction networks between the HRSV, HMPV respiratory pathogens and their host along with the different cell-signaling pathways associated with the above interactomes. MATERIALS AND METHODS The Viruses STRING database (http://viruses.string-db.org/) was used for the identification of the host-viruses interaction networks. The two lists of the predicted functional partners were entered in the FunRich tool (http://www.funrich.org) for the construction of the Venn diagram and the comparative Funcional Enrichment Analysis (FEA) with respect to biological pathways. The sets of the common and unique human genes identified in the two networks were also analyzed. The computational predictions regarding the shared human genes in the host-HRSV and the host-HMPV interactomes were further evaluated via the analysis of the GSE111732 dataset. miRNA transcriptomics data were mapped to gene targets using the miRNomics pipeline of the GeneTrail2 database (https://genetrail2.bioinf.uni-sb.de/). RESULTS Eleven out of twenty predicted human genes were common in the two interactomes (TLR4, SOCS3, SFXN1, AKT1, SFXN3, LY96, SFXN2, SOCS7, CISH, SOCS6, SOCS1). FEA of these common genes identified the kit receptor and the GH receptor signaling pathways as the most significantly enriched annotations. The remaining nine genes of the host-HRSV and the host-HMPV interaction networks were the IFIH1, DDX58, NCL, IRF3, STAT2, HSPA4, CD209, KLF6, CHKA and the MYD88, SOCS4, SOCS2, SOCS5 AKT2, AKT3, SFXN4, SFXN5 and TLR3 respectively. Distinct cell-signaling pathways were enriched per interactome. The comparative FEA highlighted the association of the host-HRSV functional partners with the negative regulation of RIG-I/MDA5 signaling. The analysis with respect to miRNAs mapping to gene targets of the GSE111732 dataset indicated that nine out of the eleven common host genes are either enriched or depleted in the sample sets (HRSV or HMPV infected) as compared with the reference set (non-infected), although with no significant scores. CONCLUSIONS We have identified both shared and unique host genes as members of the HRSV and HMPV interaction networks. The disparate human genes likely contribute to distinct responses in airway epithelial cells.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Transfusion Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece.
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece.
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece.
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500, Larissa, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41334, Larissa, Greece.
| |
Collapse
|
4
|
Zou T, Gao L, Zeng Y, Li Q, Li Y, Chen S, Hu X, Chen X, Fu C, Xu H, Yin ZQ. Organoid-derived C-Kit +/SSEA4 - human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat Commun 2019; 10:1205. [PMID: 30872578 PMCID: PMC6418223 DOI: 10.1038/s41467-019-08961-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Stem cell therapy may replace lost photoreceptors and preserve residual photoreceptors during retinal degeneration (RD). Unfortunately, the degenerative microenvironment compromises the fate of grafted cells, demanding supplementary strategies for microenvironment regulation. Donor cells with both proper regeneration capability and intrinsic ability to improve microenvironment are highly desired. Here, we use cell surface markers (C-Kit+/SSEA4−) to effectively eliminate tumorigenic embryonic cells and enrich retinal progenitor cells (RPCs) from human embryonic stem cell (hESC)-derived retinal organoids, which, following subretinal transplantation into RD models of rats and mice, significantly improve vision and preserve the retinal structure. We characterize the pattern of integration and materials transfer following transplantation, which likely contribute to the rescued photoreceptors. Moreover, C-Kit+/SSEA4− cells suppress microglial activation, gliosis and the production of inflammatory mediators, thereby providing a healthier host microenvironment for the grafted cells and delaying RD. Therefore, C-Kit+/SSEA4− cells from hESC-derived retinal organoids are a promising therapeutic cell source. Stem cell transplantation to treat retinal degeneration could be limited by the degenerative microenvironment. Here, the authors show that C-Kit+/SSEA4– progenitor cells enriched from human embryonic stem cell derived retinal organoids protect retinal structure, suppress microglial activation, gliosis and inflammation.
Collapse
Affiliation(s)
- Ting Zou
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Lixiong Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Siyu Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xisu Hu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Caiyun Fu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China. .,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
5
|
Song L, Martinez L, Zigmond ZM, Hernandez DR, Lassance-Soares RM, Selman G, Vazquez-Padron RI. c-Kit modifies the inflammatory status of smooth muscle cells. PeerJ 2017. [PMID: 28626608 PMCID: PMC5472039 DOI: 10.7717/peerj.3418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. METHODS High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W-v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. RESULTS The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. DISCUSSION Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.
Collapse
Affiliation(s)
- Lei Song
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Zachary M Zigmond
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Diana R Hernandez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Roberta M Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Guillermo Selman
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
6
|
Micheva-Viteva SN, Shou Y, Ganguly K, Wu TH, Hong-Geller E. PKC-η-MARCKS Signaling Promotes Intracellular Survival of Unopsonized Burkholderia thailandensis. Front Cell Infect Microbiol 2017. [PMID: 28638804 PMCID: PMC5461351 DOI: 10.3389/fcimb.2017.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Burkholderia rely on host factors for efficient intracellular replication and are highly refractory to antibiotic treatment. To identify host genes that are required by Burkholderia spp. during infection, we performed a RNA interference (RNAi) screen of the human kinome and identified 35 host kinases that facilitated Burkholderia thailandensis intracellular survival in human monocytic THP-1 cells. We validated a selection of host kinases using imaging flow cytometry to assess efficiency of B. thailandensis survival in the host upon siRNA-mediated knockdown. We focused on the role of the novel protein kinase C isoform, PKC-η, in Burkholderia infection and characterized PKC-η/MARCKS signaling as a key event that promotes the survival of unopsonized B. thailandensis CDC2721121 within host cells. While infection of lung epithelial cells with unopsonized Gram-negative bacteria stimulated phosphorylation of Ser175/160 in the MARCKS effector domain, siRNA-mediated knockdown of PKC-η expression reduced the levels of phosphorylated MARCKS by >3-fold in response to infection with Bt CDC2721121. We compared the effect of the conventional PKC-α and novel PKC-η isoforms on the growth of B. thailandensis CDC2721121 within monocytic THP-1 cells and found that ≥75% knock-down of PRKCH transcript levels reduced intracellular bacterial load 100% more efficiently when compared to growth in cells siRNA-depleted of the classical PKC-α, suggesting that the PKC-η isoform can specifically mediate Burkholderia intracellular survival. Based on imaging studies of intracellular B. thailandensis, we found that PKC-η function stimulates phagocytic pathways that promote B. thailandensis escape into the cytoplasm leading to activation of autophagosome flux. Identification of host kinases that are targeted by Burkholderia during infection provides valuable molecular insights in understanding Burkholderia pathogenesis, and ultimately, in designing effective host-targeted therapies against infectious disease caused by intracellular pathogens.
Collapse
Affiliation(s)
| | - Yulin Shou
- Bioscience Division, Los Alamos National LaboratoryLos Alamos, NM, United States
| | - Kumkum Ganguly
- Bioscience Division, Los Alamos National LaboratoryLos Alamos, NM, United States
| | - Terry H Wu
- Center for Infectious Disease and Immunity and Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerque, NM, United States
| | | |
Collapse
|
7
|
Maruthi M, Singh D, Reddy SR, Mastan BS, Mishra S, Kumar KA. Modulation of host cell SUMOylation facilitates efficient development of Plasmodium berghei and Toxoplasma gondii. Cell Microbiol 2017; 19. [PMID: 28078755 DOI: 10.1111/cmi.12723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
SUMOylation is a reversible post translational modification of proteins that regulates protein stabilization, nucleocytoplasmic transport, and protein-protein interactions. Several viruses and bacteria modulate host SUMOylation machinery for efficient infection. Plasmodium sporozoites are infective forms of malaria parasite that invade mammalian hepatocytes and transforms into exoerythrocytic forms (EEFs). Here, we show that during EEF development, the distribution of SUMOylated proteins in host cell nuclei was significantly reduced and expression of the SUMOylation enzymes was downregulated. Plasmodium EEFs destabilized the host cytoplasmic protein SMAD4 by inhibiting its SUMOylation. SUMO1 overexpression was detrimental to EEF growth, and insufficiency of the only conjugating enzyme Ubc9/E2 promoted EEF growth. The expression of genes involved in suppression of host cell defense pathways during infection was reversed during SUMO1 overexpression, as revealed by transcriptomic analysis. The inhibition of host cell SUMOylation was also observed during Toxoplasma infection. We provide a hitherto unknown mechanism of regulating host gene expression by Apicomplexan parasites through altering host SUMOylation.
Collapse
Affiliation(s)
- Mulaka Maruthi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Babu S Mastan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Chai Y, Huang Y, Tang H, Tu X, He J, Wang T, Zhang Q, Xiong F, Li D, Qiu Z. Role of stem cell growth factor/c-Kit in the pathogenesis of irritable bowel syndrome. Exp Ther Med 2017; 13:1187-1193. [PMID: 28413456 PMCID: PMC5377426 DOI: 10.3892/etm.2017.4133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/25/2016] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disease with a complicated etiopathogenesis, often characterized by gastrointestinal motility disorder and high visceral sensitivity. IBS is a comprehensive multi-systemic disorder, with the interaction of multiple factors, such as mental stress, intestinal function and flora, heredity, resulting in the disease. The existence of a common mechanism underlying the aforementioned factors is currently unknown. The lack of therapies that comprehensively address the disease symptoms, including abdominal pain and diarrhea, is a limitation of current IBS management. The current review has explored the role of the SCF/c-Kit receptor/ligand system in IBS. The SCF/c-Kit system constitutes a classical ligand/receptor tyrosine kinase signaling system that mediates inflammation and smooth muscle contraction. Additionally, it provides trophic support to neural crest-derived cell types, including the enteric nervous system and mast cells. The regulation of SCF/c-Kit on the interstitial cells of Cajal (ICC) suggest that it may play a key role in the aberrant intestinal dynamics and high visceral sensitivity observed in IBS. The role of the SCF/c-Kit system in intestinal motility, inflammation and nerve growth has been reported. From the available biomedical evidence on the pathogenesis of IBS, it has been concluded that the SCF-c-Kit system is a potential therapeutic target for rational drug design in the treatment of IBS.
Collapse
Affiliation(s)
- Yuna Chai
- Pharmaceutical Department, First Affiliated Hospital of Zhengzhou University of Chinese Medicine, Zhengzhou, Henan 450052, P.R. China.,Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yusheng Huang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Xing Tu
- Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine of Hubei University for Nationalities, Enshi, Hubei 445000, P.R. China
| | - Jianbo He
- Department of Orthopedics, The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ting Wang
- Chinese Medicine Program, The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Qingye Zhang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Fen Xiong
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Detang Li
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Zhenwen Qiu
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
9
|
Li N, Hennelly SP, Stubben CJ, Micheva-Viteva S, Hu B, Shou Y, Vuyisich M, Tung CS, Chain PS, Sanbonmatsu KY, Hong-Geller E. Functional and Structural Analysis of a Highly-Expressed Yersinia pestis Small RNA following Infection of Cultured Macrophages. PLoS One 2016; 11:e0168915. [PMID: 28030576 PMCID: PMC5193452 DOI: 10.1371/journal.pone.0168915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
Abstract
Non-coding small RNAs (sRNAs) are found in practically all bacterial genomes and play important roles in regulating gene expression to impact bacterial metabolism, growth, and virulence. We performed transcriptomics analysis to identify sRNAs that are differentially expressed in Yersinia pestis that invaded the human macrophage cell line THP-1, compared to pathogens that remained extracellular in the presence of host. Using ultra high-throughput sequencing, we identified 37 novel and 143 previously known sRNAs in Y. pestis. In particular, the sRNA Ysr170 was highly expressed in intracellular Yersinia and exhibited a log2 fold change ~3.6 higher levels compared to extracellular bacteria. We found that knock-down of Ysr170 expression attenuated infection efficiency in cell culture and growth rate in response to different stressors. In addition, we applied selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) analysis to determine the secondary structure of Ysr170 and observed structural changes resulting from interactions with the aminoglycoside antibiotic gentamycin and the RNA chaperone Hfq. Interestingly, gentamicin stabilized helix 4 of Ysr170, which structurally resembles the native gentamicin 16S ribosomal binding site. Finally, we modeled the tertiary structure of Ysr170 binding to gentamycin using RNA motif modeling. Integration of these experimental and structural methods can provide further insight into the design of small molecules that can inhibit function of sRNAs required for pathogen virulence.
Collapse
Affiliation(s)
- Nan Li
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Scott P. Hennelly
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Chris J. Stubben
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Sofiya Micheva-Viteva
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bin Hu
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Yulin Shou
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Momchilo Vuyisich
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Chang-Shung Tung
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Patrick S. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Karissa Y. Sanbonmatsu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Elizabeth Hong-Geller
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|