1
|
Li X, Sun X. 1,3-Proton Transfer of Pyridoxal 5'-Phosphate Schiff Base in the Branched-Chain Aminotransferase: Concerted or Stepwise Mechanism? J Phys Chem B 2024; 128:77-85. [PMID: 38131279 DOI: 10.1021/acs.jpcb.3c05875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) is a pyridoxal 5'-phosphate (PLP) dependent enzyme, and it is essential for the synthesis of the branched-chain amino acids. Ketimine is an important intermediate in the catalytic process. We have investigated the mechanism of ketimine formation and the energy landscape using the multiple computational methods. It is found that the 1,3-proton transfer involved in ketimine formation occurs through a stepwise process rather than a one-step process. Lys204 is identified as a key residue for ligand binding and as a base that abstracts the Cα proton from the PLP-Glu Schiff base, yielding a carbanionic intermediate. The first proton transfer is the rate-limiting step with an energy barrier of 17.8 kcal mol-1. Our study disclosed the detailed pathway of the proton transfer from external aldimine to ketimine, providing novel insights into the catalytic mechanism of other PLP-dependent enzymes.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences, Changchun Normal University, Changchun 130023, People's Republic of China
| | - Xiaoli Sun
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
2
|
Chen C, Naveed H, Chen K. Research progress on branched-chain amino acid aminotransferases. Front Genet 2023; 14:1233669. [PMID: 38028625 PMCID: PMC10658711 DOI: 10.3389/fgene.2023.1233669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Branched-chain amino acid aminotransferases, widely present in natural organisms, catalyze bidirectional amino transfer between branched-chain amino acids and branched-chain α-ketoacids in cells. Branched-chain amino acid aminotransferases play an important role in the metabolism of branched-chain amino acids. In this paper, the interspecific evolution and biological characteristics of branched-chain amino acid aminotransferases are introduced, the related research of branched-chain amino acid aminotransferases in animals, plants, microorganisms and humans is summarized and the molecular mechanism of branched-chain amino acid aminotransferase is analyzed. It has been found that branched-chain amino acid metabolism disorders are closely related to various diseases in humans and animals and plants, such as diabetes, cardiovascular diseases, brain diseases, neurological diseases and cancer. In particular, branched-chain amino acid aminotransferases play an important role in the development of various tumors. Branched-chain amino acid aminotransferases have been used as potential targets for various cancers. This article reviews the research on branched-chain amino acid aminotransferases, aiming to provide a reference for clinical research on targeted therapy for various diseases and different cancers.
Collapse
Affiliation(s)
- Can Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Fujii H, Hibi M, Shimizu S, Yokozeki K, Ogawa J. Three enzymes of Rhizobium radiobacter involved in the novel metabolism of two naturally occurring bioactive oxidative derivatives of L-isoleucine. Biosci Biotechnol Biochem 2022; 86:1247-1254. [PMID: 35793557 DOI: 10.1093/bbb/zbac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022]
Abstract
Rhizobium radiobacter C58 was found to convert 4-hydroxyisoleucine (HIL) and 2-amino-3-methyl-4-ketopentanoate (AMKP), bioactive oxidative derivatives of L-isoleucine, in both cases producing 2-aminobutyrate. Three native enzymes involved in these metabolisms were purified by column chromatography and successfully identified. In this strain, HIL was converted to acetaldehyde and 2-aminobutyrate by coupling action of the transaminase rrIlvE and the aldolase HkpA. AMKP was also converted to acetate and 2-aminobutyrate by coupling action of rrIlvE and a hydrolase DkhA. In the multi-enzymatic reactions, HkpA catalyzes the retro-aldol reaction of 4-hydroxy-3-methyl-2-ketopentanoate into acetaldehyde and 2-ketobutyrate, and DkhA catalyzes hydrolytic cleavage of the carbon-carbon bond of 2,4-diketo-3-methylpentanoate into acetate and 2-ketobutyrate. And rrIlvE catalyzes reversible transamination between HIL and 4-hydroxy-3-methyl-2-ketopentanoate, AMKP and 2,4-diketo-3-methylpentanoate, and 2-ketobutyrate and 2-aminobutyrate. The results suggested that the conversion activity of Rhizobium bacteria play an important role in the complex biological metabolic networks associated with HIL and AMKP.
Collapse
Affiliation(s)
- Hidemi Fujii
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Makoto Hibi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
| | - Sakayu Shimizu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Kenzo Yokozeki
- Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan.,Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Suzuki-cho, Kawasaki-ku, Kawasaki, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
Pham MT, Tran TTA, Zayabaatar E. Discovery of inhibitors against mycobacterium branched-chain amino acid aminotransferases through in silico screening and experimental evaluation. Lett Appl Microbiol 2022; 75:942-950. [PMID: 35687522 DOI: 10.1111/lam.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is one of the most dangerous infectious diseases and is caused by Mycobacterium bovis (Mb) and Mycobacterium tuberculosis (Mt). Branched-chain amino acid aminotransferases (BCATs) were reported to be the key enzyme for methionine synthesis in Mycobacterium. Blocking the methionine synthesis in Mycobacterium can inhibit the growth of Mycobacterium. Therefore, in silico screening of inhibitors can be a good way to develop a potential drug for treating TB. A pyridoxal 5'-phosphate (PLP)-form of Mycobacterium bovis branched-chain amino acid aminotransferases (MbBCAT), an active form of MbBCAT, was constructed manually for docking approximately 150 000 compounds and the free energy was calculated in Autodock Vina. The 10 compounds which had the highest affinity to MbBCAT were further evaluated for their inhibitory effects against MbBCAT. Within the selected compounds, compound 4 (ZINC12359007) was found to be the best inhibitor against MbBCAT with the inhibitory constant Ki of 0·45 μmol l-1 and IC50 of 2·37 μmol l-1 . Our work provides potential candidates to develop effective drugs to prevent TB since the well-known structural information would be beneficial in the structure-based modification and design.
Collapse
Affiliation(s)
- M T Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - T T A Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam
| | - E Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Yelamanchi SD, Surolia A. Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival. IUBMB Life 2021; 73:643-658. [PMID: 33624925 DOI: 10.1002/iub.2455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022]
Abstract
Tuberculosis caused by the bacterium, Mycobacterium tuberculosis (Mtb), continues to remain one of the most devastating infectious diseases afflicting humans. Although there are several drugs for treating tuberculosis available currently, the emergence of the drug resistant forms of this pathogen has made its treatment and eradication a challenging task. While the replication machinery, protein synthesis and cell wall biogenesis of Mtb have been targeted often for anti-tubercular drug development a number of essential metabolic pathways crucial to its survival have received relatively less attention. In this context a number of amino acid biosynthesis pathways have recently been shown to be essential for the survival and pathogenesis of Mtb. Many of these pathways and or their key enzymes homologs are absent in humans hence they could be harnessed for anti-tubercular drug development. In this review, we describe comprehensively the amino acid metabolic pathways essential in Mtb and the key enzymes involved therein that are being investigated for developing inhibitors that compromise the survival and pathogenesis caused by this pathogen.
Collapse
Affiliation(s)
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
7
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
8
|
Bezsudnova EY, Popov VO, Boyko KM. Structural insight into the substrate specificity of PLP fold type IV transaminases. Appl Microbiol Biotechnol 2020; 104:2343-2357. [PMID: 31989227 DOI: 10.1007/s00253-020-10369-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Pyridoxal-5'-phosphate-dependent transaminases of fold type IV (class IV) are promising enzymes for (R)-selective amination of organic compounds. Transaminases of fold type IV exhibit either strict (R)-selectivity or (S)-selectivity that is implemented within geometrically similar active sites of different amino acid compositions. Based on substrate specificity, class IV comprises three large families of transaminases: (S)-selective branched-chain L-amino acid aminotransferases and (R)-selective D-amino acid aminotransferases and (R)-amine:pyruvate transaminases. In this review, we aim to analyze the substrate profiles and correlations between the substrate specificity and organization of the active site in transaminases from these structurally related families. New transaminases with an expanded substrate specificity are also discussed. An analysis of the structural features of substrate binding and comparisons of structural determinants of chiral discrimination between members of the class IV transaminases could be helpful in identifying new biocatalytically relevant enzymes as well as rational protein engineering.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071.,Kurchatov Complex of NBICS-Technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova sqr 1, Moscow, Russian Federation, 123182
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, Moscow, Russian Federation, 119071
| |
Collapse
|
9
|
Bezsudnova EY, Boyko KM, Nikolaeva AY, Zeifman YS, Rakitina TV, Suplatov DA, Popov VO. Biochemical and structural insights into PLP fold type IV transaminase from Thermobaculum terrenum. Biochimie 2018; 158:130-138. [PMID: 30599183 DOI: 10.1016/j.biochi.2018.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
Abstract
The high catalytic efficiency of enzymes under reaction conditions is one of the main goals in biocatalysis. Despite the dramatic progress in the development of more efficient biocatalysts by protein design, the search for natural enzymes with useful properties remains a promising strategy. The pyridoxal 5'-phosphate (PLP)-dependent transaminases represent a group of industrially important enzymes due to their ability to stereoselectively transfer amino groups between diverse substrates; however, the complex mechanism of substrate recognition and conversion makes the design of transaminases a challenging task. Here we report a detailed structural and kinetic study of thermostable transaminase from the bacterium Thermobaculum terrenum (TaTT) using the methods of enzyme kinetics, X-ray crystallography and molecular modeling. TaTT can convert L-branched-chain and L-aromatic amino acids as well as (R)-(+)-1-phenylethylamine at a high rate and with high enantioselectivity. The structures of TaTT in complex with the cofactor pyridoxal 5'-phosphate covalently bound to enzyme and in complex with its reduced form, pyridoxamine 5'-phosphate, were determined at resolutions of 2.19 Å and 1.5 Å, and deposited in the Protein Data Bank as entries 6GKR and 6Q8E, respectively. TaTT is a fold type IV PLP-dependent enzyme. In terms of structural similarity, the enzyme is close to known branched-chain amino acid aminotransferases, but differences in characteristic sequence motifs in the active site were observed in TaTT compared to canonical branched-chain amino acid aminotransferases, which can explain the improved binding of aromatic amino acids and (R)-(+)-1-phenylethylamine. This study has shown for the first time that high substrate specificity towards both various l-amino acids and (R)-primary amines can be implemented within one pyridoxal 5'-phosphate-dependent active site of fold type IV. These results complement our knowledge of the catalytic diversity of transaminases and indicate the need for further biochemical and bioinformatic studies to understand the sequence-structure-function relationship in these enzymes.
Collapse
Affiliation(s)
- Ekaterina Yu Bezsudnova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation.
| | - Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Alena Yu Nikolaeva
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Yulia S Zeifman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| | - Tatiana V Rakitina
- Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation; Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya Str. 16/10, 117997, Moscow, Russian Federation
| | - Dmitry A Suplatov
- Lomonosov Moscow State University, Belozersky Institute of Physicochemical Biology, Leninskiye Gory 1-73, Moscow, 119991, Russian Federation
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, 119071, Moscow, Russian Federation; Kurchatov Complex of NBICS-technologies, National Research Centre "Kurchatov Institute", Akad. Kurchatova Sqr 1, 123182, Moscow, Russian Federation
| |
Collapse
|
10
|
Bezsudnova EY, Boyko KM, Popov VO. Properties of Bacterial and Archaeal Branched-Chain Amino Acid Aminotransferases. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523060 DOI: 10.1134/s0006297917130028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metabolism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the "lock and key" mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal temperature, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.
Collapse
Affiliation(s)
- E Yu Bezsudnova
- Bach Institute of Biochemistry, The Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
11
|
Amorim Franco TM, Blanchard JS. Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017; 56:5849-5865. [PMID: 28977745 DOI: 10.1021/acs.biochem.7b00849] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eight enzymes responsible for the biosynthesis of the three branched-chain amino acids (l-isoleucine, l-leucine, and l-valine) were identified decades ago using classical genetic approaches based on amino acid auxotrophy. This review will highlight the recent progress in the determination of the three-dimensional structures of these enzymes, their chemical mechanisms, and insights into their suitability as targets for the development of antibacterial agents. Given the enormous rise in bacterial drug resistance to every major class of antibacterial compound, there is a clear and present need for the identification of new antibacterial compounds with nonoverlapping targets to currently used antibacterials that target cell wall, protein, mRNA, and DNA synthesis.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| |
Collapse
|
12
|
Amorim Franco TM, Favrot L, Vergnolle O, Blanchard JS. Mechanism-Based Inhibition of the Mycobacterium tuberculosis Branched-Chain Aminotransferase by d- and l-Cycloserine. ACS Chem Biol 2017; 12:1235-1244. [PMID: 28272868 DOI: 10.1021/acschembio.7b00142] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The branched-chain aminotransferase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme responsible for the final step in the biosynthesis of all three branched-chain amino acids, l-leucine, l-isoleucine, and l-valine, in bacteria. We have investigated the mechanism of inactivation of the branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) by d- and l-cycloserine. d-Cycloserine is currently used only in the treatment of multidrug-drug-resistant tuberculosis. Our results show a time- and concentration-dependent inactivation of MtIlvE by both isomers, with l-cycloserine being a 40-fold better inhibitor of the enzyme. Minimum inhibitory concentration (MIC) studies revealed that l-cycloserine is a 10-fold better inhibitor of Mycobacterium tuberculosis growth than d-cycloserine. In addition, we have crystallized the MtIlvE-d-cycloserine inhibited enzyme, determining the structure to 1.7 Å. The structure of the covalent d-cycloserine-PMP adduct bound to MtIlvE reveals that the d-cycloserine ring is planar and aromatic, as previously observed for other enzyme systems. Mass spectrometry reveals that both the d-cycloserine- and l-cycloserine-PMP complexes have the same mass, and are likely to be the same aromatized, isoxazole product. However, the kinetics of formation of the MtIlvE d-cycloserine-PMP and MtIlvE l-cycloserine-PMP adducts are quite different. While the kinetics of the formation of the MtIlvE d-cycloserine-PMP complex can be fit to a single exponential, the formation of the MtIlvE l-cycloserine-PMP complex occurs in two steps. We propose a chemical mechanism for the inactivation of d- and l-cycloserine which suggests a stereochemically determined structural role for the differing kinetics of inactivation. These results demonstrate that the mechanism of action of d-cycloserine's activity against M. tuberculosis may be more complicated than previously thought and that d-cycloserine may compromise the in vivo activity of multiple PLP-dependent enzymes, including MtIlvE.
Collapse
Affiliation(s)
- Tathyana Mar Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
13
|
Amorim Franco TM, Hegde S, Blanchard JS. Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from Mycobacterium tuberculosis. Biochemistry 2016; 55:6295-6303. [PMID: 27780341 DOI: 10.1021/acs.biochem.6b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The biosynthetic pathway of the branched-chain amino acids is essential for Mycobacterium tuberculosis growth and survival. We report here the kinetic and chemical mechanism of the pyridoxal 5'-phosphate (PLP)-dependent branched-chain aminotransferase, IlvE, from M. tuberculosis (MtIlvE). This enzyme is responsible for the final step of the synthesis of the branched-chain amino acids isoleucine, leucine, and valine. As seen in other aminotransferases, MtIlvE displays a ping-pong kinetic mechanism. pK values were identified from the pH dependence on V as well as V/K, indicating that the phosphate ester of the PLP cofactor, and the α-amino group from l-glutamate and the active site Lys204, play roles in acid-base catalysis and binding, respectively. An intrinsic primary kinetic isotope effect was identified for the α-C-H bond cleavage of l-glutamate. Large solvent kinetic isotope effect values for the ping and pong half-reactions were also identified. The absence of a quininoid intermediate in combination with the Dkobs in our multiple kinetic isotope effects under single-turnover conditions suggests a concerted type of mechanism. The deprotonation of C2 of l-glutamate and the protonation of C4' of the PLP cofactor happen synchronously in the ping half-reaction. A chemical mechanism is proposed on the basis of the results obtained here.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
14
|
Röttig A, Strittmatter CS, Schauer J, Hiessl S, Poehlein A, Daniel R, Steinbüchel A. Role of Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase in Oleaginous Streptomyces sp. Strain G25. Appl Environ Microbiol 2016; 82:5969-81. [PMID: 27474711 PMCID: PMC5038041 DOI: 10.1128/aem.01719-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/20/2016] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Recently, we isolated a novel Streptomyces strain which can accumulate extraordinarily large amounts of triacylglycerol (TAG) and consists of 64% fatty acids (dry weight) when cultivated with glucose and 50% fatty acids (dry weight) when cultivated with cellobiose. To identify putative gene products responsible for lipid storage and cellobiose utilization, we analyzed its draft genome sequence. A single gene encoding a wax ester synthase/acyl coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT) was identified and heterologously expressed in Escherichia coli The purified enzyme AtfG25 showed acyltransferase activity with C12- or C16-acyl-CoA, C12 to C18 alcohols, or dipalmitoyl glycerol. This acyltransferase exhibits 24% amino acid identity to the model enzyme AtfA from Acinetobacter baylyi but has high sequence similarities to WS/DGATs from other Streptomyces species. To investigate the impact of AtfG25 on lipid accumulation, the respective gene, atfG25, was inactivated in Streptomyces sp. strain G25. However, cells of the insertion mutant still exhibited DGAT activity and were able to store TAG, albeit in lower quantities and at lower rates than the wild-type strain. These findings clearly indicate that AtfG25 has an important, but not exclusive, role in TAG biosynthesis in the novel Streptomyces isolate and suggest the presence of alternative metabolic pathways for lipid accumulation which are discussed in the present study. IMPORTANCE A novel Streptomyces strain was isolated from desert soil, which represents an extreme environment with high temperatures, frequent drought, and nutrient scarcity. We believe that these harsh conditions promoted the development of the capacity for this strain to accumulate extraordinarily large amounts of lipids. In this study, we present the analysis of its draft genome sequence with a special focus on enzymes potentially involved in its lipid storage. Furthermore, the activity and importance of the detected acyltransferase were studied. As discussed in this paper, and in contrast to many other bacteria, streptomycetes seem to possess a complex metabolic network to synthesize lipids, whereof crucial steps are still largely unknown. This paper therefore provides insights into a range of topics, including extremophile bacteria, the physiology of lipid accumulation, and the biotechnological production of bacterial lipids.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Carl Simon Strittmatter
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jennifer Schauer
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sebastian Hiessl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Ruan J, Hu J, Yin A, Wu W, Cong X, Feng X, Li S. Structure of the branched-chain aminotransferase fromStreptococcus mutans. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:996-1002. [DOI: 10.1107/s0907444912018446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/25/2012] [Indexed: 11/10/2022]
|
16
|
Hu Q, Ding C, Tu J, Wang X, Han X, Duan Y, Yu S. Immunoproteomics analysis of whole cell bacterial proteins of Riemerella anatipestifer. Vet Microbiol 2012; 157:428-38. [PMID: 22317978 DOI: 10.1016/j.vetmic.2012.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/02/2011] [Accepted: 01/10/2012] [Indexed: 11/20/2022]
Affiliation(s)
- Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), 518 Ziyue Road, Shanghai 200241, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Manikandan K, Geerlof A, Zozulya AV, Svergun DI, Weiss MS. Structural studies on the enzyme complex isopropylmalate isomerase (LeuCD) fromMycobacterium tuberculosis. Proteins 2010; 79:35-49. [DOI: 10.1002/prot.22856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/08/2010] [Accepted: 07/25/2010] [Indexed: 11/10/2022]
|
18
|
Hong EY, Cha M, Yun H, Kim BG. Asymmetric synthesis of l-tert-leucine and l-3-hydroxyadamantylglycine using branched chain aminotransferase. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Castell A, Mille C, Unge T. Structural analysis of mycobacterial branched-chain aminotransferase: implications for inhibitor design. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:549-57. [DOI: 10.1107/s0907444910004877] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/08/2010] [Indexed: 11/10/2022]
Abstract
The branched-chain aminotransferase (BCAT) ofMycobacterium tuberculosishas been characterized as being essential to the survival of the bacterium. The enzyme is pyridoxal 5′-phosphate-dependent and belongs to the aminotransferase IIIa subfamily, to which the human BCATs also belong. The overall sequence similarity is high within the subfamily and the sequence identity among the active-site residues is high. In order to identify structurally unique features ofM. tuberculosisBCAT, X-ray structural and functional analyses of the closely related BCAT fromM. smegmatiswere carried out. The crystal structures include the apo form at 2.2 Å resolution and a 1.9 Å structure of the holo form cocrystallized with the inhibitorO-benzylhydroxylamine (Obe). The analyses highlighted the active-site residues Tyr209 and Gly243 as being structurally unique characteristics of the mycobacterial BCATs relative to the human BCATs. The inhibitory activities of Obe and ammonium sulfate were verified in an inhibition assay. Modelling of the inhibitor Obe in the substrate pocket indicated potential for the design of a mycobacterial-specific inhibitor.
Collapse
|
20
|
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â²-methylthioadenosine. IUBMB Life 2009; 61:1132-42. [DOI: 10.1002/iub.278] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Tremblay LW, Blanchard JS. The 1.9 A structure of the branched-chain amino-acid transaminase (IlvE) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1071-7. [PMID: 19923721 PMCID: PMC2777029 DOI: 10.1107/s1744309109036690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/10/2009] [Indexed: 11/10/2022]
Abstract
Unlike mammals, bacteria encode enzymes that synthesize branched-chain amino acids. The pyridoxal 50-phosphate-dependent transaminase performs the final biosynthetic step in these pathways, converting keto acid precursors into -amino acids. The branched-chain amino-acid transaminase from Mycobacterium tuberculosis (MtIlvE) has been crystallized and its structure has been solved at 1.9 angstrom resolution. The MtIlvE monomer is composed of two domains that interact to form the active site. The biologically active form of IlvE is a homodimer in which each monomer contributes a substrate-specificity loop to the partner molecule. Additional substrate selectivity may be imparted by a conserved N-terminal Phe30 residue, which has previously been observed to shield the active site in the type IV fold homodimer. The active site of MtIlvE contains density corresponding to bound PMP, which is likely to be a consequence of the presence of tryptone in the crystallization medium. Additionally, two cysteine residues are positioned at the dimer interface for disulfide-bond formation under oxidative conditions. It is unknown whether they are involved in any regulatory activities analogous to those of the human mitochondrial branched-chain amino-acid transaminase.
Collapse
Affiliation(s)
- L. W. Tremblay
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - J. S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Covarrubias AS, Högbom M, Bergfors T, Carroll P, Mannerstedt K, Oscarson S, Parish T, Jones TA, Mowbray SL. Structural, Biochemical, and In Vivo Investigations of the Threonine Synthase from Mycobacterium tuberculosis. J Mol Biol 2008; 381:622-33. [DOI: 10.1016/j.jmb.2008.05.086] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 05/28/2008] [Accepted: 05/30/2008] [Indexed: 11/25/2022]
|
23
|
Two groups of thermophilic amino acid aminotransferases exhibiting broad substrate specificities for the synthesis of phenylglycine derivatives. Appl Microbiol Biotechnol 2008; 79:775-84. [PMID: 18481057 DOI: 10.1007/s00253-008-1487-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 01/09/2023]
Abstract
Thirty two thermophilic amino acid aminotransferases (AATs) were expressed in Escherichia coli as soluble and active proteins. Based on their primary structures, the 32 AATs were divided into four phylogenetic groups (classes I, II, IV, and V). The substrate specificities of these AATs were examined, and 12 AATs were found capable of synthesizing ring-substituted phenylglycine derivatives such as hydroxyl-, methoxy-, and fluorophenylglycines. Eleven out of the 12 AATs were enzymes belonging to two phylogenetic groups namely, one subgroup of the class I family and the class IV family. AATs in these two groups may thus be useful for the synthesis of a variety of ring-substituted phenylglycine derivatives.
Collapse
|
24
|
Tomioka H. Development of new antituberculous agents based on new drug targets and structure–activity relationship. Expert Opin Drug Discov 2007; 3:21-49. [DOI: 10.1517/17460441.3.1.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Saito M, Nishimura K, Wakabayashi S, Kurihara T, Nagata Y. Purification of branched-chain amino acid aminotransferase from Helicobacter pylori NCTC 11637. Amino Acids 2006; 33:445-9. [PMID: 17077963 DOI: 10.1007/s00726-006-0452-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 09/25/2006] [Indexed: 11/29/2022]
Abstract
Branched-chain amino acid aminotransferase was purified by several column chromatographies from Helicobacter pylori NCTC 11637, and the N-terminal amino acid sequence was analyzed. The enzyme gene was sequenced based on a putative branched-chain amino acid aminotransferase gene, ilvE of H. pylori 26695, and the whole amino acid sequence was deduced from the nucleotide sequence. The enzyme existed in a homodimer with a calculated subunit molecular weight (MW) of 37,539 and an isoelectric point (pI) of 6.47. The enzyme showed high affinity to 2-oxoglutarate (K (m) = 0.085 mM) and L-isoleucine (K (m) = 0.34 mM), and V (max) was 27.3 micromol/min/mg. The best substrate was found to be L-isoleucine followed by L-leucine and L-valine. No activity was shown toward the D-enantiomers of these amino acids. The optimal pH and temperature were pH 8.0 and 37 degrees C, respectively.
Collapse
Affiliation(s)
- M Saito
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Schuster J, Knill T, Reichelt M, Gershenzon J, Binder S. Branched-chain aminotransferase4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis. THE PLANT CELL 2006; 18:2664-79. [PMID: 17056707 PMCID: PMC1626624 DOI: 10.1105/tpc.105.039339] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 08/16/2006] [Accepted: 09/27/2006] [Indexed: 05/12/2023]
Abstract
As part of our analysis of branched-chain amino acid metabolism in plants, we analyzed the function of Arabidopsis thaliana BRANCHED-CHAIN AMINOTRANSFERASE4 (BCAT4). Recombinant BCAT4 showed high efficiency with Met and its derivatives and the corresponding 2-oxo acids, suggesting its participation in the chain elongation pathway of Met-derived glucosinolate biosynthesis. This was substantiated by in vivo analysis of two BCAT4 T-DNA knockout mutants, in which Met-derived aliphatic glucosinolate accumulation is reduced by approximately 50%. The increase in free Met and S-methylmethionine levels in these mutants, together with in vitro substrate specificity, strongly implicate BCAT4 in catalysis of the initial deamination of Met to 4-methylthio-2-oxobutyrate. BCAT4 transcription is induced by wounding and is predominantly observed in the phloem. BCAT4 transcript accumulation also follows a diurnal rhythm, and green fluorescent protein tagging experiments and subcellular protein fractions show that BCAT4 is located in the cytosol. The assignment of BCAT4 to the Met chain elongation pathway documents the close evolutionary relationship of this pathway to Leu biosynthesis. In addition to BCAT4, the enzyme methylthioalkylmalate synthase 1 has been recruited for the Met chain elongation pathway from a gene family involved in Leu formation. This suggests that the two pathways have a common evolutionary origin.
Collapse
|