1
|
Mattay J. Noncanonical metabolite RNA caps: Classification, quantification, (de)capping, and function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1730. [PMID: 35675554 DOI: 10.1002/wrna.1730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The 5' cap of eukaryotic mRNA is a hallmark for cellular functions from mRNA stability to translation. However, the discovery of novel 5'-terminal RNA caps derived from cellular metabolites has challenged this long-standing singularity in both eukaryotes and prokaryotes. Reminiscent of the 7-methylguanosine (m7G) cap structure, these noncanonical caps originate from abundant coenzymes such as NAD, FAD, or CoA and from metabolites like dinucleoside polyphosphates (NpnN). As of now, the significance of noncanonical RNA caps is elusive: they differ for individual transcripts, occur in distinct types of RNA, and change in response to environmental stimuli. A thorough comparison of their prevalence, quantity, and characteristics is indispensable to define the distinct classes of metabolite-capped RNAs. This is achieved by a structured analysis of all present studies covering functional, quantitative, and sequencing data which help to uncover their biological impact. The biosynthetic strategies of noncanonical RNA capping and the elaborate decapping machinery reveal the regulation and turnover of metabolite-capped RNAs. With noncanonical capping being a universal and ancient phenomenon, organisms have developed diverging strategies to adapt metabolite-derived caps to their metabolic needs, but ultimately to establish noncanonical RNA caps as another intriguing layer of RNA regulation. This article is categorized under: RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Johanna Mattay
- Institute of Biochemistry, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Doamekpor SK, Sharma S, Kiledjian M, Tong L. Recent insights into noncanonical 5' capping and decapping of RNA. J Biol Chem 2022; 298:102171. [PMID: 35750211 PMCID: PMC9283932 DOI: 10.1016/j.jbc.2022.102171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022] Open
Abstract
The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.
Collapse
Affiliation(s)
- Selom K. Doamekpor
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Sunny Sharma
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York, USA.
| |
Collapse
|
3
|
Bettendorff L. Update on Thiamine Triphosphorylated Derivatives and Metabolizing Enzymatic Complexes. Biomolecules 2021; 11:1645. [PMID: 34827643 PMCID: PMC8615392 DOI: 10.3390/biom11111645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
While the cellular functions of the coenzyme thiamine (vitamin B1) diphosphate (ThDP) are well characterized, the triphosphorylated thiamine derivatives, thiamine triphosphate (ThTP) and adenosine thiamine triphosphate (AThTP), still represent an intriguing mystery. They are present, generally in small amounts, in nearly all organisms, bacteria, fungi, plants, and animals. The synthesis of ThTP seems to require ATP synthase by a mechanism similar to ATP synthesis. In E. coli, ThTP is synthesized during amino acid starvation, while in plants, its synthesis is dependent on photosynthetic processes. In E. coli, ThTP synthesis probably requires oxidation of pyruvate and may play a role at the interface between energy and amino acid metabolism. In animal cells, no mechanism of regulation is known. Cytosolic ThTP levels are controlled by a highly specific cytosolic thiamine triphosphatase (ThTPase), coded by thtpa, and belonging to the ubiquitous family of the triphosphate tunnel metalloenzymes (TTMs). While members of this protein family are found in nearly all living organisms, where they bind organic and inorganic triphosphates, ThTPase activity seems to be restricted to animals. In mammals, THTPA is ubiquitously expressed with probable post-transcriptional regulation. Much less is known about the recently discovered AThTP. In E. coli, AThTP is synthesized by a high molecular weight protein complex from ThDP and ATP or ADP in response to energy stress. A better understanding of these two thiamine derivatives will require the use of transgenic models.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
4
|
Möhler M, Höfer K, Jäschke A. Synthesis of 5'-Thiamine-Capped RNA. Molecules 2020; 25:E5492. [PMID: 33255222 PMCID: PMC7727699 DOI: 10.3390/molecules25235492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/05/2023] Open
Abstract
RNA 5'-modifications are known to extend the functional spectrum of ribonucleotides. In recent years, numerous non-canonical 5'-modifications, including adenosine-containing cofactors from the group of B vitamins, have been confirmed in all kingdoms of life. The structural component of thiamine adenosine triphosphate (thiamine-ATP), a vitamin B1 derivative found to accumulate in Escherichia coli and other organisms in response to metabolic stress conditions, suggests an analogous function as a 5'-modification of RNA. Here, we report the synthesis of thiamine adenosine dinucleotides and the preparation of pure 5'-thiamine-capped RNAs based on phosphorimidazolide chemistry. Furthermore, we present the incorporation of thiamine-ATP and thiamine adenosine diphosphate (thiamine-ADP) as 5'-caps of RNA by T7 RNA polymerase. Transcripts containing the thiamine modification were modified specifically with biotin via a combination of thiazole ring opening, nucleophilic substitution and copper-catalyzed azide-alkyne cycloaddition. The highlighted methods provide easy access to 5'-thiamine RNA, which may be applied in the development of thiamine-specific RNA capture protocols as well as the discovery and confirmation of 5'-thiamine-capped RNAs in various organisms.
Collapse
Affiliation(s)
| | | | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (M.M.); (K.H.)
| |
Collapse
|
5
|
Aleshin VA, Mkrtchyan GV, Kaehne T, Graf AV, Maslova MV, Bunik VI. Diurnal regulation of the function of the rat brain glutamate dehydrogenase by acetylation and its dependence on thiamine administration. J Neurochem 2020; 153:80-102. [PMID: 31886885 DOI: 10.1111/jnc.14951] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
Glutamate dehydrogenase (GDH) is essential for the brain function and highly regulated, according to its role in metabolism of the major excitatory neurotransmitter glutamate. Here we show a diurnal pattern of the GDH acetylation in rat brain, associated with specific regulation of GDH function. Mornings the acetylation levels of K84 (near the ADP site), K187 (near the active site), and K503 (GTP-binding) are highly correlated. Evenings the acetylation levels of K187 and K503 decrease, and the correlations disappear. These daily variations in the acetylation adjust the GDH responses to the enzyme regulators. The adjustment is changed when the acetylation of K187 and K503 shows no diurnal variations, as in the rats after a high dose of thiamine. The regulation of GDH function by acetylation is confirmed in a model system, where incubation of the rat brain GDH with acetyl-CoA changes the enzyme responses to GTP and ADP, decreasing the activity at subsaturating concentrations of substrates. Thus, the GDH acetylation may support cerebral homeostasis, stabilizing the enzyme function during diurnal oscillations of the brain metabolome. Daytime and thiamine interact upon the (de)acetylation of GDH in vitro. Evenings the acetylation of GDH from control animals increases both IC50 GTP and EC50 ADP . Mornings the acetylation of GDH from thiamine-treated animals increases the enzyme IC50 GTP . Molecular mechanisms of the GDH regulation by acetylation of specific residues are proposed. For the first time, diurnal and thiamine-dependent changes in the allosteric regulation of the brain GDH due to the enzyme acetylation are shown.
Collapse
Affiliation(s)
- Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Garik V Mkrtchyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Anastasia V Graf
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational, Cognitive and Socio-humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, Moscow, Russia
| | - Maria V Maslova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Aleshin VA, Mkrtchyan GV, Bunik VI. Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance. BIOCHEMISTRY (MOSCOW) 2019; 84:829-850. [PMID: 31522667 DOI: 10.1134/s0006297919080017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- V A Aleshin
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| | - G V Mkrtchyan
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V I Bunik
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| |
Collapse
|
7
|
Bettendorff L, Lakaye B, Kohn G, Wins P. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab Brain Dis 2014; 29:1069-82. [PMID: 24590690 DOI: 10.1007/s11011-014-9509-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/12/2014] [Indexed: 01/12/2023]
Abstract
Thiamine triphosphate (ThTP) was discovered over 60 years ago and it was long thought to be a specifically neuroactive compound. Its presence in most cell types, from bacteria to mammals, would suggest a more general role but this remains undefined. In contrast to thiamine diphosphate (ThDP), ThTP is not a coenzyme. In E. coli cells, ThTP is transiently produced in response to amino acid starvation, while in mammalian cells, it is constitutively produced at a low rate. Though it was long thought that ThTP was synthesized by a ThDP:ATP phosphotransferase, more recent studies indicate that it can be synthesized by two different enzymes: (1) adenylate kinase 1 in the cytosol and (2) FoF1-ATP synthase in brain mitochondria. Both mechanisms are conserved from bacteria to mammals. Thus ThTP synthesis does not seem to require a specific enzyme. In contrast, its hydrolysis is catalyzed, at least in mammalian tissues, by a very specific cytosolic thiamine triphosphatase (ThTPase), controlling the steady-state cellular concentration of ThTP. In some tissues where adenylate kinase activity is high and ThTPase is absent, ThTP accumulates, reaching ≥ 70% of total thiamine, with no obvious physiological consequences. In some animal tissues, ThTP was able to phosphorylate proteins, and activate a high-conductance anion channel in vitro. These observations raise the possibility that ThTP is part of a still uncharacterized cellular signaling pathway. On the other hand, its synthesis by a chemiosmotic mechanism in mitochondria and respiring bacteria might suggest a role in cellular energetics.
Collapse
Affiliation(s)
- Lucien Bettendorff
- GIGA-Neurosciences, University of Liège, Avenue de l'Hôpital, 1, 4000, Liège, Belgium,
| | | | | | | |
Collapse
|
8
|
An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate. Sci Rep 2013; 3:1071. [PMID: 23323214 PMCID: PMC3545222 DOI: 10.1038/srep01071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 12/21/2012] [Indexed: 11/19/2022] Open
Abstract
In E. coli, thiamine triphosphate (ThTP), a putative signaling molecule, transiently accumulates in response to amino acid starvation. This accumulation requires the presence of an energy substrate yielding pyruvate. Here we show that in intact bacteria ThTP is synthesized from free thiamine diphosphate (ThDP) and Pi, the reaction being energized by the proton-motive force (Δp) generated by the respiratory chain. ThTP production is suppressed in strains carrying mutations in F1 or a deletion of the atp operon. Transformation with a plasmid encoding the whole atp operon fully restored ThTP production, highlighting the requirement for FoF1-ATP synthase in ThTP synthesis. Our results show that, under specific conditions of nutritional downshift, FoF1-ATP synthase catalyzes the synthesis of ThTP, rather than ATP, through a highly regulated process requiring pyruvate oxidation. Moreover, this chemiosmotic mechanism for ThTP production is conserved from E. coli to mammalian brain mitochondria.
Collapse
|
9
|
Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells. PLoS One 2010; 5:e13616. [PMID: 21049048 PMCID: PMC2963613 DOI: 10.1371/journal.pone.0013616] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/30/2010] [Indexed: 12/19/2022] Open
Abstract
Background Thiamine (vitamin B1) is an essential molecule for all life forms because thiamine diphosphate (ThDP) is an indispensable cofactor for oxidative energy metabolism. The less abundant thiamine monophosphate (ThMP), thiamine triphosphate (ThTP) and adenosine thiamine triphosphate (AThTP), present in many organisms, may have still unidentified physiological functions. Diseases linked to thiamine deficiency (polyneuritis, Wernicke-Korsakoff syndrome) remain frequent among alcohol abusers and other risk populations. This is the first comprehensive study on the distribution of thiamine derivatives in human biopsies, body fluids and cell lines. Methodology and Principal Findings Thiamine derivatives were determined by HPLC. In human tissues, the total thiamine content is lower than in other animal species. ThDP is the major thiamine compound and tissue levels decrease at high age. In semen, ThDP content correlates with the concentration of spermatozoa but not with their motility. The proportion of ThTP is higher in humans than in rodents, probably because of a lower 25-kDa ThTPase activity. The expression and activity of this enzyme seems to correlate with the degree of cell differentiation. ThTP was present in nearly all brain and muscle samples and in ∼60% of other tissue samples, in particular fetal tissue and cultured cells. A low ([ThTP]+[ThMP])/([Thiamine]+[ThMP]) ratio was found in cardiovascular tissues of patients with cardiac insufficiency. AThTP was detected only sporadically in adult tissues but was found more consistently in fetal tissues and cell lines. Conclusions and Significance The high sensitivity of humans to thiamine deficiency is probably linked to low circulating thiamine concentrations and low ThDP tissue contents. ThTP levels are relatively high in many human tissues, as a result of low expression of the 25-kDa ThTPase. Another novel finding is the presence of ThTP and AThTP in poorly differentiated fast-growing cells, suggesting a hitherto unsuspected link between these compounds and cell division or differentiation.
Collapse
|
10
|
Gigliobianco T, Lakaye B, Wins P, El Moualij B, Zorzi W, Bettendorff L. Adenosine thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress. BMC Microbiol 2010; 10:148. [PMID: 20492686 PMCID: PMC2881022 DOI: 10.1186/1471-2180-10-148] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/21/2010] [Indexed: 11/20/2022] Open
Abstract
Background E. coli cells are rich in thiamine, most of it in the form of the cofactor thiamine diphosphate (ThDP). Free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP) and the newly discovered adenosine thiamine triphosphate (AThTP). While, ThTP accumulation requires oxidation of a carbon source, AThTP slowly accumulates in response to carbon starvation, reaching ~15% of total thiamine. Here, we address the question whether AThTP accumulation in E. coli is triggered by the absence of a carbon source in the medium, the resulting drop in energy charge or other forms of metabolic stress. Results In minimal M9 medium, E. coli cells produce AThTP not only when energy substrates are lacking but also when their metabolization is inhibited. Thus AThTP accumulates in the presence of glucose, when glycolysis is blocked by iodoacetate, or in the presence lactate, when respiration is blocked by cyanide or anoxia. In both cases, ATP synthesis is impaired, but AThTP accumulation does not appear to be a direct consequence of reduced ATP levels. Indeed, in the CV2 E. coli strain (containing a thermolabile adenylate kinase), the ATP content is very low at 37°C, even in the presence of metabolizable substrates (glucose or lactate) and under these conditions, the cells produce ThTP but not AThTP. Furthermore, we show that ThTP inhibits AThTP accumulation. Therefore, we conclude that a low energy charge is not sufficient to trigger AThTP accumulation and the latter can only accumulate under conditions where no ThTP is synthesized. We further show that AThTP production can also be induced by the uncoupler CCCP but, unexpectedly, this requires the presence of pyruvate or a substrate yielding pyruvate (such a D-glucose or L-lactate). Under the conditions described, AThTP production is not different when RelA or SpoT mutants are used. Conclusions In E. coli, AThTP accumulates in response to two different conditions of metabolic stress: lack of energy substrates (or inhibition of their metabolization) and uncoupled pyruvate oxidation. Both conditions prevent bacterial growth. There is no obvious link with the stringent response or catabolite repression.
Collapse
|
11
|
Dermoun Z, Foulon A, Miller MD, Harrington DJ, Deacon AM, Sebban-Kreuzer C, Roche P, Lafitte D, Bornet O, Wilson IA, Dolla A. TM0486 from the hyperthermophilic anaerobe Thermotoga maritima is a thiamin-binding protein involved in response of the cell to oxidative conditions. J Mol Biol 2010; 400:463-76. [PMID: 20471400 DOI: 10.1016/j.jmb.2010.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/28/2010] [Accepted: 05/07/2010] [Indexed: 11/28/2022]
Abstract
The COG database was used for a comparative genome analysis with genomes from anaerobic and aerobic microorganisms with the aim of identifying proteins specific to the anaerobic way of life. A total of 33 COGs were identified, five of which correspond to proteins of unknown function. We focused our study on TM0486 from Thermotoga maritima, which belongs to one of these COGs of unknown function, namely COG0011. The crystal structure of the protein was determined at 2 A resolution. The structure adopts a beta alpha beta beta alpha beta ferredoxin-like fold and assembles as a homotetramer. The structure also revealed the presence of a pocket in each monomer that bound an unidentified ligand. NMR and calorimetry revealed that TM0486 specifically bound thiamin with a K(d) of 1.58 microM, but not hydroxymethyl pyrimidine (HMP), which has been implicated as a potential ligand. We demonstrated that the TM0486 gene belongs to the same multicistronic unit as TM0483, TM0484 and TM0485. Although these three genes have been assigned to the transport of HMP, with TM0484 being the periplasmic thiamin/HMP-binding protein and TM0485 and TM0483 the transmembrane and the ATPase components, respectively, our results led us to conclude that this operon encodes an ABC transporter dedicated to thiamin, with TM0486 transporting charged thiamin in the cytoplasm. Given that this transcriptional unit was up-regulated when T. maritima was exposed to oxidative conditions, we propose that, by chelating cytoplasmic thiamin, TM0486 and, by extension, proteins belonging to COG0011 are involved in the response mechanism to stress that could arise during aerobic conditions.
Collapse
Affiliation(s)
- Zorah Dermoun
- IMR-CNRS, IFR88, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gangolf M, Wins P, Thiry M, El Moualij B, Bettendorff L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J Biol Chem 2009; 285:583-94. [PMID: 19906644 DOI: 10.1074/jbc.m109.054379] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In animals, thiamine deficiency leads to specific brain lesions, generally attributed to decreased levels of thiamine diphosphate, an essential cofactor in brain energy metabolism. However, another far less abundant derivative, thiamine triphosphate (ThTP), may also have a neuronal function. Here, we show that in the rat brain, ThTP is essentially present and synthesized in mitochondria. In mitochondrial preparations from brain (but not liver), ThTP can be produced from thiamine diphosphate and P(i). This endergonic process is coupled to the oxidation of succinate or NADH through the respiratory chain but cannot be energized by ATP hydrolysis. ThTP synthesis is strongly inhibited by respiratory chain inhibitors, such as myxothiazol and inhibitors of the H(+) channel of F(0)F(1)-ATPase. It is also impaired by disruption of the mitochondria or by depolarization of the inner membrane (by protonophores or valinomycin), indicating that a proton-motive force (Deltap) is required. Collapsing Deltap after ThTP synthesis causes its rapid disappearance, suggesting that both synthesis and hydrolysis are catalyzed by a reversible H(+)-translocating ThTP synthase. The synthesized ThTP can be released from mitochondria in the presence of external P(i). However, ThTP probably does not accumulate in the cytoplasm in vivo, because it is not detected in the cytosolic fraction obtained from a brain homogenate. Our results show for the first time that a high energy triphosphate compound other than ATP can be produced by a chemiosmotic type of mechanism. This might shed a new light on our understanding of the mechanisms of thiamine deficiency-induced brain lesions.
Collapse
Affiliation(s)
- Marjorie Gangolf
- GIGA-Neurosciences (B36), University of Liège, Avenue de l'Hôpital 1, B-4000 Liège 1 (Sart Tilman), Belgium B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
13
|
Bettendorff L, Wins P. Thiamin diphosphate in biological chemistry: new aspects of thiamin metabolism, especially triphosphate derivatives acting other than as cofactors. FEBS J 2009; 276:2917-25. [DOI: 10.1111/j.1742-4658.2009.07019.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Makarchikov AF. Vitamin B1: Metabolism and functions. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Frédérich M, Delvaux D, Gigliobianco T, Gangolf M, Dive G, Mazzucchelli G, Elias B, De Pauw E, Angenot L, Wins P, Bettendorff L. Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence. FEBS J 2009; 276:3256-68. [PMID: 19438713 DOI: 10.1111/j.1742-4658.2009.07040.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Thiamine and its three phosphorylated derivatives (mono-, di- and triphosphate) occur naturally in most cells. Recently, we reported the presence of a fourth thiamine derivative, adenosine thiamine triphosphate, produced in Escherichia coli in response to carbon starvation. Here, we show that the chemical synthesis of adenosine thiamine triphosphate leads to another new compound, adenosine thiamine diphosphate, as a side product. The structure of both compounds was confirmed by MS analysis and 1H-, 13C- and 31P-NMR, and some of their chemical properties were determined. Our results show an upfield shifting of the C-2 proton of the thiazolium ring in adenosine thiamine derivatives compared with conventional thiamine phosphate derivatives. This modification of the electronic environment of the C-2 proton might be explained by a through-space interaction with the adenosine moiety, suggesting U-shaped folding of adenosine thiamine derivatives. Such a structure in which the C-2 proton is embedded in a closed conformation can be located using molecular modeling as an energy minimum. In E. coli, adenosine thiamine triphosphate may account for 15% of the total thiamine under energy stress. It is less abundant in eukaryotic organisms, but is consistently found in mammalian tissues and some cell lines. Using HPLC, we show for the first time that adenosine thiamine diphosphate may also occur in small amounts in E. coli and in vertebrate liver. The discovery of two natural thiamine adenine compounds further highlights the complexity and diversity of thiamine biochemistry, which is not restricted to the cofactor role of thiamine diphosphate.
Collapse
|