1
|
Hamchand R, Wang K, Song D, Palm NW, Crawford JM. Mucosal sugars delineate pyrazine vs pyrazinone autoinducer signaling in Klebsiella oxytoca. Nat Commun 2024; 15:8902. [PMID: 39406708 PMCID: PMC11480411 DOI: 10.1038/s41467-024-53185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
Virulent Klebsiella oxytoca strains are associated with gut and lung pathologies, yet our understanding of the molecular signals governing pathogenesis remains limited. Here, we characterized a family of K. oxytoca pyrazine and pyrazinone autoinducers and explored their roles in microbial and host signaling. We identified the human mucin capping sugar Neu5Ac as a selective elicitor of leupeptin, a protease inhibitor prevalent in clinical lung isolates of K. oxytoca, and leupeptin-derived pyrazinone biosynthesis. Additionally, we uncovered a separate pyrazine pathway, regulated by general carbohydrate metabolism, derived from a broadly conserved PLP-dependent enzyme. While both pyrazine and pyrazinone signaling induce iron acquisition responses, including enterobactin biosynthesis, pyrazinone signaling enhances yersiniabactin virulence factor production and selectively activates the proinflammatory human histamine receptor H4 (HRH4). Our findings suggest that the availability of specific carbohydrates delineates distinct autoinducer pathways in K. oxytoca that may have differential effects on bacterial virulence and host immune responses.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Kevin Wang
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Chen J, Sharifi R, Ryu CM. Turning a bacterial gaseous virulence trigger off. TRENDS IN PLANT SCIENCE 2022; 27:4-6. [PMID: 34772613 DOI: 10.1016/j.tplants.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Recently, Sieber et al. discovered the new diazeniumdiolate volatile signaling molecule, leudiazen. They confirmed that inactivation of leudiazen by KMnO4 can reduce the production of mangotoxin. This alleviates the pathogenicity of Pseudomonas syringae pv. syringae on mango trees, providing a new strategy for plant protection, compatible with organic farming.
Collapse
Affiliation(s)
- Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Rouhallah Sharifi
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea.
| |
Collapse
|
3
|
Metabolomic profiling of Burkholderia cenocepacia in synthetic cystic fibrosis sputum medium reveals nutrient environment-specific production of virulence factors. Sci Rep 2021; 11:21419. [PMID: 34725378 PMCID: PMC8560942 DOI: 10.1038/s41598-021-00421-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by Burkholderia cenocepacia lead to life-threatening disease in immunocompromised individuals, including those living with cystic fibrosis (CF). While genetic variation in various B. cenocepacia strains has been reported, it remains unclear how the chemical environment of CF lung influences the production of small molecule virulence factors by these strains. Here we compare metabolomes of three clinical B. cenocepacia strains in synthetic CF sputum medium (SCFM2) and in a routine laboratory medium (LB), in the presence and absence of the antibiotic trimethoprim. Using a mass spectrometry-based untargeted metabolomics approach, we identify several compound classes which are differentially produced in SCFM2 compared to LB media, including siderophores, antimicrobials, quorum sensing signals, and various lipids. Furthermore, we describe that specific metabolites are induced in the presence of the antibiotic trimethoprim only in SCFM2 when compared to LB. Herein, C13-acyl-homoserine lactone, a quorum sensing signal previously not known to be produced by B. cenocepacia as well as pyochelin-type siderophores were exclusively detected during growth in SCFM2 in the presence of trimethoprim. The comparative metabolomics approach described in this study provides insight into environment-dependent production of secondary metabolites by B. cenocepacia strains and suggests future work which could identify personalized strain-specific regulatory mechanisms involved in production of secondary metabolites. Investigations into whether antibiotics with different mechanisms of action induce similar metabolic alterations will inform development of combination treatments aimed at effective clearance of Burkholderia spp. pathogens.
Collapse
|
4
|
Sieber S, Mathew A, Jenul C, Kohler T, Bär M, Carrión VJ, Cazorla FM, Stalder U, Hsieh YC, Bigler L, Eberl L, Gademann K. Mitigation of Pseudomonas syringae virulence by signal inactivation. SCIENCE ADVANCES 2021; 7:eabg2293. [PMID: 34516871 PMCID: PMC8442906 DOI: 10.1126/sciadv.abg2293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pseudomonas syringae is an important plant pathogen of many valuable crops worldwide, with more than 60 identified pathovars. The phytotoxins produced by these organisms were related to the severity of the damage caused to the plant. An emerging strategy to treat bacterial infections relies on interference with their signaling systems. In this study, we investigated P. syringae pv. syringae, which produces the virulence factor mangotoxin that causes bacterial apical necrosis on mango leaves. A previously unknown signaling molecule named leudiazen was identified, determined to be unstable and volatile, and responsible for mangotoxin production. A strategy using potassium permanganate, compatible with organic farming, was developed to degrade leudiazen and thus to attenuate the pathogenicity of P. syringae pv. syringae.
Collapse
Affiliation(s)
- Simon Sieber
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Christian Jenul
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Tobias Kohler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Max Bär
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Víctor J. Carrión
- Institute of Biology, Leiden University, 2333 BE Leiden, Netherlands
| | - Francisco M. Cazorla
- IHSM-UMA-CSIC, Department of Microbiology, University of Málaga, 29071 Málaga, Spain
| | - Urs Stalder
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Ya-Chu Hsieh
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
- Corresponding author. (K.G.); (L.E.)
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland
- Corresponding author. (K.G.); (L.E.)
| |
Collapse
|
5
|
Kretsch AM, Morgan GL, Acken KA, Barr SA, Li B. Pseudomonas Virulence Factor Pathway Synthesizes Autoinducers That Regulate the Secretome of a Pathogen. ACS Chem Biol 2021; 16:501-509. [PMID: 33595276 DOI: 10.1021/acschembio.0c00901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell-to-cell communication via chemical signals is an essential mechanism that pathogenic bacteria use to coordinate group behaviors and promote virulence. The Pseudomonas virulence factor (pvf) gene cluster is distributed in more than 500 strains of proteobacteria including both plant and human pathogens. The pvf cluster has been implicated in the production of signaling molecules important for virulence; however, the regulatory impact of these signaling molecules on virulence had not been elucidated. Using the insect pathogen Pseudomonas entomophila L48 as a model, we demonstrated that pvf-encoded biosynthetic enzymes produce PVF autoinducers that regulate the expression of pvf genes and a gene encoding the toxin monalysin via quorum sensing. In addition, PVF autoinducers regulate the expression of nearly 200 secreted and membrane proteins, including toxins, motility proteins, and components of the type VI secretion system, which play key roles in bacterial virulence, colonization, and competition with other microbes. Deletion of pvf also altered the secondary metabolome. Six major compounds upregulated by PVF autoinducers were isolated and structurally characterized, including three insecticidal 3-indolyl oxazoles, the labradorins, and three antimicrobial pyrrolizidine alkaloids, the pyreudiones. The signaling properties of PVF autoinducers and their wide-ranging regulatory effects indicate multifaceted roles of PVF in controlling cell physiology and promoting virulence. The broad genome distribution of pvf suggests that PVF-mediated signaling is relevant to many bacteria of agricultural and biomedical significance.
Collapse
|
6
|
Heredia-Ponce Z, Gutiérrez-Barranquero JA, Purtschert-Montenegro G, Eberl L, Cazorla FM, de Vicente A. Biological role of EPS from Pseudomonas syringae pv. syringae UMAF0158 extracellular matrix, focusing on a Psl-like polysaccharide. NPJ Biofilms Microbiomes 2020; 6:37. [PMID: 33046713 PMCID: PMC7550585 DOI: 10.1038/s41522-020-00148-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas syringae is a phytopathogenic model bacterium that is used worldwide to study plant-bacteria interactions and biofilm formation in association with a plant host. Within this species, the syringae pathovar is the most studied due to its wide host range, affecting both, woody and herbaceous plants. In particular, Pseudomonas syringae pv. syringae (Pss) has been previously described as the causal agent of bacterial apical necrosis on mango trees. Pss exhibits major epiphytic traits and virulence factors that improve its epiphytic survival and pathogenicity in mango trees. The cellulose exopolysaccharide has been described as a key component in the development of the biofilm lifestyle of the P. syringae pv. syringae UMAF0158 strain (PssUMAF0158). PssUMAF0158 contains two additional genomic regions that putatively encode for exopolysaccharides such as alginate and a Psl-like polysaccharide. To date, the Psl polysaccharide has only been studied in Pseudomonas aeruginosa, in which it plays an important role during biofilm development. However, its function in plant-associated bacteria is still unknown. To understand how these exopolysaccharides contribute to the biofilm matrix of PssUMAF0158, knockout mutants of genes encoding these putative exopolysaccharides were constructed. Flow-cell chamber experiments revealed that cellulose and the Psl-like polysaccharide constitute a basic scaffold for biofilm architecture in this bacterium. Curiously, the Psl-like polysaccharide of PssUMAF0158 plays a role in virulence similar to what has been described for cellulose. Finally, the impaired swarming motility of the Psl-like exopolysaccharide mutant suggests that this exopolysaccharide may play a role in the motility of PssUMAF0158 over the mango plant surface.
Collapse
Affiliation(s)
- Zaira Heredia-Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Jose Antonio Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich. Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), 29071, Málaga, Spain.
| |
Collapse
|
7
|
Draft Genome Sequence of Cyclic Lipopeptide Producer Pseudomonas sp. Strain SWRI103, Isolated from Wheat Rhizosphere. Microbiol Resour Announc 2020; 9:9/27/e00538-20. [PMID: 32616641 PMCID: PMC7330243 DOI: 10.1128/mra.00538-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The draft genome sequence of wheat rhizosphere isolate Pseudomonas sp. strain SWRI103 is reported. This strain carries several gene clusters encoding nonribosomal peptide synthetases (NRPSs), including a system for cyclic lipopeptide (CLP) production, and genes for carotenoid biosynthesis. The draft genome sequence of wheat rhizosphere isolate Pseudomonas sp. strain SWRI103 is reported. This strain carries several gene clusters encoding nonribosomal peptide synthetases (NRPSs), including a system for cyclic lipopeptide (CLP) production, and genes for carotenoid biosynthesis.
Collapse
|
8
|
Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens. J Med Microbiol 2020; 69:347-360. [DOI: 10.1099/jmm.0.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas brassicacearum
is one of over fifty species of bacteria classified into the
P. fluorescens
group. Generally considered a harmless commensal, these bacteria are studied for their plant-growth promotion (PGP) and biocontrol characteristics. Intriguingly,
P. brassicacearum
is closely related to
P. corrugata
, which is classified as an opportunistic phytopathogen. Twenty-one
P. brassicacearum
genomes have been sequenced to date. In the current review, genomes of
P. brassicacearum
and strains from the
P. corrugata
clade were mined for regions associated with PGP, biocontrol and pathogenicity. We discovered that ‘beneficial’ bacteria and those classified as plant pathogens have many genes in common; thus, only a fine line separates beneficial/harmless commensals from those capable of causing disease in plants. The genotype and physiological state of the plant, the presence of biotic/abiotic stressors, and the ability of bacteria to manipulate the plant immune system collectively contribute to how the bacterial-plant interaction plays out. Because production of extracellular metabolites is energetically costly, these compounds are expected to impart a fitness advantage to the producer.
P. brassicacearum
is able to reduce the threat of nematode predation through release of metabolites involved in biocontrol. Moreover this bacterium has the unique ability to form biofilms on the head of Caenorhabditis elegans, as a second mechanism of predator avoidance. Rhizobacteria, plants, fungi, and microfaunal predators have occupied a shared niche for millions of years and, in many ways, they function as a single organism. Accordingly, it is essential that we appreciate the dynamic interplay among these members of the community.
Collapse
|
9
|
Passera A, Compant S, Casati P, Maturo MG, Battelli G, Quaglino F, Antonielli L, Salerno D, Brasca M, Toffolatti SL, Mantegazza F, Delledonne M, Mitter B. Not Just a Pathogen? Description of a Plant-Beneficial Pseudomonas syringae Strain. Front Microbiol 2019; 10:1409. [PMID: 31293547 PMCID: PMC6598456 DOI: 10.3389/fmicb.2019.01409] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 11/13/2022] Open
Abstract
Plants develop in a microbe-rich environment and must interact with a plethora of microorganisms, both pathogenic and beneficial. Indeed, such is the case of Pseudomonas, and its model organisms P. fluorescens and P. syringae, a bacterial genus that has received particular attention because of its beneficial effect on plants and its pathogenic strains. The present study aims to compare plant-beneficial and pathogenic strains belonging to the P. syringae species to get new insights into the distinction between the two types of plant–microbe interactions. In assays carried out under greenhouse conditions, P. syringae pv. syringae strain 260-02 was shown to promote plant-growth and to exert biocontrol of P. syringae pv. tomato strain DC3000, against the Botrytis cinerea fungus and the Cymbidium Ringspot Virus. This P. syringae strain also had a distinct volatile emission profile, as well as a different plant-colonization pattern, visualized by confocal microscopy and gfp labeled strains, compared to strain DC3000. Despite the different behavior, the P. syringae strain 260-02 showed great similarity to pathogenic strains at a genomic level. However, genome analyses highlighted a few differences that form the basis for the following hypotheses regarding strain 260-02. P. syringae strain 260-02: (i) possesses non-functional virulence genes, like the mangotoxin-producing operon Mbo; (ii) has different regulation pathways, suggested by the difference in the autoinducer system and the lack of a virulence activator gene; (iii) has genes encoding DNA methylases different from those found in other P. syringae strains, suggested by the presence of horizontal-gene-transfer-obtained methylases that could affect gene expression.
Collapse
Affiliation(s)
- Alessandro Passera
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Stéphane Compant
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Paola Casati
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Maria Giovanna Maturo
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Giovanna Battelli
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Fabio Quaglino
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Livio Antonielli
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Domenico Salerno
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, Italian National Research Council, Milan, Italy
| | - Silvia Laura Toffolatti
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Francesco Mantegazza
- Department Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Vedano al Lambro, Italy
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Birgit Mitter
- Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
10
|
Gutiérrez-Barranquero JA, Cazorla FM, de Vicente A. Pseudomonas syringae pv. syringae Associated With Mango Trees, a Particular Pathogen Within the "Hodgepodge" of the Pseudomonas syringae Complex. FRONTIERS IN PLANT SCIENCE 2019; 10:570. [PMID: 31139201 PMCID: PMC6518948 DOI: 10.3389/fpls.2019.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/15/2019] [Indexed: 05/29/2023]
Abstract
The Pseudomonas syringae complex comprises different genetic groups that include strains from both agricultural and environmental habitats. This complex group has been used for decades as a "hodgepodge," including many taxonomically related species. More than 60 pathovars of P. syringae have been described based on distinct host ranges and disease symptoms they cause. These pathovars cause disease relying on an array of virulence mechanisms. However, P. syringae pv. syringae (Pss) is the most polyphagous bacterium in the P. syringae complex, based on its wide host range, that primarily affects woody and herbaceous host plants. In early 1990s, bacterial apical necrosis (BAN) of mango trees, a critical disease elicited by Pss in Southern Spain was described for the first time. Pss exhibits important epiphytic traits and virulence factors, which may promote its survival and pathogenicity in mango trees and in other plant hosts. Over more than two decades, Pss strains isolated from mango trees have been comprehensively investigated to elucidate the mechanisms that governs their epiphytic and pathogenic lifestyles. In particular, the vast majority of Pss strains isolated from mango trees produce an antimetabolite toxin, called mangotoxin, whose leading role in virulence has been clearly demonstrated. Moreover, phenotypic, genetic and phylogenetic approaches support that Pss strains producers of BAN symptoms on mango trees all belong to a single phylotype within phylogroup 2, are adapted to the mango host, and produce mangotoxin. Remarkably, a genome sequencing project of the Pss model strain UMAF0158 revealed the presence of other factors that may play major roles in its different lifestyles, such as the presence of two different type III secretion systems, two type VI secretion systems and an operon for cellulose biosynthesis. The role of cellulose in increasing mango leaf colonization and biofilm formation, and impairing virulence of Pss, suggests that cellulose may play a pivotal role with regards to the balance of its different lifestyles. In addition, 62-kb plasmids belonging to the pPT23A-family of plasmids (PFPs) have been strongly associated with Pss strains that inhabit mango trees. Further, complete sequence and comparative genomic analyses revealed major roles of PFPs in detoxification of copper compounds and ultraviolet radiation resistance, both improving the epiphytic lifestyle of Pss on mango surfaces. Hence, in this review we summarize the research that has been conducted on Pss by our research group to elucidate the molecular mechanisms that underpin the epiphytic and pathogenic lifestyle on mango trees. Finally, future directions in this particular plant-pathogen story are discussed.
Collapse
|
11
|
Kretsch AM, Morgan GL, Tyrrell J, Mevers E, Vallet-Gély I, Li B. Discovery of (Dihydro)pyrazine N-Oxides via Genome Mining in Pseudomonas. Org Lett 2018; 20:4791-4795. [PMID: 30073838 DOI: 10.1021/acs.orglett.8b01944] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Overexpression of the Pseudomonas virulence factor ( pvf) biosynthetic operon led to the identification of a family of pyrazine N-oxides (PNOs), including a novel dihydropyrazine N,N'-dioxide (dPNO) metabolite. The nonribosomal peptide synthetase responsible for production of (d)PNOs was characterized, and a biosynthetic pathway for (d)PNOs was proposed. This work highlights the unique chemistry catalyzed by pvf-encoded enzymes and sets the stage for bioactivity studies of the metabolites produced by the virulence pathway.
Collapse
Affiliation(s)
- Ashley M Kretsch
- Department of Chemistry , The University of North Carolina at Chapel Hill , 250 Bell Tower Road , Chapel Hill , North Carolina 27599 , United States
| | - Gina L Morgan
- Department of Chemistry , The University of North Carolina at Chapel Hill , 250 Bell Tower Road , Chapel Hill , North Carolina 27599 , United States
| | - Jillian Tyrrell
- Department of Chemistry , The University of North Carolina at Chapel Hill , 250 Bell Tower Road , Chapel Hill , North Carolina 27599 , United States
| | - Emily Mevers
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , 240 Longwood Avenue , Boston , Massachusetts 02115 , United States
| | - Isabelle Vallet-Gély
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS , Univ. Paris-Sud, Université Paris-Saclay , 91198 , Gif-sur-Yvette cedex , France
| | - Bo Li
- Department of Chemistry , The University of North Carolina at Chapel Hill , 250 Bell Tower Road , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
12
|
Jenul C, Sieber S, Daeppen C, Mathew A, Lardi M, Pessi G, Hoepfner D, Neuburger M, Linden A, Gademann K, Eberl L. Biosynthesis of fragin is controlled by a novel quorum sensing signal. Nat Commun 2018; 9:1297. [PMID: 29602945 PMCID: PMC5878181 DOI: 10.1038/s41467-018-03690-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 03/05/2018] [Indexed: 11/23/2022] Open
Abstract
Members of the diazeniumdiolate class of natural compounds show potential for drug development because of their antifungal, antibacterial, antiviral, and antitumor activities. Yet, their biosynthesis has remained elusive to date. Here, we identify a gene cluster directing the biosynthesis of the diazeniumdiolate compound fragin in Burkholderia cenocepacia H111. We provide evidence that fragin is a metallophore and that metal chelation is the molecular basis of its antifungal activity. A subset of the fragin biosynthetic genes is involved in the synthesis of a previously undescribed cell-to-cell signal molecule, valdiazen. RNA-Seq analyses reveal that valdiazen controls fragin biosynthesis and affects the expression of more than 100 genes. Homologs of the valdiazen biosynthesis genes are found in various bacteria, suggesting that valdiazen-like compounds may constitute a new class of signal molecules. We use structural information, in silico prediction of enzymatic functions and biochemical data to propose a biosynthesis route for fragin and valdiazen. Fragin is a diazeniumdiolate metabolite with antifungal activity, produced by some bacteria. Here, Jenul et al. show that metal chelation is the molecular basis of fragin’s antifungal activity, and that a gene cluster directing fragin biosynthesis is also involved in the synthesis of a signal molecule.
Collapse
Affiliation(s)
- Christian Jenul
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.,Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Christophe Daeppen
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.,Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Anugraha Mathew
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Martina Lardi
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, 4056, Basel, Switzerland
| | - Markus Neuburger
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland.
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
| |
Collapse
|
13
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
14
|
Van Der Voort M, Meijer HJG, Schmidt Y, Watrous J, Dekkers E, Mendes R, Dorrestein PC, Gross H, Raaijmakers JM. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH-C52 for antimicrobial compounds. Front Microbiol 2015. [PMID: 26217324 PMCID: PMC4493835 DOI: 10.3389/fmicb.2015.00693] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The plant microbiome represents an enormous untapped resource for discovering novel genes and bioactive compounds. Previously, we isolated Pseudomonas sp. SH-C52 from the rhizosphere of sugar beet plants grown in a soil suppressive to the fungal pathogen Rhizoctonia solani and showed that its antifungal activity is, in part, attributed to the production of the chlorinated 9-amino-acid lipopeptide thanamycin (Mendes et al., 2011). To get more insight into its biosynthetic repertoire, the genome of Pseudomonas sp. SH-C52 was sequenced and subjected to in silico, mutational and functional analyses. The sequencing revealed a genome size of 6.3 Mb and 5579 predicted ORFs. Phylogenetic analysis placed strain SH-C52 within the Pseudomonas corrugata clade. In silico analysis for secondary metabolites revealed a total of six non-ribosomal peptide synthetase (NRPS) gene clusters, including the two previously described NRPS clusters for thanamycin and the 2-amino acid antibacterial lipopeptide brabantamide. Here we show that thanamycin also has activity against an array of other fungi and that brabantamide A exhibits anti-oomycete activity and affects phospholipases of the late blight pathogen Phytophthora infestans. Most notably, mass spectrometry led to the discovery of a third lipopeptide, designated thanapeptin, with a 22-amino-acid peptide moiety. Seven structural variants of thanapeptin were found with varying degrees of activity against P. infestans. Of the remaining four NRPS clusters, one was predicted to encode for yet another and unknown lipopeptide with a predicted peptide moiety of 8-amino acids. Collectively, these results show an enormous metabolic potential for Pseudomonas sp. SH-C52, with at least three structurally diverse lipopeptides, each with a different antimicrobial activity spectrum.
Collapse
Affiliation(s)
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Yvonne Schmidt
- Institute for Pharmaceutical Biology, University of Bonn Bonn, Germany
| | - Jeramie Watrous
- Departments of Pharmacology and Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego San Diego, CA, USA
| | - Ester Dekkers
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands
| | - Rodrigo Mendes
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands ; Brazilian Agricultural Research Corporation, Embrapa Environment Jaguariuna, Brazil
| | - Pieter C Dorrestein
- Departments of Pharmacology and Chemistry and Biochemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego San Diego, CA, USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen Tübingen, Germany
| | - Jos M Raaijmakers
- Laboratory of Phytopathology, Wageningen University Wageningen, Netherlands ; Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW) Wageningen, Netherlands
| |
Collapse
|
15
|
Marcelletti S, Scortichini M. Comparative Genomic Analyses of Multiple Pseudomonas Strains Infecting Corylus avellana Trees Reveal the Occurrence of Two Genetic Clusters with Both Common and Distinctive Virulence and Fitness Traits. PLoS One 2015; 10:e0131112. [PMID: 26147218 PMCID: PMC4492584 DOI: 10.1371/journal.pone.0131112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/28/2015] [Indexed: 01/26/2023] Open
Abstract
The European hazelnut (Corylus avellana) is threatened in Europe by several pseudomonads which cause symptoms ranging from twig dieback to tree death. A comparison of the draft genomes of nine Pseudomonas strains isolated from symptomatic C. avellana trees was performed to identify common and distinctive genomic traits. The thorough assessment of genetic relationships among the strains revealed two clearly distinct clusters: P. avellanae and P. syringae. The latter including the pathovars avellanae, coryli and syringae. Between these two clusters, no recombination event was found. A genomic island of approximately 20 kb, containing the hrp/hrc type III secretion system gene cluster, was found to be present without any genomic difference in all nine pseudomonads. The type III secretion system effector repertoires were remarkably different in the two groups, with P. avellanae showing a higher number of effectors. Homologue genes of the antimetabolite mangotoxin and ice nucleation activity clusters were found solely in all P. syringae pathovar strains, whereas the siderophore yersiniabactin was only present in P. avellanae. All nine strains have genes coding for pectic enzymes and sucrose metabolism. By contrast, they do not have genes coding for indolacetic acid and anti-insect toxin. Collectively, this study reveals that genomically different Pseudomonas can converge on the same host plant by suppressing the host defence mechanisms with the use of different virulence weapons. The integration into their genomes of a horizontally acquired genomic island could play a fundamental role in their evolution, perhaps giving them the ability to exploit new ecological niches.
Collapse
Affiliation(s)
- Simone Marcelletti
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, I-00134, Roma, Italy
| | - Marco Scortichini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, I-00134, Roma, Italy
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (C.R.A.)-Unità di Ricerca per la Frutticoltura, Via Torrino 3, I-81100, Caserta, Italy
| |
Collapse
|
16
|
Li L, Yan B, Li S, Xu J, An X. A comparison of bacterial community structure in seawater pond with shrimp, crab, and shellfish cultures and in non-cultured pond in Ganyu, Eastern China. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1111-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Rodríguez-Palenzuela P, Cazorla FM, de Vicente A. Cellulose production inPseudomonas syringaepv.syringae: a compromise between epiphytic and pathogenic lifestyles. FEMS Microbiol Ecol 2015; 91:fiv071. [DOI: 10.1093/femsec/fiv071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2015] [Indexed: 01/11/2023] Open
|
18
|
Ravindran A, Jalan N, Yuan JS, Wang N, Gross DC. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis. Microbiologyopen 2015; 4:553-73. [PMID: 25940918 PMCID: PMC4554452 DOI: 10.1002/mbo3.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 03/17/2015] [Accepted: 03/27/2015] [Indexed: 01/09/2023] Open
Abstract
Pseudomonas syringae pv. syringae is a common plant-associated bacterium that causes diseases of both monocot and dicot plants worldwide. To help delineate traits critical to adaptation and survival in the plant environment, we generated complete genome sequences of P. syringae pv. syringae strains B301D and HS191, which represent dicot and monocot strains with distinct host specificities. Intrapathovar comparisons of the B301D (6.09 Mb) and HS191 (5.95 Mb plus a 52 kb pCG131 plasmid) genomes to the previously sequenced B728a genome demonstrated that the shared genes encompass about 83% of each genome, and include genes for siderophore biosynthesis, osmotolerance, and extracellular polysaccharide production. Between 7% and 12% of the genes are unique among the genomes, and most of the unique gene regions carry transposons, phage elements, or IS elements associated with horizontal gene transfer. Differences are observed in the type III effector composition for the three strains that likely influences host range. The HS191 genome had the largest number at 25 of effector genes, and seven effector genes are specific to this monocot strain. Toxin production is another major trait associated with virulence of P. syringae pv. syringae, and HS191 is distinguished by genes for production of syringopeptin SP25 and mangotoxin.
Collapse
Affiliation(s)
- Aravind Ravindran
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843-2132
| | - Neha Jalan
- Department of Microbiology and Cell Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850
| | - Joshua S Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843-2132
| | - Nian Wang
- Department of Microbiology and Cell Sciences, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, Florida, 33850
| | - Dennis C Gross
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, 77843-2132
| |
Collapse
|