1
|
Niu Y, Suzuki H, Hosford CJ, Walz T, Chappie JS. Structural asymmetry governs the assembly and GTPase activity of McrBC restriction complexes. Nat Commun 2020; 11:5907. [PMID: 33219217 PMCID: PMC7680126 DOI: 10.1038/s41467-020-19735-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 01/21/2023] Open
Abstract
McrBC complexes are motor-driven nucleases functioning in bacterial self-defense by cleaving foreign DNA. The GTP-specific AAA + protein McrB powers translocation along DNA and its hydrolysis activity is stimulated by its partner nuclease McrC. Here, we report cryo-EM structures of Thermococcus gammatolerans McrB and McrBC, and E. coli McrBC. The McrB hexamers, containing the necessary catalytic machinery for basal GTP hydrolysis, are intrinsically asymmetric. This asymmetry directs McrC binding so that it engages a single active site, where it then uses an arginine/lysine-mediated hydrogen-bonding network to reposition the asparagine in the McrB signature motif for optimal catalytic function. While the two McrBC complexes use different DNA-binding domains, these contribute to the same general GTP-recognition mechanism employed by all G proteins. Asymmetry also induces distinct inter-subunit interactions around the ring, suggesting a coordinated and directional GTP-hydrolysis cycle. Our data provide insights into the conserved molecular mechanisms governing McrB family AAA + motors.
Collapse
Affiliation(s)
- Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
- Laboratory Molecular Neurobiology and Biophysics, The Rockefeller University, New York, NY, USA
| | - Hiroshi Suzuki
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Christopher J Hosford
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA
- New England Biolabs, Inc., Ipswich, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA.
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Hosford CJ, Adams MC, Niu Y, Chappie JS. The N-terminal domain of Staphylothermus marinus McrB shares structural homology with PUA-like RNA binding proteins. J Struct Biol 2020; 211:107572. [PMID: 32652237 DOI: 10.1016/j.jsb.2020.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022]
Abstract
McrBC is a conserved modification-dependent restriction system that in Escherichia coli specifically targets foreign DNA containing methylated cytosines. Crystallographic data show that the N-terminal domain of Escherichia coli McrB binds substrates via a base flipping mechanism. This region is poorly conserved among the plethora of McrB homologs, suggesting that other species may use alternative binding strategies and/or recognize different targets. Here we present the crystal structure of the N-terminal domain from Stayphlothermus marinus McrB (Sm3-180) at 1.92 Å, which adopts a PUA-like EVE fold that is closely related to the YTH and ASCH RNA binding domains. Unlike most PUA-like domains, Sm3-180 binds DNA and can associate with different modified substrates. We find the canonical 'aromatic cage' binding pocket that confers specificity for methylated bases in other EVE/YTH domains is degenerate and occluded in Sm3-180, which may contribute to its promiscuity in target recognition. Further structural comparison between different PUA-like domains identifies motifs and conformational variations that correlate with the preference for binding either DNA or RNA. Together these data have important implications for PUA-like domain specificity and suggest a broader biological versatility for the McrBC family than previously described.
Collapse
Affiliation(s)
| | - Myfanwy C Adams
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Yiming Niu
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
Hosford CJ, Bui AQ, Chappie JS. The structure of the Thermococcus gammatolerans McrB N-terminal domain reveals a new mode of substrate recognition and specificity among McrB homologs. J Biol Chem 2019; 295:743-756. [PMID: 31822563 DOI: 10.1074/jbc.ra119.010188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/07/2019] [Indexed: 01/12/2023] Open
Abstract
McrBC is a two-component, modification-dependent restriction system that cleaves foreign DNA-containing methylated cytosines. Previous crystallographic studies have shown that Escherichia coli McrB uses a base-flipping mechanism to recognize these modified substrates with high affinity. The side chains stabilizing both the flipped base and the distorted duplex are poorly conserved among McrB homologs, suggesting that other mechanisms may exist for binding modified DNA. Here we present the structures of the Thermococcus gammatolerans McrB DNA-binding domain (TgΔ185) both alone and in complex with a methylated DNA substrate at 1.68 and 2.27 Å resolution, respectively. The structures reveal that TgΔ185 consists of a YT521-B homology (YTH) domain, which is commonly found in eukaryotic proteins that bind methylated RNA and is structurally unrelated to the E. coli McrB DNA-binding domain. Structural superposition and co-crystallization further show that TgΔ185 shares a conserved aromatic cage with other YTH domains, which forms the binding pocket for a flipped-out base. Mutational analysis of this aromatic cage supports its role in conferring specificity for the methylated adenines, whereas an extended basic surface present in TgΔ185 facilitates its preferential binding to duplex DNA rather than RNA. Together, these findings establish a new binding mode and specificity among McrB homologs and expand the biological roles of YTH domains.
Collapse
Affiliation(s)
| | - Anthony Q Bui
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
5
|
Hosford CJ, Chappie JS. The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 2018; 293:11758-11771. [PMID: 29895618 PMCID: PMC6066307 DOI: 10.1074/jbc.ra118.001888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Restriction modification systems consist of an endonuclease that cleaves foreign DNA site-specifically and an associated methyltransferase that protects the corresponding target site in the host genome. Modification-dependent restriction systems, in contrast, specifically recognize and cleave methylated and/or glucosylated DNA. The LlaJI restriction system contains two 5-methylcytosine (5mC) methyltransferases (LlaJI.M1 and LlaJI.M2) and two restriction proteins (LlaJI.R1 and LlaJI.R2). LlaJI.R1 and LlaJI.R2 are homologs of McrB and McrC, respectively, which in Escherichia coli function together as a modification-dependent restriction complex specific for 5mC-containing DNA. Lactococcus lactis LlaJI.R1 binds DNA site-specifically, suggesting that the LlaJI system uses a different mode of substrate recognition. Here we present the structure of the N-terminal DNA-binding domain of Helicobacter pylori LlaJI.R1 at 1.97-Å resolution, which adopts a B3 domain fold. Structural comparison to B3 domains in plant transcription factors and other restriction enzymes identifies key recognition motifs responsible for site-specific DNA binding. Moreover, biochemistry and structural modeling provide a rationale for how H. pylori LlaJI.R1 may bind a target site that differs from the 5-bp sequence recognized by other LlaJI homologs and identify residues critical for this recognition activity. These findings underscore the inherent structural plasticity of B3 domains, allowing recognition of a variety of substrates using the same structural core.
Collapse
Affiliation(s)
- Christopher J Hosford
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Joshua S Chappie
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
6
|
Iannelli F, Santagati M, Santoro F, Oggioni MR, Stefani S, Pozzi G. Nucleotide sequence of conjugative prophage Φ1207.3 (formerly Tn1207.3) carrying the mef(A)/msr(D) genes for efflux resistance to macrolides in Streptococcus pyogenes. Front Microbiol 2014; 5:687. [PMID: 25538698 PMCID: PMC4260502 DOI: 10.3389/fmicb.2014.00687] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 11/21/2014] [Indexed: 12/02/2022] Open
Abstract
Genetic element Φ1207.3 (formerly Tn1207.3) is a prophage of Streptococcus pyogenes which carries the macrolide efflux resistance genes mef(A)/msr(D) and is capable of conjugal transfer among streptococci. Complete nucleotide sequence showed that Φ1207.3 is 52,491 bp in length and contained 58 open reading frames (ORFs). A manual homology-based annotation with functional prediction of the hypothetical gene product was possible only for 34 out of 58 ORFs. Φ1207.3 codes for two different C-methylation systems, several phage structural genes, a lysis cassette (composed by a holin and a peptidoglycan hydrolase), and three site-specific resolvases of the serine recombinase family.
Collapse
Affiliation(s)
- Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena Siena, Italy
| | - Maria Santagati
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena Siena, Italy
| | - Marco R Oggioni
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena Siena, Italy
| | - Stefania Stefani
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena Siena, Italy
| |
Collapse
|
7
|
Trček J. Plasmid analysis of high acetic acid-resistant bacterial strains by two-dimensional agarose gel electrophoresis and insights into the phenotype of plasmid pJK2-1. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0966-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
O′Connell Motherway M, Watson D, Bottacini F, Clark TA, Roberts RJ, Korlach J, Garault P, Chervaux C, van Hylckama Vlieg JET, Smokvina T, van Sinderen D. Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS One 2014; 9:e94875. [PMID: 24743599 PMCID: PMC3990576 DOI: 10.1371/journal.pone.0094875] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 03/20/2014] [Indexed: 01/25/2023] Open
Abstract
Bifidobacterium animalis subsp. lactis CNCM I-2494 is a component of a commercialized fermented dairy product for which beneficial effects on health has been studied by clinical and preclinical trials. To date little is known about the molecular mechanisms that could explain the beneficial effects that bifidobacteria impart to the host. Restriction-modification (R-M) systems have been identified as key obstacles in the genetic accessibility of bifidobacteria, and circumventing these is a prerequisite to attaining a fundamental understanding of bifidobacterial attributes, including the genes that are responsible for health-promoting properties of this clinically and industrially important group of bacteria. The complete genome sequence of B. animalis subsp. lactis CNCM I-2494 is predicted to harbour the genetic determinants for two type II R-M systems, designated BanLI and BanLII. In order to investigate the functionality and specificity of these two putative R-M systems in B. animalis subsp. lactis CNCM I-2494, we employed PacBio SMRT sequencing with associated methylome analysis. In addition, the contribution of the identified R-M systems to the genetic accessibility of this strain was assessed.
Collapse
Affiliation(s)
- Mary O′Connell Motherway
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Debbie Watson
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Tyson A. Clark
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | - Jonas Korlach
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | | | | | | | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, National University of Ireland, Cork, Ireland
- * E-mail:
| |
Collapse
|
9
|
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547-55. [PMID: 24123737 DOI: 10.1128/aem.02229-13] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.
Collapse
|
10
|
Abstract
The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980’s, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I–III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.
Collapse
Affiliation(s)
- Wil A M Loenen
- Leiden University Medical Center, P.O. Box 9600 2300RC Leiden, The Netherlands and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | | |
Collapse
|
11
|
Ershova AS, Karyagina AS, Vasiliev MO, Lyashchuk AM, Lunin VG, Spirin SA, Alexeevski AV. Solitary restriction endonucleases in prokaryotic genomes. Nucleic Acids Res 2012; 40:10107-15. [PMID: 22965118 PMCID: PMC3488263 DOI: 10.1093/nar/gks853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Prokaryotic restriction-modification (R-M) systems defend the host cell from the invasion of a foreign DNA. They comprise two enzymatic activities: specific DNA cleavage activity and DNA methylation activity preventing cleavage. Typically, these activities are provided by two separate enzymes: a DNA methyltransferase (MTase) and a restriction endonuclease (RE). In the absence of a corresponding MTase, an RE of Type II R-M system is highly toxic for the cell. Genes of the R-M system are linked in the genome in the vast majority of annotated cases. There are only a few reported cases in which the genes of MTase and RE from one R-M system are not linked. Nevertheless, a few hundreds solitary RE genes are present in the Restriction Enzyme Database (http://rebase.neb.com) annotations. Using the comparative genomic approach, we analysed 272 solitary RE genes. For 57 solitary RE genes we predicted corresponding MTase genes located distantly in a genome. Of the 272 solitary RE genes, 99 are likely to be fragments of RE genes. Various explanations for the existence of the remaining 116 solitary RE genes are also discussed.
Collapse
Affiliation(s)
- Anna S Ershova
- Department of Mathematical Methods in Biology, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 2012; 40:7016-45. [PMID: 22638584 PMCID: PMC3424549 DOI: 10.1093/nar/gks382] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.
Collapse
Affiliation(s)
- Kamil Steczkiewicz
- Laboratory of Bioinformatics and Systems Biology, CENT, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Li N, Zhang LQ, Zhang J, Liu ZX, Huang B, Zhang SH, Nie P. Type I restriction-modification system and its resistance in electroporation efficiency in Flavobacterium columnare. Vet Microbiol 2012; 160:61-8. [PMID: 22655971 DOI: 10.1016/j.vetmic.2012.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/17/2012] [Accepted: 04/10/2012] [Indexed: 11/26/2022]
Abstract
Flavobacterium columnare, the causative agent of columnaris disease, infects freshwater fish worldwide. However, the pathogenicity of this bacterium is poorly understood due possibly to the lack of an efficient in-frame knockout technique. In order to improve electroporation efficiency, the type I restriction-modification system (R-M system) was cloned and its role in electroporation was examined in F. columnare G(4) strain. The complete sequence of type I R-M system in the bacterium, designated as Fcl, contains all three subunits of type I R-M system, named as fclM, fclS, fclR, respectively, with the identification of a hypothetical gene, fclX. Constitutive transcription of the three genes was observed in F. columnare G(4) by RT-PCR. The ORF of fclM and fclS was cloned into the plasmid pACYC184 and transformed into Escherichia coli TOP10. The resultant E. coli strain, designated as E. coli TOPmt, was transformed with the integrative plasmid pGL006 constructed for F. columnare G(4). The integrative plasmid was re-isolated from TOPmt and incubated with the lysate of F. columnare G(4). The re-isolated integrative plasmid, designated as pGL006', showed higher resistance than pGL006. With pGL006', the electroporation efficiency of the strain G(4) increased 2.6 times, while that of F. columnare G(18) was not obviously improved. Furthermore, a method to improve the electroporation efficiency of F. columnare G(4) was developed using the integrative plasmid methylated by E. coli TOPmt which contains the fclM and fclS gene of F. columnare G(4). Further analyses showed that the fcl gene cluster may be a unique type I R-M system in F. columnare G(4). It will be of significant interest to examine the composition and diversity of R-M systems in strains of F. columnare in order to set up a suitable genetic manipulation system for the bacterium.
Collapse
Affiliation(s)
- N Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wei YX, Zhang ZY, Liu C, Malakar PK, Guo XK. Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. World J Gastroenterol 2012; 18:479-88. [PMID: 22346255 PMCID: PMC3270512 DOI: 10.3748/wjg.v18.i5.479] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/31/2011] [Accepted: 08/07/2011] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the safety of Bifidobacterium longum (B. longum) JDM301 based on complete genome sequences. METHODS The complete genome sequences of JDM301 were determined using the GS 20 system. Putative virulence factors, putative antibiotic resistance genes and genes encoding enzymes responsible for harmful metabolites were identified by blast with virulence factors database, antibiotic resistance genes database and genes associated with harmful metabolites in previous reports. Minimum inhibitory concentration of 16 common antimicrobial agents was evaluated by E-test. RESULTS JDM301 was shown to contain 36 genes associated with antibiotic resistance, 5 enzymes related to harmful metabolites and 162 nonspecific virulence factors mainly associated with transcriptional regulation, adhesion, sugar and amino acid transport. B. longum JDM301 was intrinsically resistant to ciprofloxacin, amikacin, gentamicin and streptomycin and susceptible to vancomycin, amoxicillin, cephalothin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, imipenem and trimethoprim-sulphamethoxazol. JDM301 was moderately resistant to bacitracin, while an earlier study showed that bifidobacteria were susceptible to this antibiotic. A tetracycline resistance gene with the risk of transfer was found in JDM301, which needs to be experimentally validated. CONCLUSION The safety assessment of JDM301 using information derived from complete bacterial genome will contribute to a wider and deeper insight into the safety of probiotic bacteria.
Collapse
|
15
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
16
|
Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 2008; 9:R163. [PMID: 19025584 PMCID: PMC2614495 DOI: 10.1186/gb-2008-9-11-r163] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage. RESULTS McrBC inhibited the establishment of a plasmid carrying a PvuII methyltransferase gene but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage. Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation. RecA/RecBCD functions affect chromosome processing and, together with the SOS response, reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type II restriction-modification systems, which behave as selfish mobile elements, maintaining their frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog, which suggests a functional association. CONCLUSIONS Our experiments indicate McrBC can respond to genome methylation systems by host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that McrBCs have evolved as mobile elements competing with specific genome methylation systems through host killing. To our knowledge, this represents the first report of a defense system against epigenetic systems through cell death.
Collapse
|
17
|
Orlowski J, Bujnicki JM. Structural and evolutionary classification of Type II restriction enzymes based on theoretical and experimental analyses. Nucleic Acids Res 2008; 36:3552-69. [PMID: 18456708 PMCID: PMC2441816 DOI: 10.1093/nar/gkn175] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For a very long time, Type II restriction enzymes (REases) have been a paradigm of ORFans: proteins with no detectable similarity to each other and to any other protein in the database, despite common cellular and biochemical function. Crystallographic analyses published until January 2008 provided high-resolution structures for only 28 of 1637 Type II REase sequences available in the Restriction Enzyme database (REBASE). Among these structures, all but two possess catalytic domains with the common PD-(D/E)XK nuclease fold. Two structures are unrelated to the others: R.BfiI exhibits the phospholipase D (PLD) fold, while R.PabI has a new fold termed 'half-pipe'. Thus far, bioinformatic studies supported by site-directed mutagenesis have extended the number of tentatively assigned REase folds to five (now including also GIY-YIG and HNH folds identified earlier in homing endonucleases) and provided structural predictions for dozens of REase sequences without experimentally solved structures. Here, we present a comprehensive study of all Type II REase sequences available in REBASE together with their homologs detectable in the nonredundant and environmental samples databases at the NCBI. We present the summary and critical evaluation of structural assignments and predictions reported earlier, new classification of all REase sequences into families, domain architecture analysis and new predictions of three-dimensional folds. Among 289 experimentally characterized (not putative) Type II REases, whose apparently full-length sequences are available in REBASE, we assign 199 (69%) to contain the PD-(D/E)XK domain. The HNH domain is the second most common, with 24 (8%) members. When putative REases are taken into account, the fraction of PD-(D/E)XK and HNH folds changes to 48% and 30%, respectively. Fifty-six characterized (and 521 predicted) REases remain unassigned to any of the five REase folds identified so far, and may exhibit new architectures. These enzymes are proposed as the most interesting targets for structure determination by high-resolution experimental methods. Our analysis provides the first comprehensive map of sequence-structure relationships among Type II REases and will help to focus the efforts of structural and functional genomics of this large and biotechnologically important class of enzymes.
Collapse
Affiliation(s)
- Jerzy Orlowski
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | |
Collapse
|
18
|
Martínez B, Obeso JM, Rodríguez A, García P. Nisin-bacteriophage crossresistance in Staphylococcus aureus. Int J Food Microbiol 2008; 122:253-8. [PMID: 18281118 DOI: 10.1016/j.ijfoodmicro.2008.01.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 11/29/2022]
Abstract
The combined effect of nisin and two lytic phages against Staphylococcus aureus was assessed. In short-time challenge experiments performed in pasteurized milk, a synergistic effect was observed. However, the development of nisin-adapted cells seriously compromised bacteriophage activity. A nisin-adapted strain became partially resistant to both phages. Efficiency of plaquing as well as adsorption values differed. Changes on the bacterial surface, often linked to nisin resistance, could account for the phenotypes observed, most likely by interfering with binding/recognition of phage receptors. The nisin-adapted strain was significantly less hydrophobic and with a higher positive net charge as shown by the lack of binding of cytochrome c and nisin. Loss of the nisin resistant phenotype restored phage susceptibility. In contrast, bacteriophage insensitive mutants were not nisin resistant. The results indicate that careful use of nisin and bacteriophages in combination is required for control of S. aureus in dairy products.
Collapse
Affiliation(s)
- Beatriz Martínez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC). Apdo. 85. 33300- Villaviciosa, Asturias, Spain
| | | | | | | |
Collapse
|