1
|
Fortuna A, Collalto D, Rampioni G, Leoni L. Assays for Studying Pseudomonas aeruginosa Secreted Proteases. Methods Mol Biol 2024; 2721:137-151. [PMID: 37819520 DOI: 10.1007/978-1-0716-3473-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Proteolytic activity plays an essential role in Pseudomonas aeruginosa adaptation and survival in challenging environments, including the infection site. Here, a short review of the eight known proteases secreted by P. aeruginosa and of the methods used to detect their activity is provided. In addition, three simple and handy methods routinely used in our laboratory to detect proteases are described in detail. In particular, the skim milk plate assay and the azocasein assay are useful for the detection of whole proteases activity in colony-growing and cell-free culture supernatants, respectively. Conversely, the Elastin Congo-red assay allows detecting the activity of the LasB elastase, the major protease secreted by P. aeruginosa, in cell-free culture supernatants.
Collapse
Affiliation(s)
| | | | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy.
| |
Collapse
|
2
|
Mellini M, Letizia M, Leoni L, Rampioni G. Whole-Cell Biosensors for Qualitative and Quantitative Analysis of Quorum Sensing Signal Molecules and the Investigation of Quorum Quenching Agents. Methods Mol Biol 2024; 2721:55-67. [PMID: 37819515 DOI: 10.1007/978-1-0716-3473-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In Pseudomonas aeruginosa relevant features including virulence and biofilm formation are controlled by quorum sensing (QS), a cell density-dependent intercellular communication system based on the production and response to signal molecules. P. aeruginosa has evolved chemically distinct compounds employed as QS signal molecules (QSSMs) that can be detected and quantified through rapid, sensitive, and low-cost methods based on whole-cell biosensors. Here, we present a series of protocols based on whole-cell biosensors for qualitative and quantitative analysis of QSSMs produced by P. aeruginosa. These protocols can be used to investigate the impact of environmental conditions, genetic modifications, or quorum quenching agents on the production of QSSMs in P. aeruginosa.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
3
|
Fortuna A, Collalto D, Schiaffi V, Pastore V, Visca P, Ascenzioni F, Rampioni G, Leoni L. The Pseudomonas aeruginosa DksA1 protein is involved in H 2O 2 tolerance and within-macrophages survival and can be replaced by DksA2. Sci Rep 2022; 12:10404. [PMID: 35729352 PMCID: PMC9213440 DOI: 10.1038/s41598-022-14635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
In Gram-negative pathogens, the stringent response regulator DksA controls the expression of hundreds of genes, including virulence-related genes. Interestingly, Pseudomonas aeruginosa has two functional DksA paralogs: DksA1 is constitutively expressed and has a zinc-finger motif, while DksA2 is expressed only under zinc starvation conditions and does not contain zinc. DksA1 stimulates the production of virulence factors in vitro and is required for full pathogenicity in vivo. DksA2 can replace these DksA1 functions. Here, the role of dksA paralogs in P. aeruginosa tolerance to H2O2-induced oxidative stress has been investigated. The P. aeruginosa dksA1 dksA2 mutant showed impaired H2O2 tolerance in planktonic and biofilm-growing cultures and increased susceptibility to macrophages-mediated killing compared to the wild type. Complementation with either dksA1 or dksA2 genes restored the wild type phenotypes. The DksA-dependent tolerance to oxidative stress involves, at least in part, the positive transcriptional control of both katA and katE catalase-encoding genes. These data support the hypothesis that DksA1 and DksA2 are eco-paralogs with indistinguishable function but optimal activity under different environmental conditions, and highlight their mutual contribution to P. aeruginosa virulence.
Collapse
Affiliation(s)
| | | | - Veronica Schiaffi
- Department of Molecular and Cellular Biology "Charles Darwin", University Roma Sapienza, Rome, Italy
| | - Valentina Pastore
- Department of Molecular and Cellular Biology "Charles Darwin", University Roma Sapienza, Rome, Italy
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Molecular and Cellular Biology "Charles Darwin", University Roma Sapienza, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University Roma Tre, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy.
| |
Collapse
|
4
|
Quintieri L, Caputo L, Brasca M, Fanelli F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas spp. Foods 2021; 10:3088. [PMID: 34945641 PMCID: PMC8701193 DOI: 10.3390/foods10123088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Food spoilage is a serious issue dramatically impacting the worldwide need to counteract food insecurity. Despite the very expensive application of low temperatures, the proper conservation of fresh dairy products is continuously threatened at different stages of production and commercialization by psychrotrophic populations mainly belonging to the Pseudomonas genus. These bacteria cause discolouration, loss of structure, and off-flavours, with fatal implications on the quality and shelf-life of products. While the effects of pseudomonad decay have been widely reported, the mechanisms responsible for the activation and regulation of spoilage pathways are still poorly explored. Recently, molecule signals and regulators involved in quorum sensing (QS), such as homoserine lactones, the luxR/luxI system, hdtS, and psoR, have been detected in spoiled products and bacterial spoiler species; this evidence suggests the role of bacterial cross talk in dairy spoilage and paves the way towards the search for novel preservation strategies based on QS inhibition. The aim of this review was to investigate the advancements achieved by the application of omic approaches in deciphering the molecular mechanisms controlled by QS systems in pseudomonads, by focusing on the regulators and metabolic pathways responsible for spoilage of fresh dairy products. In addition, due the ability of pseudomonads to quickly spread in the environment as biofilm communities, which may also include pathogenic and multidrug-resistant (MDR) species, the risk derived from the gaps in clearly defined and regulated sanitization actions is underlined.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, 20133 Milan, Italy;
| | - Francesca Fanelli
- Institute of Sciences of Food Production, National Research Council of Italy, 70126 Bari, Italy; (L.C.); (F.F.)
| |
Collapse
|
5
|
Goo E, Hwang I. Essential roles of Lon protease in the morpho-physiological traits of the rice pathogen Burkholderia glumae. PLoS One 2021; 16:e0257257. [PMID: 34525127 PMCID: PMC8443046 DOI: 10.1371/journal.pone.0257257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The highly conserved ATP-dependent Lon protease plays important roles in diverse biological processes. The lon gene is usually nonessential for viability; however, lon mutants of several bacterial species, although viable, exhibit cellular defects. Here, we show that a lack of Lon protease causes pleiotropic effects in the rice pathogen Burkholderia glumae. The null mutation of lon produced three colony types, big (BLONB), normal (BLONN), and small (BLONS), in Luria–Bertani (LB) medium. Colonies of the BLONB and BLONN types were re-segregated upon subculture, while those of the BLONS type were too small to manipulate. The BLONN type was chosen for further studies, as only this type was fully genetically complemented. BLONN-type cells did not reach the maximum growth capacity, and their population decreased drastically after the stationary phase in LB medium. BLONN-type cells were defective in the biosynthesis of quorum sensing (QS) signals and exhibited reduced oxalate biosynthetic activity, causing environmental alkaline toxicity and population collapse. Addition of excessive N-octanoyl-homoserine lactone (C8-HSL) to BLONN-type cell cultures did not fully restore oxalate biosynthesis, suggesting that the decrease in oxalate biosynthesis in BLONN-type cells was not due to insufficient C8-HSL. Co-expression of lon and tofR in Escherichia coli suggested that Lon negatively affects the TofR level in a C8-HSL-dependent manner. Lon protease interacted with the oxalate biosynthetic enzymes, ObcA and ObcB, indicating potential roles for the oxalate biosynthetic activity. These results suggest that Lon protease influences colony morphology, growth, QS system, and oxalate biosynthesis in B. glumae.
Collapse
Affiliation(s)
- Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Fortuna A, Bähre H, Visca P, Rampioni G, Leoni L. The two Pseudomonas aeruginosa DksA stringent response proteins are largely interchangeable at the whole transcriptome level and in the control of virulence-related traits. Environ Microbiol 2021; 23:5487-5504. [PMID: 34327807 DOI: 10.1111/1462-2920.15693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
The stringent response regulator DksA plays a key role in Gram negative bacteria adaptation to challenging environments. Intriguingly, the plant and human pathogen Pseudomonas aeruginosa is unique as it expresses two functional DksA paralogs: DksA1 and DksA2. However, the role of DksA2 in P. aeruginosa adaptive strategies has been poorly investigated so far. Here, RNA-Seq analysis and phenotypic assays showed that P. aeruginosa DksA1 and DksA2 proteins are largely interchangeable. Relative to wild type P. aeruginosa, transcription of 1779 genes was altered in a dksA1 dksA2 double mutant, and the wild type expression level of ≥90% of these genes was restored by in trans complementation with either dksA1 or dksA2. Interestingly, the expression of a small sub-set of genes seems to be preferentially or exclusively complemented by either dksA1 or dksA2. In addition, evidence has been provided that the DksA-dependent regulation of virulence genes expression is independent and hierarchically dominant over two major P. aeruginosa regulatory circuits, i.e., quorum sensing and cyclic-di-GMP signalling systems. Our findings support the prominent role of both DksA paralogs in P. aeruginosa environmental adaptation.
Collapse
Affiliation(s)
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
7
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
McVicker G, Hollingshead S, Pilla G, Tang CM. Maintenance of the virulence plasmid in Shigella flexneri is influenced by Lon and two functional partitioning systems. Mol Microbiol 2019; 111:1355-1366. [PMID: 30767313 PMCID: PMC6519299 DOI: 10.1111/mmi.14225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2019] [Indexed: 11/30/2022]
Abstract
Members of the genus Shigella carry a large plasmid, pINV, which is essential for virulence. In Shigella flexneri, pINV harbours three toxin‐antitoxin (TA) systems, CcdAB, GmvAT and VapBC that promote vertical transmission of the plasmid. Type II TA systems, such as those on pINV, consist of a toxic protein and protein antitoxin. Selective degradation of the antitoxin by proteases leads to the unopposed action of the toxin once genes encoding a TA system have been lost, such as following failure to inherit a plasmid harbouring a TA system. Here, we investigate the role of proteases in the function of the pINV TA systems and demonstrate that Lon, but not ClpP, is required for their activity during plasmid stability. This provides the first evidence that acetyltransferase family TA systems, such as GmvAT, can be regulated by Lon. Interestingly, S. flexneri pINV also harbours two putative partitioning systems, ParAB and StbAB. We show that both systems are functional for plasmid maintenance although their activity is masked by other systems on pINV. Using a model vector based on the pINV replicon, we observe temperature‐dependent differences between the two partitioning systems that contribute to our understanding of the maintenance of virulence in Shigella species.
Collapse
Affiliation(s)
- Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
9
|
Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P, Cámara M. Differential Regulation of the Phenazine Biosynthetic Operons by Quorum Sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol 2018; 8:252. [PMID: 30083519 PMCID: PMC6064868 DOI: 10.3389/fcimb.2018.00252] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/03/2018] [Indexed: 01/26/2023] Open
Abstract
The Pseudomonas aeruginosa quorum sensing (QS) network plays a key role in the adaptation to environmental changes and the control of virulence factor production in this opportunistic human pathogen. Three interlinked QS systems, namely las, rhl, and pqs, are central to the production of pyocyanin, a phenazine virulence factor which is typically used as phenotypic marker for analysing QS. Pyocyanin production in P. aeruginosa is a complex process involving two almost identical operons termed phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), which drive the production of phenazine-1-carboxylic acid (PCA) which is further converted to pyocyanin by two modifying enzymes PhzM and PhzS. Due to the high sequence conservation between the phz1 and phz2 operons (nucleotide identity > 98%), analysis of their individual expression by RNA hybridization, qRT-PCR or transcriptomics is challenging. To overcome this difficulty, we utilized luminescence based promoter fusions of each phenazine operon to measure in planktonic cultures their transcriptional activity in P. aeruginosa PAO1-N genetic backgrounds impaired in different components of the las, rhl, and pqs QS systems, in the presence or absence of different QS signal molecules. Using this approach, we found that all three QS systems play a role in differentially regulating the phz1 and phz2 phenazine operons, thus uncovering a higher level of complexity to the QS regulation of PCA biosynthesis in P. aeruginosa than previously appreciated. Importance The way the P. aeruginosa QS regulatory networks are intertwined creates a challenge when analysing the mechanisms governing specific QS-regulated traits. Multiple QS regulators and signals have been associated with the production of phenazine virulence factors. In this work we designed experiments where we dissected the contribution of specific QS switches using individual mutations and complementation strategies to gain further understanding of the specific roles of these QS elements in controlling expression of the two P. aeruginosa phenazine operons. Using this approach we have teased out which QS regulators have either indirect or direct effects on the regulation of the two phenazine biosynthetic operons. The data obtained highlight the sophistication of the QS cascade in P. aeruginosa and the challenges in analysing the control of phenazine secondary metabolites.
Collapse
Affiliation(s)
- Steven Higgins
- Centre for Biomolecular Science, School of Life Science, University of Nottingham, Nottingham, United Kingdom
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | - Stephan Heeb
- Centre for Biomolecular Science, School of Life Science, University of Nottingham, Nottingham, United Kingdom
| | - Giordano Rampioni
- Centre for Biomolecular Science, School of Life Science, University of Nottingham, Nottingham, United Kingdom
- Department of Science, University Roma Tre, Rome, Italy
| | - Mathew P. Fletcher
- Centre for Biomolecular Science, School of Life Science, University of Nottingham, Nottingham, United Kingdom
| | - Paul Williams
- Centre for Biomolecular Science, School of Life Science, University of Nottingham, Nottingham, United Kingdom
| | - Miguel Cámara
- Centre for Biomolecular Science, School of Life Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
A combination of luxR1 and luxR2 genes activates Pr-promoters of psychrophilic Aliivibrio logei lux-operon independently of chaperonin GroEL/ES and protease Lon at high concentrations of autoinducer. Biochem Biophys Res Commun 2016; 473:1158-1162. [PMID: 27067048 DOI: 10.1016/j.bbrc.2016.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Lux-operon of psychrophilic bacteria Aliivibrio logei contains two copies of luxR and is regulated by Type I quorum sensing (QS). Activation of lux-operon of psychrophilic bacteria A. logei by LuxR1 requires about 100 times higher concentrations of autoinducer (AI) than the activation by LuxR2. On the other hand, LuxR1 does not require GroEL/ES chaperonin for its folding and cannot be degraded by protease Lon, while LuxR2 sensitive to Lon and requires GroEL/ES. Here we show that at 10(-5) - 10(-4)М concentrations of AI a combination of luxR1 and luxR2 products is capable of activating the Pr-promoters of A. logei lux-operon in Escherichia coli independently of GroEL/ES and protease Lon. The presence of LuxR1 assists LuxR2 in gro(-) cells when AI was added at high concentration, while at low concentration of AI in a cell LuxR1 decreases the LuxR2 activity. These observations may be explained by the formation of LuxR1/LuxR2 heterodimers that act in complex with AI independently from GroEL/ES and protease Lon. IMPORTANCE This study expands current understanding of QS regulation in A. logei as it implies cooperative regulation of lux-operon by LuxR1 and LuxR2 proteins.
Collapse
|
11
|
De la Cruz MA, Morgan JK, Ares MA, Yáñez-Santos JA, Riordan JT, Girón JA. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ(32) and Lon protease. Front Cell Infect Microbiol 2016; 6:11. [PMID: 26904510 PMCID: PMC4742615 DOI: 10.3389/fcimb.2016.00011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/18/2016] [Indexed: 12/05/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI-IMSSMexico City, Mexico; Emerging Pathogens Institute, University of FloridaGainesville, FL, USA
| | - Jason K Morgan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, FL, USA
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI-IMSS Mexico City, Mexico
| | - Jorge A Yáñez-Santos
- Facultad de Estomatología, Benemerita Universidad Autonoma de Puebla Puebla, Mexico
| | - James T Riordan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida Tampa, FL, USA
| | - Jorge A Girón
- Emerging Pathogens Institute, University of FloridaGainesville, FL, USA; Centro de Deteccion Biomolecular, Benemerita Universidad Autonoma de PueblaPuebla, Mexico
| |
Collapse
|
12
|
Glišić BĐ, Aleksic I, Comba P, Wadepohl H, Ilic-Tomic T, Nikodinovic-Runic J, Djuran MI. Copper(ii) complexes with aromatic nitrogen-containing heterocycles as effective inhibitors of quorum sensing activity in Pseudomonas aeruginosa. RSC Adv 2016. [DOI: 10.1039/c6ra19902j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Copper(ii) complexes with aromatic nitrogen-containing heterocycles are a new class of quorum sensing inhibitors that attenuate virulence without a pronounced effect on the bacterial growth, thus offering a lower risk for resistance development.
Collapse
Affiliation(s)
- Biljana Đ. Glišić
- Department of Chemistry
- Faculty of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Peter Comba
- Anorganisch-Chemisches Institüt and Interdisciplinary Center for Scientific Computing
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institüt and Interdisciplinary Center for Scientific Computing
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | - Miloš I. Djuran
- Department of Chemistry
- Faculty of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| |
Collapse
|
13
|
Rahmani-Badi A, Sepehr S, Fallahi H, Heidari-Keshel S. Dissection of the cis-2-decenoic acid signaling network in Pseudomonas aeruginosa using microarray technique. Front Microbiol 2015; 7:383. [PMID: 25972860 PMCID: PMC4412052 DOI: 10.3389/fmicb.2015.00383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/10/2016] [Indexed: 11/29/2022] Open
Abstract
Many bacterial pathogens use quorum-sensing (QS) signaling to regulate the expression of factors contributing to virulence and persistence. Bacteria produce signals of different chemical classes. The signal molecule, known as diffusible signal factor (DSF), is a cis-unsaturated fatty acid that was first described in the plant pathogen Xanthomonas campestris. Previous works have shown that human pathogen, Pseudomonas aeruginosa, also synthesizes a structurally related molecule, characterized as cis-2-decenoic acid (C10: Δ2, CDA) that induces biofilm dispersal by multiple types of bacteria. Furthermore, CDA has been shown to be involved in inter-kingdom signaling that modulates fungal behavior. Therefore, an understanding of its signaling mechanism could suggest strategies for interference, with consequences for disease control. To identify the components of CDA signaling pathway in this pathogen, a comparative transcritpome analysis was conducted, in the presence and absence of CDA. A protein-protein interaction (PPI) network for differentially expressed (DE) genes with known function was then constructed by STRING and Cytoscape. In addition, the effects of CDA in combination with antimicrobial agents on the biofilm surface area and bacteria viability were evaluated using fluorescence microscopy and digital image analysis. Microarray analysis identified 666 differentially expressed genes in the presence of CDA and gene ontology (GO) analysis revealed that in P. aeruginosa, CDA mediates dispersion of biofilms through signaling pathways, including enhanced motility, metabolic activity, virulence as well as persistence at different temperatures. PPI data suggested that a cluster of five genes (PA4978, PA4979, PA4980, PA4982, PA4983) is involved in the CDA synthesis and perception. Combined treatments using both CDA and antimicrobial agents showed that following exposure of the biofilms to CDA, remaining cells on the surface were easily removed and killed by antimicrobials.
Collapse
Affiliation(s)
| | - Shayesteh Sepehr
- Department of Biology, School of Science, Alzahra University Tehran, Iran
| | - Hossein Fallahi
- Department of Biology, School of Science, Razi University Kermanshah, Iran
| | - Saeed Heidari-Keshel
- Stem Cell Preparation Unit, Eye Research Center, Farabi Eye Hospital Tehran, Iran
| |
Collapse
|
14
|
Takeuchi K, Tsuchiya W, Noda N, Suzuki R, Yamazaki T, Haas D. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway inPseudomonas protegens. Environ Microbiol 2014; 16:2538-49. [DOI: 10.1111/1462-2920.12394] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/24/2013] [Accepted: 01/04/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Kasumi Takeuchi
- Plant-Microbe Interactions Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Wataru Tsuchiya
- Biomolecular Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Naomi Noda
- Plant-Microbe Interactions Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Rintaro Suzuki
- Biomolecular Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Toshimasa Yamazaki
- Biomolecular Research Unit; National Institute of Agrobiological Sciences; 2-1-2 Kannondai Tsukuba Ibaraki 305-8602 Japan
| | - Dieter Haas
- Département de Microbiologie Fondamentale; Université de Lausanne; CH-1015 Lausanne Switzerland
| |
Collapse
|
15
|
Abstract
Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg, C 1870, Denmark
| | | | | |
Collapse
|
16
|
Licciardello G, Strano CP, Bertani I, Bella P, Fiore A, Fogliano V, Venturi V, Catara V. N-acyl-homoserine-lactone quorum sensing in tomato phytopathogenic Pseudomonas spp. is involved in the regulation of lipodepsipeptide production. J Biotechnol 2012; 159:274-82. [DOI: 10.1016/j.jbiotec.2011.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/17/2011] [Accepted: 07/27/2011] [Indexed: 11/25/2022]
|
17
|
Veselova MA, Lipasova VA, Zaitseva YV, Koksharova OA, Chernukha MY, Romanova YM, Khmel’ IA. Mutants of Burkholderia cenocepacia with a change in synthesis of N-acyl-homoserine lactones—Signal molecules of quorum sensing regulation. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412050213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Abstract
Many bacteria use 'quorum sensing' (QS) as a mechanism to regulate gene induction in a population-dependent manner. In its simplest sense this involves the accumulation of a signaling metabolite during growth; the binding of this metabolite to a regulator or multiple regulators activates induction or repression of gene expression. However QS regulation is seldom this simple, because other inputs are usually involved. In this review we have focussed on how those other inputs influence QS regulation and as implied by the title, this often occurs by environmental or physiological effects regulating the expression or activity of the QS regulators. The rationale of this review is to briefly introduce the main QS signals used in Gram-negative bacteria and then introduce one of the earliest understood mechanisms of regulation of the regulator, namely the plant-mediated control of expression of the TraR QS regulator in Agrobacterium tumefaciens. We then describe how in several species, multiple QS regulatory systems can act as integrated hierarchical regulatory networks and usually this involves the regulation of QS regulators. Such networks can be influenced by many different physiological and environmental inputs and we describe diverse examples of these. In the final section, we describe different examples of how eukaryotes can influence QS regulation in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marijke Frederix
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
19
|
Mattiuzzo M, Bertani I, Ferluga S, Cabrio L, Bigirimana J, Guarnaccia C, Pongor S, Maraite H, Venturi V. The plant pathogen Pseudomonas fuscovaginae contains two conserved quorum sensing systems involved in virulence and negatively regulated by RsaL and the novel regulator RsaM. Environ Microbiol 2011; 13:145-162. [PMID: 20701623 DOI: 10.1111/j.1462-2920.2010.02316.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas fuscovaginae is a Gram-negative fluorescent pseudomonad pathogenic towards several plant species. Despite its importance as a plant pathogen, no molecular studies of virulence have thus far been reported. In this study we show that P. fuscovaginae possesses two conserved N-acyl homoserine lactone (AHL) quorum sensing (QS) systems which we designated PfsI/R and PfvI/R. The PfsI/R system is homologous to the BviI/R system of Burkholderia vietnamiensis and produces and responds to C10-HSL and C12-HSL whereas PfvI/R is homologous to the LasI/R system of Pseudomonas aeruginosa and produces several long-chain 3-oxo-HSLs and responds to 3-oxo-C10-HSL and 3-oxo-C12-HSL and at high AHL concentrations can also respond to structurally different long-chain AHLs. Both systems were found to be negatively regulated by a repressor protein which was encoded by a gene located intergenically between the AHL synthase and LuxR-family response regulator. The pfsI/R system was regulated by a novel repressor designated RsaM while the pfvI/R system was regulated by both the RsaL repressor and by RsaM. The two systems are not transcriptionally hierarchically organized but share a common AHL response and both are required for plant virulence. Pseudomonas fuscovaginae has therefore a unique complex regulatory network composed of at least two different repressors which directly regulate the AHL QS systems and pathogenicity.
Collapse
Affiliation(s)
- Maura Mattiuzzo
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Iris Bertani
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sara Ferluga
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laura Cabrio
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joseph Bigirimana
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Corrado Guarnaccia
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sandor Pongor
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Henri Maraite
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Vittorio Venturi
- International Centre for Genetic Engineering & Biotechnology, Trieste, ItalyInternational Centre for Genetic Engineering & Biotechnology, Biosafety Outstation, Ca'Tron, Treviso, ItalyUnité de Phytopathologie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Mel’kina OE, Manukhov IV, Zavilgelsky GB. Proteolytic control of expression of Vibrio fischeri lux-operon genes in Escherichia coli cells. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410080041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
|
22
|
Ingmer H, Brøndsted L. Proteases in bacterial pathogenesis. Res Microbiol 2009; 160:704-10. [PMID: 19778606 DOI: 10.1016/j.resmic.2009.08.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 01/03/2023]
Abstract
Bacterial pathogens rely on proteolysis for protein quality control under adverse conditions experienced in the host, as well as for the timely degradation of central virulence regulators. We have focused on the contribution of the conserved Lon, Clp, HtrA and FtsH proteases to pathogenesis and have highlighted common biological processes for which their activities are important for virulence.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Faculty of Life Sciences Stigbøjlen 4, University of Copenhagen, Frederiksberg C. DK1870, Denmark.
| | | |
Collapse
|
23
|
Van Melderen L, Aertsen A. Regulation and quality control by Lon-dependent proteolysis. Res Microbiol 2009; 160:645-51. [PMID: 19772918 DOI: 10.1016/j.resmic.2009.08.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 11/17/2022]
Abstract
After their first discovery in Escherichia coli, Lon homologues were found to be widely distributed among prokaryotes to eukaryotes. The ATP-dependent Lon protease belongs to the AAA(+) (ATPases associated with a variety of cellular activities) superfamily, and is involved in both general quality control by degrading abnormal proteins and in the specific control of several regulatory proteins. As such, this enzyme has a pivotal role in quality control and cellular physiology. This review focuses on mechanisms of degradation both from the protease and substrate points of view, and discusses the role of Lon in global regulation, stress response and virulence.
Collapse
Affiliation(s)
- Laurence Van Melderen
- Génétique et Physiologie Bactérienne, Université Libre de Bruxelles, Faculté des Sciences, IBMM-DBM, 12 Rue des Professeurs Jeneer et Brachet, B-6041 Gosselies, Belgium.
| | | |
Collapse
|
24
|
Boyer M, Wisniewski-Dyé F. Cell-cell signalling in bacteria: not simply a matter of quorum. FEMS Microbiol Ecol 2009; 70:1-19. [PMID: 19689448 DOI: 10.1111/j.1574-6941.2009.00745.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial signalling known as quorum sensing (QS) relies on the synthesis of autoinducing signals throughout growth; when a threshold concentration is reached, these signals interact with a transcriptional regulator, allowing the expression of specific genes at a high cell density. One of the most studied intraspecies signalling is based on the use of N-acyl-homoserine lactones (AHL). Many factors other than cell density were shown to affect AHL accumulation and interfere with the QS signalling process. At the cellular level, the genetic determinants of QS are integrated in a complex regulatory network, including QS cascades and various transcriptional and post-transcriptional regulators that affect the synthesis of the AHL signal. In complex environments where bacteria exist, AHL do not accumulate at a constant rate; the diffusion and perception of the AHL signal outside bacterial cells can be compromised by abiotic environmental factors, by members of the bacterial community such as AHL-degrading bacteria and also by compounds produced by eukaryotes acting as an AHL mimic or inhibitor. This review aims to present all factors interfering with the AHL-mediated signalling process, at the levels of signal production, diffusion and perception.
Collapse
|
25
|
Rajamani S, Bauer WD, Robinson JB, Farrow JM, Pesci EC, Teplitski M, Gao M, Sayre RT, Phillips DA. The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1184-92. [PMID: 18700823 PMCID: PMC3856186 DOI: 10.1094/mpmi-21-9-1184] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many bacteria use quorum sensing (QS) as an intercellular signaling mechanism to regulate gene expression in local populations. Plant and algal hosts, in turn, secrete compounds that mimic bacterial QS signals, allowing these hosts to manipulate QS-regulated gene expression in bacteria. Lumichrome, a derivative of the vitamin riboflavin, was purified and chemically identified from culture filtrates of the alga Chlamydomonas as a QS signal-mimic compound capable of stimulating the Pseudomonas aeruginosa LasR QS receptor. LasR normally recognizes the N-acyl homoserine lactone (AHL) signal, N-3-oxo-dodecanoyl homoserine lactone. Authentic lumichrome and riboflavin stimulated the LasR receptor in bioassays and lumichrome activated LasR in gel shift experiments. Amino acid substitutions in LasR residues required for AHL binding altered responses to both AHLs and lumichrome or riboflavin. These results and docking studies indicate that the AHL binding pocket of LasR recognizes both AHLs and the structurally dissimilar lumichrome or riboflavin. Bacteria, plants, and algae commonly secrete riboflavin or lumichrome, raising the possibility that these compounds could serve as either QS signals or as interkingdom signal mimics capable of manipulating QS in bacteria with a LasR-like receptor.
Collapse
Affiliation(s)
- Sathish Rajamani
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Wolfgang D. Bauer
- Department of Plant Sciences, University of California, Davis, CA 95616
| | | | - John M. Farrow
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858
| | - Everett C. Pesci
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858
| | - Max Teplitski
- Department of Soil and Water Science, University of Florida-IFAS, Gainesville, FL 32611-0290
| | - Mengsheng Gao
- Department of Soil and Water Science, University of Florida-IFAS, Gainesville, FL 32611-0290
| | - Richard T. Sayre
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, OH 43210
| | | |
Collapse
|
26
|
Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease. J Bacteriol 2008; 190:4181-8. [PMID: 18408026 DOI: 10.1128/jb.01873-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.
Collapse
|