1
|
Majumder P, Ahmed S, Ahuja P, Athreya A, Ranjan R, Penmatsa A. Cryo-EM structure of antibacterial efflux transporter QacA from Staphylococcus aureus reveals a novel extracellular loop with allosteric role. EMBO J 2023; 42:e113418. [PMID: 37458117 PMCID: PMC10425836 DOI: 10.15252/embj.2023113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Efflux of antibacterial compounds is a major mechanism for developing antimicrobial resistance. In the Gram-positive pathogen Staphylococcus aureus, QacA, a 14 transmembrane helix containing major facilitator superfamily antiporter, mediates proton-coupled efflux of mono and divalent cationic antibacterial compounds. In this study, we report the cryo-EM structure of QacA, with a single mutation D411N that improves homogeneity and retains efflux activity against divalent cationic compounds like dequalinium and chlorhexidine. The structure of substrate-free QacA, complexed to two single-domain camelid antibodies, was elucidated to a resolution of 3.6 Å. The structure displays an outward-open conformation with an extracellular helical hairpin loop (EL7) between transmembrane helices 13 and 14, which is conserved in a subset of DHA2 transporters. Removal of the EL7 hairpin loop or disrupting the interface formed between EL7 and EL1 compromises efflux activity. Chimeric constructs of QacA with a helical hairpin and EL1 grafted from other DHA2 members, LfrA and SmvA, restore activity in the EL7 deleted QacA revealing the allosteric and vital role of EL7 hairpin in antibacterial efflux in QacA and related members.
Collapse
Affiliation(s)
- Puja Majumder
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Present address:
Memorial‐Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Present address:
St. Jude Children's Research HospitalMemphisTNUSA
| | - Pragya Ahuja
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Arunabh Athreya
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rakesh Ranjan
- ICAR‐National Research Centre on CamelJorbeerBikanerIndia
| | - Aravind Penmatsa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
2
|
Dashtbani-Roozbehani A, Chitsaz M, Brown MH. The role of TMS 12 in the staphylococcal multidrug efflux protein QacA. J Antimicrob Chemother 2023:7143693. [PMID: 37100459 DOI: 10.1093/jac/dkad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To elucidate the importance of a region in QacA predicted to be important in antimicrobial substrate recognition. METHODS A total of 38 amino acid residues within or flanking putative transmembrane helix segment (TMS) 12 of QacA were individually replaced with cysteine using site-directed mutagenesis. The impact of these mutations on protein expression, drug resistance, transport activity and interaction with sulphhydryl-binding compounds was determined. RESULTS Accessibility analysis of cysteine-substituted mutants identified the extents of TMS 12, which allowed for refinement of the QacA topology model. Mutation of Gly-361, Gly-379 and Ser-387 in QacA resulted in reduced resistance to at least one bivalent substrate. Interaction with sulphhydryl-binding compounds in efflux and binding assays demonstrated the role of Gly-361 and Ser-387 in the binding and transport pathway of specific substrates. The highly conserved residue Gly-379 was found to be important for the transport of bivalent substrates, commensurate with the role of glycine residues in helical flexibility and interhelical interactions. CONCLUSIONS TMS 12 and its external flanking loop is required for the structural and functional integrity of QacA and contains amino acids directly involved in the interaction with substrates.
Collapse
Affiliation(s)
| | - Mohsen Chitsaz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
3
|
Cloutier S, Reimer E, Khadka B, McCallum BD. Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance. FRONTIERS IN PLANT SCIENCE 2023; 13:1061490. [PMID: 36910459 PMCID: PMC9995823 DOI: 10.3389/fpls.2022.1061490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Characterization of germplasm collections for the wheat leaf rust gene Lr34 previously defined five haplotypes in spring wheat. All resistant lines had a 3-bp TTC deletion (null) in exon 11, resulting in the absence of a phenylalanine residue in the ABC transporter, as well as a single nucleotide C (Tyrosine in Lr34+) to T (Histidine in Lr34-) transition in exon 12. A rare haplotype present in Odesskaja 13 and Koktunkulskaja 332, both of intermediate rust resistance, had the 3-bp deletion typical of Lr34+ in exon 11 but the T nucleotide of Lr34- in exon 12. METHODS To quantify the role of each mutation in leaf rust resistance, Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its near-isogenic line Thatcher-Lr34 (RL6058). Single seed descent populations were generated and evaluated for rust resistance in six different rust nurseries. RESULTS The Odesskaja 13 progeny with the TTC/T haplotype were susceptible with an average severity rating of 62.3%, the null/T haplotype progeny averaged 39.7% and the null/C haplotype was highly resistant, averaging 13.3% severity. The numbers for the Koktunkulskaja 332 crosses were similar with 63.5%, 43.5% and 23.7% severity ratings, respectively. Differences between all classes in all crosses were statistically significant, indicating that both mutations are independently additive for leaf rust resistance. The three-dimensional structural models of LR34 were used to analyze the locations and putative interference of both amino acids with the transport channel. Koktunkulskaja 332 also segregated for marker csLV46 which is linked to Lr46. Rust severity in lines with Lr34+ and csLV46+ had significantly lower rust severity ratings than those without, indicating the additivity of the two loci. DISCUSSION This has implications for the deployment of Lr34 in wheat cultivars and for the basic understanding of this important wheat multi-pest durable resistance gene.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Elsa Reimer
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Bijendra Khadka
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
4
|
A Novel, Widespread qacA Allele Results in Reduced Chlorhexidine Susceptibility in Staphylococcus epidermidis. Antimicrob Agents Chemother 2019; 63:AAC.02607-18. [PMID: 30988144 DOI: 10.1128/aac.02607-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Chlorhexidine gluconate (CHG) is a topical antiseptic widely used in health care settings. In Staphylococcus spp., the pump QacA effluxes CHG, while the closely related QacB cannot due to a single amino acid substitution. We characterized 1,050 cutaneous Staphylococcus isolates obtained from 173 pediatric oncology patients enrolled in a multicenter CHG bathing trial. CHG susceptibility testing revealed that 63 (6%) of these isolates had elevated CHG MICs (≥4 μg/ml). Screening of all 1,050 isolates for the qacA/B gene (the same qac gene with A or B allele) by restriction fragment length polymorphism (RFLP) yielded 56 isolates with a novel qacA/B RFLP pattern, qacA/B273 The CHG MIC was significantly higher for qacA/B273 -positive isolates (MIC50, 4 μg/ml; MIC range, 0.5 to 4 μg/ml) than for other qac groups: qacA-positive isolates (n = 559; MIC50, 1 μg/ml; MIC range, 0.5 to 4 μg/ml), qacB-positive isolates (n = 17; MIC50, 1 μg/ml; MIC range, 0.25 to 2 μg/ml), and qacA/B-negative isolates (n = 418, MIC50, 1 μg/ml; MIC range, 0.125 to 2 μg/ml) (P = 0.001). A high proportion of the qacA/B273 -positive isolates also displayed methicillin resistance (96.4%) compared to the other qac groups (24.9 to 61.7%) (P = 0.001). Whole-genome sequencing revealed that qacA/B273 -positive isolates encoded a variant of QacA with 2 amino acid substitutions. This new allele, named qacA4, was carried on the novel plasmid pAQZ1. The qacA4-carrying isolates belonged to the highly resistant Staphylococcus epidermidis sequence type 2 clone. By searching available sequence data sets, we identified 39 additional qacA4-carrying S. epidermidis strains from 5 countries. Curing an isolate of qacA4 resulted in a 4-fold decrease in the CHG MIC, confirming the role of qacA4 in the elevated CHG MIC. Our results highlight the importance of further studying qacA4 and its functional role in clinical staphylococci.
Collapse
|
5
|
Xu D, Deng Y, Fan R, Shi L, Bai J, Yan H. Coresistance to Benzalkonium Chloride Disinfectant and Heavy Metal Ions in Listeria monocytogenes and Listeria innocua Swine Isolates from China. Foodborne Pathog Dis 2019; 16:696-703. [PMID: 31120347 DOI: 10.1089/fpd.2018.2608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development of coresistance to disinfectants and heavy metals contributes to the fitness of Listeria spp. in foods or food processing environments, where life-threatening Listeria monocytogenes coexist and coevolve with other Listeria spp. Despite extensive research on L. monocytogenes, coresistance to disinfectants and heavy metals is less documented for other Listeria spp. In this study, we screened 30 L. monocytogenes and 27 Listeria innocua isolates recovered from 273 swine samples for resistance to quaternary ammonium compound benzalkonium chloride (BC) and to heavy metals cadmium (Cd) and arsenic (As). Moreover, we evaluated the potential mechanisms of resistance by detecting the efflux pump activity in BC resistance and the presence of resistance determinants. The average minimum inhibitory concentrations of BC in L. innocua (10.7 ± 2.0) were significantly higher than that in L. monocytogenes (6.9 ± 3.7) (p < 0.05). Resistance to BC and heavy metals was correlated, where all BC-resistant L. innocua and As-resistant L. monocytogenes isolates were coresistant to BC and Cd. Twenty percent and 66.7% of BC resistance in L. monocytogenes and L. innocua were related to reserpine-associated efflux pumps, whereas all cases of BC resistance were related to carbonyl cyanide 3-chlorophenylhydrazone-associated efflux pumps. The cadA1 and cadA2 genes were present in Cd-resistant isolates but not in Cd-sensitive isolates, and cadA3 was undetectable in all isolates examined. cadA4 conferring lower level of Cd resistance was copresent with arsA1 and arsA2 in the Cd-resistant and As-susceptible L. monocytogenes isolate LM3. Our findings suggest that swine serves as a reservoir for developing resistance to disinfectant and heavy metals in L. monocytogenes and L. innocua, which share common resistance mechanisms such as efflux pumps and resistance genes. This work provides new insight into the coresistance events of other Listeria as a potential contributor of the resistance in L. monocytogenes.
Collapse
Affiliation(s)
- Dongyang Xu
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Yan Deng
- State Key Testing Laboratory of Aquatic Products, Guangzhou Airport Entry-Exit Inspection and Quarantine Bureau, Guangzhou, China
| | - Rongdong Fan
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,State Key Laboratory of Food Safety Technology for Meat Products, Fujian, China
| | - Jianshan Bai
- State Key Testing Laboratory of Aquatic Products, Guangzhou Airport Entry-Exit Inspection and Quarantine Bureau, Guangzhou, China
| | - He Yan
- School of Food Science and Technology, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Wassenaar TM, Ussery D, Nielsen LN, Ingmer H. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species. Eur J Microbiol Immunol (Bp) 2015; 5:44-61. [PMID: 25883793 DOI: 10.1556/eujmi-d-14-00038] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
The qac genes of Staphylococcus species encode multidrug efflux pumps: membrane proteins that export toxic molecules and thus increase tolerance to a variety of compounds such as disinfecting agents, including quaternary ammonium compounds (for which they are named), intercalating dyes and some antibiotics. In Stapylococcus species, six different plasmid-encoded Qac efflux pumps have been described, and they belong to two major protein families. QacA and QacB are members of the Major Facilitator Superfamily, while QacC, QacG, QacH, and QacJ all belong to the Small Multidrug Resistance (SMR) family. Not all SMR proteins are called Qac and the reverse is also true, which has caused confusion in the literature and in gene annotations. The discovery of qac genes and their presence in various staphylococcal populations is briefly reviewed. A sequence comparison revealed that some of the PCR primers described in the literature for qac detection may miss particular qac genes due to lack of DNA conservation. Despite their resemblance in substrate specificity, the Qac proteins belonging to the two protein families have little in common. QacA and QacB are highly conserved in Staphylococcus species, while qacA was also detected in Enterococcus faecalis, suggesting that these plasmid-born genes have spread across bacterial genera. Nevertheless, these qacA and qacB genes are quite dissimilar to their closest homologues in other organisms. In contrast, SMR-type Qac proteins display considerable sequence variation, despite their short length, even within the Staphylococcus genus. Phylogenetic analysis of these genes identified similarity to a large number of other SMR members, found in staphylococci as well as in other genera. A number of phylogenetic trees of SMR Qac proteins are presented here, starting with genes present in S. aureus and S. epidermidis, and extending this to related genes found in other species of this genus, and finally to genes found in other genera.
Collapse
|
7
|
Dasgupta S, Basu P, Pal RR, Bag S, Bhadra RK. Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae. MICROBIOLOGY-SGM 2014; 160:1855-1866. [PMID: 24987103 DOI: 10.1099/mic.0.079319-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Vibrio cholerae, the causative agent of cholera, products of three genes, relA, spoT and relV, govern nutritional stress related stringent response (SR). SR in bacteria is critically regulated by two intracellular small molecules, guanosine 3'-diphosphate 5'-triphosphate (pppGpp) and guanosine 3',5'-bis(diphosphate) (ppGpp), collectively called (p)ppGpp or alarmone. Evolution of relV is unique in V. cholerae because other Gram-negative bacteria carry only relA and spoT genes. Recent reports suggest that RelV is needed for pathogenesis. RelV carries a single (p)ppGpp synthetase or RelA-SpoT domain (SYNTH/RSD) and belongs to the small alarmone synthetase (SAS) family of proteins. Here, we report extensive functional characterizations of the relV gene by constructing several deletion and site-directed mutants followed by their controlled expression in (p)ppGpp(0) cells of Escherichia coli or V. cholerae. Substitution analysis indicated that the amino acid residues K107, D129, R132, L150 and E188 of the RSD region of RelV are essential for its activity. While K107, D129 and E188 are highly conserved in RelA and SAS proteins, L150 appears to be conserved in the latter group of enzymes, and the R132 residue was found to be unique in RelV. Extensive progressive deletion analysis indicated that the amino acid residues at positions 59 and 248 of the RelV protein are the functional N- and C-terminal boundaries, respectively. Since the minimal functional length of RelV was found to be 189 aa, which includes the 94 aa long RSD region, it seems that the flanking residues of the RSD are also important for maintaining the (p)ppGpp synthetase activity.
Collapse
Affiliation(s)
- Shreya Dasgupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Pallabi Basu
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Ritesh Ranjan Pal
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Satyabrata Bag
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata-700 032, India
| |
Collapse
|
8
|
Dönmez Cakil Y, Khunweeraphong N, Parveen Z, Schmid D, Artaker M, Ecker GF, Sitte HH, Pusch O, Stockner T, Chiba P. Pore-exposed tyrosine residues of P-glycoprotein are important hydrogen-bonding partners for drugs. Mol Pharmacol 2013; 85:420-8. [PMID: 24366667 DOI: 10.1124/mol.113.088526] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The multispecific efflux transporter, P-glycoprotein, plays an important role in drug disposition. Substrate translocation occurs along the interface of its transmembrane domains. The rotational C2 symmetry of ATP-binding cassette transporters implies the existence of two symmetry-related sets of substrate-interacting amino acids. These sets are identical in homodimeric transporters, and remain evolutionary related in full transporters, such as P-glycoprotein, in which substrates bind preferentially, but nonexclusively, to one of two binding sites. We explored the role of pore-exposed tyrosines for hydrogen-bonding interactions with propafenone type ligands in their preferred binding site 2. Tyrosine 953 is shown to form hydrogen bonds not only with propafenone analogs, but also with the preferred site 1 substrate rhodamine123. Furthermore, an accessory role of tyrosine 950 for binding of selected propafenone analogs is demonstrated. The present study demonstrates the importance of domain interface tyrosine residues for interaction of small molecules with P-glycoprotein.
Collapse
Affiliation(s)
- Yaprak Dönmez Cakil
- Institutes of Medical Chemistry (Y.D.C., N.K., Z.P., P.C.), Pharmacology (Y.D.C., H.H.S., T.S.), and Physiology (D.S.), Department of Medical Biochemistry, Max F. Perutz Laboratories (M.A.), and Department of Cell and Developmental Biology (O.P.), Medical University of Vienna, Vienna, Austria; Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan (Z.P.); and Emerging Field Pharmacoinformatics, Department of Medicinal Chemistry, University of Vienna, Vienna, Austria (G.F.E.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Listeria monocytogenes multidrug resistance transporters and cyclic di-AMP, which contribute to type I interferon induction, play a role in cell wall stress. J Bacteriol 2013; 195:5250-61. [PMID: 24056102 DOI: 10.1128/jb.00794-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular bacterial pathogen Listeria monocytogenes activates a robust type I interferon response upon infection. This response is partially dependent on the multidrug resistance (MDR) transporter MdrM and relies on cyclic-di-AMP (c-di-AMP) secretion, yet the functions of MdrM and cyclic-di-AMP that lead to this response are unknown. Here we report that it is not MdrM alone but a cohort of MDR transporters that together contribute to type I interferon induction during infection. In a search for a physiological function of these transporters, we revealed that they play a role in cell wall stress responses. A mutant with deletion of four transporter genes (ΔmdrMTAC) was found to be sensitive to sublethal concentrations of vancomycin due to an inability to produce and shed peptidoglycan under this stress. Remarkably, c-di-AMP is involved in this phenotype, as overexpression of the c-di-AMP phosphodiesterase (PdeA) resulted in increased susceptibility of the ΔmdrMTAC mutant to vancomycin, whereas overexpression of the c-di-AMP diadenylate cyclase (DacA) reduced susceptibility to this drug. These observations suggest a physiological association between c-di-AMP and the MDR transporters and support the model that MDR transporters mediate c-di-AMP secretion to regulate peptidoglycan synthesis in response to cell wall stress.
Collapse
|
10
|
Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484-4495. [PMID: 22605991 PMCID: PMC3344227 DOI: 10.3390/ijms13044484] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.
Collapse
|