1
|
Khademi SMH, Sahl C, Happonen L, Forsberg Å, Påhlman LI. The twin-arginine translocation system is vital for cell adhesion and uptake of iron in the cystic fibrosis pathogen Achromobacter xylosoxidans. Virulence 2024; 15:2284513. [PMID: 37974335 PMCID: PMC11533796 DOI: 10.1080/21505594.2023.2284513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Achromobacter xylosoxidans is an emerging pathogen that causes airway infections in patients with cystic fibrosis. Knowledge of virulence factors and protein secretion systems in this bacterium is limited. Twin arginine translocation (Tat) is a protein secretion system that transports folded proteins across the inner cell membranes of gram-negative bacteria. Tat has been shown to be important for virulence and cellular processes in many different bacterial species. This study aimed to investigate the role of Tat in iron metabolism and host cell adhesion in A. xylosoxidans. Putative Tat substrates in A. xylosoxidans were identified using the TatFind, TatP, and PRED-Tat prediction tools. An isogenic tatC deletion mutant (ΔtatC) was generated and phenotypically characterized. The wild-type and ΔtatC A. xylosoxidans were fractionated into cytosolic, membrane, and periplasmic fractions, and the expressed proteome of the different fractions was analysed using liquid chromatography-mass spectrometry (LC-MS/MS). A total of 128 putative Tat substrates were identified in the A. xylosoxidans proteome. The ΔtatC mutant showed attenuated host cell adhesion, growth rate, and iron acquisition. Twenty predicted Tat substrates were identified as expressed proteins in the periplasmic compartment, nine of which were associated with the wild type. The data indicate that Tat secretion is important for iron acquisition and host cell adhesion in A. xylosoxidans.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Cecilia Sahl
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Åke Forsberg
- Department of Molecular Biology, Umeå University, Umeå
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Sweden, Sweden
| |
Collapse
|
2
|
McLaughlin RW, Wang Y, Zhang S, Xie H, Wan X, Liu H, Hao Y, Wang C, Zheng J. Proteus faecis: a potentially pathogenic bacterium isolated from the freshwater Yangtze finless porpoise. Antonie Van Leeuwenhoek 2024; 118:7. [PMID: 39305395 DOI: 10.1007/s10482-024-02023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/12/2024] [Indexed: 01/18/2025]
Abstract
Proteus faecis is a gram-negative facultative anaerobic rod-shaped bacterium capable of swarming motility. It has been isolated from numerous sources such as humans, animals, and refuse and is considered potentially pathogenic towards humans. In this study, bacteria were isolated from the blowhole of a Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in captivity in China. One bacterium, P. faecis porpoise, was isolated and whole genome sequencing done. Biofilm formation, motility and antimicrobial resistance were also investigated. To find putative virulence factors, the genome of P. faecis strain porpoise was compared to the genomic sequences of eight other P. faecis isolates using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) ( https://www.bv-brc.org/ ). The goal of this study was to initially characterize the pathogenicity of this bacterium isolated from a cetacean species using both pathogenomics and conventional approaches.
Collapse
Affiliation(s)
- Richard William McLaughlin
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Liberal Arts & Sciences, Gateway Technical College, Kenosha, WI, 53144, USA
| | - YaLu Wang
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - ShuYa Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - HaiXia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - XiaoLing Wan
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hui Liu
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - YuJiang Hao
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - ChaoQun Wang
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - JinSong Zheng
- Innovation Research Center for Aquatic Mammals; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
3
|
Cheung BH, Alisoltani A, Kochan TJ, Lebrun-Corbin M, Nozick SH, Axline CMR, Bachta KER, Ozer EA, Hauser AR. Genome-wide screens reveal shared and strain-specific genes that facilitate enteric colonization by Klebsiella pneumoniae. mBio 2023; 14:e0212823. [PMID: 37877703 PMCID: PMC10746194 DOI: 10.1128/mbio.02128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE Klebsiella pneumoniae is a common cause of difficult-to-treat infections due to its propensity to express resistance to many antibiotics. For example, carbapenem-resistant K. pneumoniae has been named an urgent threat by the United States Centers for Disease Control and Prevention. Gastrointestinal colonization in patients with K. pneumoniae has been linked to subsequent infection, making it a key process to control in the prevention of multidrug-resistant infections. However, the bacterial factors which contribute to K. pneumoniae colonization are not well understood. Additionally, individual strains exhibit large amounts of genetic diversity, begging the question of whether some colonization factors are strain dependent. This study identifies the enteric colonization factors of three classical strains using transposon mutant screens to define a core colonization program for K. pneumoniae as well as detecting strain-to-strain differences in colonization strategies.
Collapse
Affiliation(s)
- Bettina H. Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Travis J. Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sophia H. Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christopher M. R. Axline
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly E. R. Bachta
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Cheung BH, Alisoltani A, Kochan TJ, Lebrun-Corbin M, Nozick SH, Axline CMR, Bachta KER, Ozer EA, Hauser AR. Genome-wide screens reveal shared and strain-specific genes that facilitate enteric colonization by Klebsiella pneumoniae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555643. [PMID: 37693543 PMCID: PMC10491162 DOI: 10.1101/2023.08.30.555643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Gastrointestinal (GI) colonization by Klebsiella pneumoniae is a risk factor for subsequent infection as well as transmission to other patients. Additionally, colonization is achieved by many strain types that exhibit high diversity in genetic content. Thus, we aimed to study strain-specific requirements for K. pneumoniae GI colonization by applying transposon insertion sequencing to three classical clinical strains: a carbapenem-resistant strain, an extended-spectrum beta-lactamase producing strain, and a non-epidemic antibiotic-susceptible strain. The transposon insertion libraries were screened in a murine model of GI colonization. At three days post-inoculation, 27 genes were required by all three strains for colonization. Isogenic deletion mutants for three genes/operons (acrA, carAB, tatABCD) confirmed colonization defects in each of the three strains. Additionally, deletion of acrA reduced bile tolerance in vitro, while complementation restored both bile tolerance in vitro and colonization ability in vivo. Transposon insertion sequencing suggested that some genes were more important for colonization of one strain than the others. For example, deletion of the sucrose porin-encoding gene scrY resulted in a colonization defect in the carbapenemase-producing strain but not in the extended-spectrum beta-lactamase producer or the antibiotic-susceptible strain. These findings demonstrate that classical K. pneumoniae strains use both shared and strain-specific strategies to colonize the mouse GI tract. IMPORTANCE Klebsiella pneumoniae is a common cause of difficult-to-treat infections due to its propensity to express resistance to many antibiotics. For example, carbapenem-resistant K. pneumoniae (CR-Kp) has been named an urgent threat by the United States Centers for Disease Control and Prevention. Gastrointestinal colonization of patients with K. pneumoniae has been linked to subsequent infection, making it a key process to control in prevention of multidrug-resistant infections. However, the bacterial factors which contribute to K. pneumoniae colonization are not well understood. Additionally, individual strains exhibit large amounts of genetic diversity, begging the question of whether some colonization factors are strain-dependent. This study identifies the enteric colonization factors of 3 classical strains using transposon mutant screens to define a core colonization program for K. pneumoniae as well as detecting strain-to-strain differences in colonization strategies.
Collapse
Affiliation(s)
- Bettina H Cheung
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Arghavan Alisoltani
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Travis J Kochan
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Marine Lebrun-Corbin
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Sophia H Nozick
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher MR Axline
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kelly ER Bachta
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alan R Hauser
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Abstract
Conventional bacterial genome annotation provides information about coding sequences but ignores untranslated regions and operons. However, untranslated regions contain important regulatory elements as well as targets for many regulatory factors, such as small RNAs. Operon maps are also essential for functional gene analysis. In the last decade, considerable progress has been made in the study of bacterial transcriptomes through transcriptome sequencing (RNA-seq). Given the compact nature of bacterial genomes, many challenges still cannot be resolved through short reads generated using classical RNA-seq because of fragmentation and loss of the full-length information. Direct RNA sequencing is a technology that sequences the native RNA directly without information loss or bias. Here, we employed direct RNA sequencing to annotate the Vibrio parahaemolyticus transcriptome with its full features, including transcription start sites (TSSs), transcription termination sites, and operon maps. A total of 4,103 TSSs were identified. In comparison to short-read sequencing, full-length information provided a deeper view of TSS classification, showing that most internal and antisense TSSs were actually a result of gene overlap. Sequencing the transcriptome of V. parahaemolyticus grown with bile allowed us to study the landscape of pathogenicity island Vp-PAI. Some genes in this region were reannotated, providing more accurate annotation to increase precision in their characterization. Quantitative detection of operons in V. parahaemolyticus showed high complexity in some operons, shedding light on a greater extent of regulation within the same operon. Our study using direct RNA sequencing provides a quantitative and high-resolution landscape of the V. parahaemolyticus transcriptome. IMPORTANCEVibrio parahaemolyticus is a halophilic bacterium found in the marine environment. Outbreaks of gastroenteritis resulting from seafood poisoning by these pathogens have risen over the past 2 decades. Upon ingestion by humans—often through the consumption of raw or undercooked seafood—V. parahaemolyticus senses the host environment and expresses numerous genes, the products of which synergize to synthesize and secrete toxins that can cause acute gastroenteritis. To understand the regulation of such adaptive response, mRNA transcripts must be mapped accurately. However, due to the limitations of common sequencing methods, not all features of bacterial transcriptomes are always reported. We applied direct RNA sequencing to analyze the V. parahaemolyticus transcriptome. Mapping the full features of the transcriptome is anticipated to enhance our understanding of gene regulation in this bacterium and provides a data set for future work. Additionally, this study reveals a deeper view of a complicated transcriptome landscape, demonstrating the importance of applying such methods to other bacterial models.
Collapse
|
6
|
Searching for putative virulence factors in the genomes of Shewanella indica and Shewanella algae. Arch Microbiol 2020; 203:683-692. [PMID: 33040180 DOI: 10.1007/s00203-020-02060-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Bacterial pathogens are a major threat to both humans and animals worldwide. It is crucial to understand the mechanisms of various disease processes at the molecular level. Shewanella species are widespread in the environment and some are considered as emerging opportunistic human and marine mammal pathogens. In this study, putative virulence factors on the genome of Shewanella indica BW, a bacterium isolated from the Bryde's whale (Balaenoptera edeni), were determined. Additionally, for comparative purposes, putative virulence factors from two other S. indica and ten S. algae strains were also determined using the Pathosystems Resource Integration Center (PATRIC) pipeline. We confirmed the presence of previously reported virulence factors and we are proposing several new candidate virulence factors. Interestingly, the putative virulence factors were very similar between the two species with the exception of microbial collagenase which was present in all S. algae genomes, but absent in all S. indica genomes.
Collapse
|
7
|
Twin-Arginine Translocation System Is Involved in Citrobacter rodentium Fitness in the Intestinal Tract. Infect Immun 2020; 88:IAI.00892-19. [PMID: 31818958 DOI: 10.1128/iai.00892-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/16/2023] Open
Abstract
The twin-arginine translocation (Tat) system is involved in not only a wide array of cellular processes but also pathogenesis in many bacterial pathogens; thus, this system is expected to become a novel therapeutic target to treat infections. To the best of our knowledge, involvement of the Tat system has not been reported in the gut infection caused by Citrobacter rodentium Here, we studied the role of Tat in C. rodentium gut infection, which resembles human infection with enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). A C. rodentium Tat loss-of-function mutant displayed prolonged gut colonization, which was explained by reduced inflammatory responses and, particularly, neutrophil infiltration. Further, the Tat mutant had colonization defects upon coinfection with the wild-type strain of C. rodentium The Tat mutant also became hypersensitive to bile acids, and an increase in fecal bile acids fostered C. rodentium clearance from the gut lumen. Finally, we show that the chain form of C. rodentium cells, induced by a Tat-dependent cell division defect, exhibits impaired resistance to bile acids. Our findings indicate that the Tat system is involved in gut colonization by C. rodentium, which is associated with neutrophil infiltration and resistance to bile acids. Interventions that target the Tat system, as well as luminal bile acids, might thus be promising therapeutic strategies to treat human EHEC and EPEC infections.
Collapse
|
8
|
Putative virulence factors of Plesiomonas shigelloides. Antonie van Leeuwenhoek 2019; 112:1815-1826. [PMID: 31372945 DOI: 10.1007/s10482-019-01303-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022]
Abstract
Plesiomonas shigelloides is a Gram-negative rod-shaped bacterium which has been isolated from humans, animals and the environment. It has been associated with diarrhoeal disease in humans and various epizootic diseases in animals. In this study P. shigelloides strains were isolated from the faecal material of a captive Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) living in semi-natural conditions in China. Plesiomonas shigelloides strain EE2 was subjected to whole genome sequencing. The draft genome was then compared to the genome sequences of ten other P. shigelloides isolates using the Pathosystems Resource Integration Center pipeline. In addition to several virulence factors which have been previously reported, we are proposing new candidate virulence factors such as a repeats-in-toxin protein, lysophospholipase, a twin-arginine translocation system and the type VI secretion effector Phospholipase A1.
Collapse
|
9
|
Warr AR, Hubbard TP, Munera D, Blondel CJ, Abel zur Wiesch P, Abel S, Wang X, Davis BM, Waldor MK. Transposon-insertion sequencing screens unveil requirements for EHEC growth and intestinal colonization. PLoS Pathog 2019; 15:e1007652. [PMID: 31404118 PMCID: PMC6705877 DOI: 10.1371/journal.ppat.1007652] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/22/2019] [Accepted: 08/01/2019] [Indexed: 12/28/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Troy P. Hubbard
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Diana Munera
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carlos J. Blondel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pia Abel zur Wiesch
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sören Abel
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xiaoxue Wang
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brigid M. Davis
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- HHMI, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Massai F, Saleeb M, Doruk T, Elofsson M, Forsberg Å. Development, Optimization, and Validation of a High Throughput Screening Assay for Identification of Tat and Type II Secretion Inhibitors of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2019; 9:250. [PMID: 31355152 PMCID: PMC6635566 DOI: 10.3389/fcimb.2019.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Antibiotics are becoming less effective in treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial therapies based on the inhibition of specific virulence-related traits, as opposed to growth inhibitors, constitute an innovative and appealing approach to tackle the threat of P. aeruginosa infections. The twin-arginine translocation (Tat) pathway plays an important role in the pathogenesis of P. aeruginosa, and constitutes a promising target for the development of anti-pseudomonal drugs. In this study we developed and optimized a whole-cell, one-well assay, based on native phospholipase C activity, to identify compounds active against the Tat system. Statistical robustness, sensitivity and consequently suitability for high-throughput screening (HTS) were confirmed by a dry run/pre-screening test scoring a Z′ of 0.82 and a signal-to-noise ratio of 49. Using this assay, we evaluated ca. 40,000 molecules and identified 59 initial hits as possible Tat inhibitors. Since phospholipase C is exported into the periplasm by Tat, and subsequently translocated across the outer membrane by the type II secretion system (T2SS), our assay could also identify T2SS inhibitors. To validate our hits and discriminate between compounds that inhibited either Tat or T2SS, two separate counter assays were developed and optimized. Finally, three Tat inhibitors and one T2SS inhibitor were confirmed by means of dose-response analysis and additional counter and confirming assays. Although none of the identified inhibitors was suitable as a lead compound for drug development, this study validates our assay as a simple, efficient, and HTS compatible method for the identification of Tat and T2SS inhibitors.
Collapse
Affiliation(s)
- Francesco Massai
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Michael Saleeb
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tugrul Doruk
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Department of Chemistry, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Åke Forsberg
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå University, Umeå, Sweden.,Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Contribution of the Cpx envelope stress system to metabolism and virulence regulation in Salmonella enterica serovar Typhimurium. PLoS One 2019; 14:e0211584. [PMID: 30716090 PMCID: PMC6361445 DOI: 10.1371/journal.pone.0211584] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Cpx-envelope stress system regulates the expression of virulence factors in many Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sensor kinase CpxA but not of the response regulator CpxR results in the down regulation of the key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR resulting in increased levels of active CpxR and consequently in misregulation of target genes. 14 potential operons were identified to be under direct control of CpxR. These include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB. The Tat-system and the PocR regulator that together promote anaerobic respiration of tetrathionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol represses hilA expression. Thus, our work demonstrates for the first time the involvement of the Cpx system in a complex network mediating metabolism and virulence function.
Collapse
|
12
|
Urrutia ÍM, Sabag A, Valenzuela C, Labra B, Álvarez SA, Santiviago CA. Contribution of the Twin-Arginine Translocation System to the Intracellular Survival of Salmonella Typhimurium in Dictyostelium discoideum. Front Microbiol 2018; 9:3001. [PMID: 30574134 PMCID: PMC6291500 DOI: 10.3389/fmicb.2018.03001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022] Open
Abstract
The twin-arginine translocation (Tat) system is a specialized secretion pathway required for bacteria to export fully folded proteins through the cytoplasmic membrane. This system is crucial during Salmonella infection of animal hosts. In this study, we show that Salmonella enterica serovar Typhimurium (S. Typhimurium) requires the Tat system to survive and proliferate intracellularly in the social amoeba Dictyostelium discoideum. To achieve this, we developed a new infection assay to assess intracellular bacterial loads in amoeba by direct enumeration of colony forming units (CFU) at different times of infection. Using this assay we observed that a ΔtatABC mutant was internalized in higher numbers than the wild type, and was defective for intracellular survival in the amoeba at all times post infection evaluated. In addition, we assessed the effect of the ΔtatABC mutant in the social development of D. discoideum. In contrast to the wild-type strain, we observed that the mutant was unable to delay the social development of the amoeba at 2 days of co-incubation. This phenotype correlated with defects in intracellular proliferation presented by the ΔtatABC mutant in D. discoideum after 24 h of infection. All phenotypes described for the mutant were reverted by the presence of a plasmid carrying tatABC genes, indicating that abrogation of Tat system attenuates S. Typhimurium in this model organism. Overall, our results indicate that the Tat system is crucial for S. Typhimurium to survive and proliferate intracellularly in D. discoideum and for virulence in this host. To the best of our knowledge, this is the first report on the relevance of the Tat system in the interaction of any bacterial pathogen with the social amoeba D. discoideum.
Collapse
Affiliation(s)
- Ítalo M Urrutia
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrea Sabag
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Bayron Labra
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Sergio A Álvarez
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Guanhua Y, Wang C, Wang X, Ma R, Zheng H, Liu Q, Zhang Y, Ma Y, Wang Q. Complete genome sequence of the marine fish pathogen Vibrio anguillarum and genome-wide transposon mutagenesis analysis of genes essential for in vivo infection. Microbiol Res 2018; 216:97-107. [DOI: 10.1016/j.micres.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
|
14
|
Tat-exported peptidoglycan amidase-dependent cell division contributes to Salmonella Typhimurium fitness in the inflamed gut. PLoS Pathog 2018; 14:e1007391. [PMID: 30379938 PMCID: PMC6231687 DOI: 10.1371/journal.ppat.1007391] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea. For proteins residing outside the bacterial cytoplasm, transport is an essential step for adequate function. The twin-arginine translocation (Tat) system enables the transport of folded proteins across the cytoplasmic membrane in prokaryotes. It has recently become clear that this system plays a pivotal role in the detrimental effects of many bacterial pathogens, suggesting Tat as a novel therapeutic target against their infection. In particular, the bacterial enteropathogen Salmonella Typhimurium causes foodborne diarrhea by colonizing the gut interior space. Here, we describe that the S. Typhimurium Tat system contributes to intestinal infection by facilitating colonization of the gut by this pathogen. We also identify that two Tat-exported enzymes, peptidoglycan amidase AmiA and AmiC, are responsible for the Tat-dependent colonization. S. Typhimurium strains having nonfunctional Tat systems or lacking these enzymes undergo filamentous growth in the gut interior owing to defective cell division. Notably, this chain form of S. Typhimurium cells is highly sensitive to bile acids, rendering it less competitive with native bacteria in the gut. The data presented here suggest that the Tat system and associated amidases may comprise promising therapeutic targets for Salmonella diarrhea, and that controlling bacterial shape might be new strategy for regulating intestinal enteropathogen infection.
Collapse
|
15
|
Krin E, Pierlé SA, Sismeiro O, Jagla B, Dillies MA, Varet H, Irazoki O, Campoy S, Rouy Z, Cruveiller S, Médigue C, Coppée JY, Mazel D. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation. BMC Genomics 2018; 19:373. [PMID: 29783948 PMCID: PMC5963079 DOI: 10.1186/s12864-018-4716-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. RESULTS Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. CONCLUSIONS We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is conserved among Vibrio species. Furthermore, this specific co-localization is found in other γ-proteobacteria for genes recN-smpA and rmuC-tatABC, suggesting SOS regulon conservation in this phylum. Finally, we comment on the limitations of widespread NGS approaches for identification of all RNA species in bacteria.
Collapse
Affiliation(s)
- Evelyne Krin
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Sebastian Aguilar Pierlé
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| | - Odile Sismeiro
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Bernd Jagla
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Biomarker Discovery Platform, UtechS CB and Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Marie-Agnès Dillies
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
- Present adress: Institut Pasteur, Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, Paris, France
| | - Hugo Varet
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Oihane Irazoki
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Susana Campoy
- grid.7080.fDepartament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Zoé Rouy
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Stéphane Cruveiller
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Claudine Médigue
- 0000 0001 2180 5818grid.8390.2UMR 8030, CNRS, CEA, Institut de Biologie François Jacob - Genoscope, Laboratoire d’Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Evry-Val-d’Essonne, Evry, France
| | - Jean-Yves Coppée
- 0000 0001 2353 6535grid.428999.7Institut Pasteur, Transcriptome and EpiGenome, Biomics Center for Innovation and Technological Research, Paris, France
| | - Didier Mazel
- 0000 0001 2353 6535grid.428999.7Département Génomes et Génétique, Institut Pasteur, Unité de Plasticité du Génome Bactérien, Paris, France
- 0000 0001 2112 9282grid.4444.0CNRS, UMR 3525, Paris, France
| |
Collapse
|
16
|
The Tat Substrate SufI Is Critical for the Ability of Yersinia pseudotuberculosis To Cause Systemic Infection. Infect Immun 2017; 85:IAI.00867-16. [PMID: 28115509 DOI: 10.1128/iai.00867-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/17/2017] [Indexed: 11/20/2022] Open
Abstract
The twin arginine translocation (Tat) system targets folded proteins across the inner membrane and is crucial for virulence in many important human-pathogenic bacteria. Tat has been shown to be required for the virulence of Yersinia pseudotuberculosis, and we recently showed that the system is critical for different virulence-related stress responses as well as for iron uptake. In this study, we wanted to address the role of the Tat substrates in in vivo virulence. Therefore, 22 genes encoding potential Tat substrates were mutated, and each mutant was evaluated in a competitive oral infection of mice. Interestingly, a ΔsufI mutant was essentially as attenuated for virulence as the Tat-deficient strain. We also verified that SufI was Tat dependent for membrane/periplasmic localization in Y. pseudotuberculosisIn vivo bioluminescent imaging of orally infected mice revealed that both the ΔsufI and ΔtatC mutants were able to colonize the cecum and Peyer's patches (PPs) and could spread to the mesenteric lymph nodes (MLNs). Importantly, at this point, neither the ΔtatC mutant nor the ΔsufI mutant was able to spread systemically, and they were gradually cleared. Immunostaining of MLNs revealed that both the ΔtatC and ΔsufI mutants were unable to spread from the initial infection foci and appeared to be contained by neutrophils, while wild-type bacteria readily spread to establish multiple foci from day 3 postinfection. Our results show that SufI alone is required for the establishment of systemic infection and is the major cause of the attenuation of the ΔtatC mutant.
Collapse
|
17
|
Urban M, Pant R, Raghunath A, Irvine AG, Pedro H, Hammond-Kosack KE. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Res 2015; 43:D645-55. [PMID: 25414340 PMCID: PMC4383963 DOI: 10.1093/nar/gku1165] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022] Open
Abstract
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s).
Collapse
Affiliation(s)
- Martin Urban
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Rashmi Pant
- Molecular Connections Private Limited, Basavanagudi, Bangalore 560 004, Karnataka, India
| | - Arathi Raghunath
- Molecular Connections Private Limited, Basavanagudi, Bangalore 560 004, Karnataka, India
| | - Alistair G Irvine
- Department of Computational and Systems Biology, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| | - Helder Pedro
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, AL5 2JQ, UK
| |
Collapse
|
18
|
Bozue J, Cote CK, Chance T, Kugelman J, Kern SJ, Kijek TK, Jenkins A, Mou S, Moody K, Fritz D, Robinson CG, Bell T, Worsham P. A Yersinia pestis tat mutant is attenuated in bubonic and small-aerosol pneumonic challenge models of infection but not as attenuated by intranasal challenge. PLoS One 2014; 9:e104524. [PMID: 25101850 PMCID: PMC4125294 DOI: 10.1371/journal.pone.0104524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 07/11/2014] [Indexed: 01/01/2023] Open
Abstract
Bacterial proteins destined for the Tat pathway are folded before crossing the inner membrane and are typically identified by an N-terminal signal peptide containing a twin arginine motif. Translocation by the Tat pathway is dependent on the products of genes which encode proteins possessing the binding site of the signal peptide and mediating the actual translocation event. In the fully virulent CO92 strain of Yersinia pestis, the tatA gene was deleted. The mutant was assayed for loss of virulence through various in vitro and in vivo assays. Deletion of the tatA gene resulted in several consequences for the mutant as compared to wild-type. Cell morphology of the mutant bacteria was altered and demonstrated a more elongated form. In addition, while cultures of the mutant strain were able to produce a biofilm, we observed a loss of adhesion of the mutant biofilm structure compared to the biofilm produced by the wild-type strain. Immuno-electron microscopy revealed a partial disruption of the F1 antigen on the surface of the mutant. The virulence of the ΔtatA mutant was assessed in various murine models of plague. The mutant was severely attenuated in the bubonic model with full virulence restored by complementation with the native gene. After small-particle aerosol challenge in a pneumonic model of infection, the mutant was also shown to be attenuated. In contrast, when mice were challenged intranasally with the mutant, very little difference in the LD50 was observed between wild-type and mutant strains. However, an increased time-to-death and delay in bacterial dissemination was observed in mice infected with the ΔtatA mutant as compared to the parent strain. Collectively, these findings demonstrate an essential role for the Tat pathway in the virulence of Y. pestis in bubonic and small-aerosol pneumonic infection but less important role for intranasal challenge.
Collapse
Affiliation(s)
- Joel Bozue
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Christopher K. Cote
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Taylor Chance
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Jeffrey Kugelman
- Center for Genome Sciences, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Steven J. Kern
- Office of Research Support, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd K. Kijek
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Amy Jenkins
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Sherry Mou
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Krishna Moody
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - David Fritz
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Camenzind G. Robinson
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Todd Bell
- Pathology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Patricia Worsham
- Bacteriology Division, The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
19
|
Twin-arginine translocation system in Helicobacter pylori: TatC, but not TatB, is essential for viability. mBio 2014; 5:e01016-13. [PMID: 24449753 PMCID: PMC3903283 DOI: 10.1128/mbio.01016-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The twin-arginine translocation (Tat) system, needed to transport folded proteins across biological membranes, has not been characterized in the gastric pathogen Helicobacter pylori. Analysis of all H. pylori genome sequences available thus far reveals the presence of single copies of tatA, tatB, and tatC needed for the synthesis of a fully functional Tat system. Based on the presence of the twin-arginine hallmark in their signal sequence, only four H. pylori proteins appear to be Tat dependent: hydrogenase (HydA), catalase-associated protein (KapA), biotin sulfoxide reductase (BisC), and the ubiquinol cytochrome oxidoreductase Rieske protein (FbcF). In the present study, targeted mutations were aimed at tatA, tatB, tatC, or queA (downstream gene control). While double homologous recombination mutations in tatB and queA were easily obtained, attempts at disrupting tatA proved unsuccessful, while deletion of tatC led to partial mutants following single homologous recombination, with cells retaining a chromosomal copy of tatC. Double homologous recombination tatC mutants were obtained only when a plasmid-borne, isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible copy of tatC was introduced prior to transformation. These conditional tatC mutants could grow only in the presence of IPTG, suggesting that tatC is essential in H. pylori. tatB and tatC mutants had lower hydrogenase and catalase activities than the wild-type strain did, and the ability of tatC mutants to colonize mouse stomachs was severely affected compared to the wild type. Chromosomal complementation of tatC mutants restored hydrogenase and catalase activities to wild-type levels, and additional expression of tatC in wild-type cells resulted in elevated Tat-dependent enzyme activities. Unexpectedly, the tat strains had cell envelope defects. This work reports the first characterization of the twin-arginine translocation (Tat) system in the gastric pathogen Helicobacter pylori. While tatB mutants were easily obtained, only single-crossover partial tatC mutants or conditional tatC mutants could be generated, indicating that tatC is essential in H. pylori, a surprising finding given the fact that only four proteins are predicted to be translocated by the Tat system in this bacterium. The levels of activity of hydrogenase and catalase, two of the predicted Tat-dependent enzymes, were affected in these mutants. In addition, all tat mutants displayed cell envelope defects, and tatC mutants were deficient in mouse colonization.
Collapse
|
20
|
Wang Y, Wang Q, Yang M, Zhang Y. Proteomic analysis of a twin-arginine translocation-deficient mutant unravel its functions involved in stress adaptation and virulence in fish pathogenEdwardsiella tarda. FEMS Microbiol Lett 2013; 343:145-55. [DOI: 10.1111/1574-6968.12140] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yamin Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Minjun Yang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai; China
| |
Collapse
|
21
|
Walther TH, Gottselig C, Grage SL, Wolf M, Vargiu AV, Klein MJ, Vollmer S, Prock S, Hartmann M, Afonin S, Stockwald E, Heinzmann H, Nolandt OV, Wenzel W, Ruggerone P, Ulrich AS. Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism. Cell 2013; 152:316-26. [PMID: 23332763 DOI: 10.1016/j.cell.2012.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 08/20/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
We propose a concept for the folding and self-assembly of the pore-forming TatA complex from the Twin-arginine translocase and of other membrane proteins based on electrostatic "charge zippers." Each subunit of TatA consists of a transmembrane segment, an amphiphilic helix (APH), and a C-terminal densely charged region (DCR). The sequence of charges in the DCR is complementary to the charge pattern on the APH, suggesting that the protein can be "zipped up" by a ladder of seven salt bridges. The length of the resulting hairpin matches the lipid bilayer thickness, hence a transmembrane pore could self-assemble via intra- and intermolecular salt bridges. The steric feasibility was rationalized by molecular dynamics simulations, and experimental evidence was obtained by monitoring the monomer-oligomer equilibrium of specific charge mutants. Similar "charge zippers" are proposed for other membrane-associated proteins, e.g., the biofilm-inducing peptide TisB, the human antimicrobial peptide dermcidin, and the pestiviral E(RNS) protein.
Collapse
Affiliation(s)
- Torsten H Walther
- Karlsruhe Institute of Technology, Institute of Biological Interfaces, Institute of Organic Chemistry and CFN, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Goosens VJ, Otto A, Glasner C, Monteferrante CC, van der Ploeg R, Hecker M, Becher D, van Dijl JM. Novel Twin-Arginine Translocation Pathway-Dependent Phenotypes of Bacillus subtilis Unveiled by Quantitative Proteomics. J Proteome Res 2013; 12:796-807. [DOI: 10.1021/pr300866f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vivianne J. Goosens
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Andreas Otto
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str.
15, D-17489 Greifswald, Germany
| | - Corinna Glasner
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Carmine C. Monteferrante
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - René van der Ploeg
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str.
15, D-17489 Greifswald, Germany
| | - Dörte Becher
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Str.
15, D-17489 Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center
Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
23
|
Functional characterization of Edwardsiella tarda twin-arginine translocation system and its potential use as biological containment in live attenuated vaccine of marine fish. Appl Microbiol Biotechnol 2012; 97:3545-57. [DOI: 10.1007/s00253-012-4462-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 11/25/2022]
|
24
|
Lee KM, Park Y, Bari W, Yoon MY, Go J, Kim SC, Lee HI, Yoon SS. Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae. J Biol Chem 2012; 287:39742-52. [PMID: 23019319 DOI: 10.1074/jbc.m112.394932] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor.
Collapse
Affiliation(s)
- Kang-Mu Lee
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Sciences, Seoul, 120-752 Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Identification and evaluation of twin-arginine translocase inhibitors. Antimicrob Agents Chemother 2012; 56:6223-34. [PMID: 23006747 DOI: 10.1128/aac.01575-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocase (TAT) in some bacterial pathogens, including Pseudomonas aeruginosa, Burkholderia pseudomallei, and Mycobacterium tuberculosis, contributes to pathogenesis by translocating extracellular virulence determinants across the inner membrane into the periplasm, thereby allowing access to the Xcp (type II) secretory system for further export in Gram-negative organisms, or directly to the outside surface of the cell, as in M. tuberculosis. TAT-mediated secretion appreciably contributes to virulence in both animal and plant models of bacterial infection. Consequently, TAT function is an attractive target for small-molecular-weight compounds that alone or in conjunction with extant antimicrobial agents could become novel therapeutics. The TAT-transported hemolytic phospholipase C (PlcH) of P. aeruginosa and its multiple orthologs produced by the above pathogens can be detected by an accurate and reproducible colorimetric assay using a synthetic substrate that detects phospholipase C activity. Such an assay could be an effective indicator of TAT function. Using carefully constructed recombinant strains to precisely control the expression of PlcH, we developed a high-throughput screening (HTS) assay to evaluate, in duplicate, >80,000 small-molecular-weight compounds as possible TAT inhibitors. Based on additional TAT-related functional assays, purified PlcH protein inhibition experiments, and repeat experiments of the initial screening assay, 39 compounds were selected from the 122 initial hits. Finally, to evaluate candidate inhibitors for TAT specificity, we developed a TAT titration assay that determines whether inhibition of TAT-mediated secretion can be overcome by increasing the levels of TAT expression. The compounds N-phenyl maleimide and Bay 11-7082 appear to directly affect TAT function based on this approach.
Collapse
|
26
|
Nuñez PA, Soria M, Farber MD. The twin-arginine translocation pathway in α-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence. PLoS One 2012; 7:e33605. [PMID: 22438962 PMCID: PMC3305326 DOI: 10.1371/journal.pone.0033605] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 11/19/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria.
Collapse
Affiliation(s)
- Pablo A. Nuñez
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA), Buenos Aires, Argentina
| | - Marcelo Soria
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA-CONICET, Buenos Aires, Argentina
| | - Marisa D. Farber
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (CICVyA-INTA), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
27
|
Reynolds MM, Bogomolnaya L, Guo J, Aldrich L, Bokhari D, Santiviago CA, McClelland M, Andrews-Polymenis H. Abrogation of the twin arginine transport system in Salmonella enterica serovar Typhimurium leads to colonization defects during infection. PLoS One 2011; 6:e15800. [PMID: 21298091 PMCID: PMC3027627 DOI: 10.1371/journal.pone.0015800] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022] Open
Abstract
TatC (STM3975) is a highly conserved component of the Twin Arginine Transport (Tat) systems that is required for transport of folded proteins across the inner membrane in gram-negative bacteria. We previously identified a ΔtatC mutant as defective in competitive infections with wild type ATCC14028 during systemic infection of Salmonella-susceptible BALB/c mice. Here we confirm these results and show that the ΔtatC mutant is internalized poorly by cultured J774-A.1 mouse macrophages a phenotype that may be related to the systemic infection defect. This mutant is also defective for short-term intestinal and systemic colonization after oral infection of BALB/c mice and is shed in reduced numbers in feces from orally infected Salmonella-resistant (CBA/J) mice. We show that the ΔtatC mutant is highly sensitive to bile acids perhaps resulting in the defect in intestinal infection that we observe. Finally, the ΔtatC mutant has an unusual combination of motility phenotypes in Salmonella; it is severely defective for swimming motility but is able to swarm well. The ΔtatC mutant has a lower amount of flagellin on the bacterial surface during swimming motility but normal levels under swarming conditions.
Collapse
Affiliation(s)
- M. Megan Reynolds
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Jinbai Guo
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Lindsay Aldrich
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Danial Bokhari
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
| | - Carlos A. Santiviago
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Michael McClelland
- Vaccine Research Institute of San Diego, San Diego, California, United States of America
- Department of Pathology and Laboratory Medicine, College of Health Sciences, University of California Irvine, Irvine, California, United States of America
| | - Helene Andrews-Polymenis
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A & M University System Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Walther TH, Grage SL, Roth N, Ulrich AS. Membrane Alignment of the Pore-Forming Component TatAd of the Twin-Arginine Translocase from Bacillus subtilis Resolved by Solid-State NMR Spectroscopy. J Am Chem Soc 2010; 132:15945-56. [DOI: 10.1021/ja106963s] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Torsten H. Walther
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stephan L. Grage
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Nadine Roth
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anne S. Ulrich
- DFG-Center for Functional Nanostructures (CFN), Institute of Biological Interfaces (IBG-2), and Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Goudenège D, Avner S, Lucchetti-Miganeh C, Barloy-Hubler F. CoBaltDB: Complete bacterial and archaeal orfeomes subcellular localization database and associated resources. BMC Microbiol 2010; 10:88. [PMID: 20331850 PMCID: PMC2850352 DOI: 10.1186/1471-2180-10-88] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The functions of proteins are strongly related to their localization in cell compartments (for example the cytoplasm or membranes) but the experimental determination of the sub-cellular localization of proteomes is laborious and expensive. A fast and low-cost alternative approach is in silico prediction, based on features of the protein primary sequences. However, biologists are confronted with a very large number of computational tools that use different methods that address various localization features with diverse specificities and sensitivities. As a result, exploiting these computer resources to predict protein localization accurately involves querying all tools and comparing every prediction output; this is a painstaking task. Therefore, we developed a comprehensive database, called CoBaltDB, that gathers all prediction outputs concerning complete prokaryotic proteomes. DESCRIPTION The current version of CoBaltDB integrates the results of 43 localization predictors for 784 complete bacterial and archaeal proteomes (2.548.292 proteins in total). CoBaltDB supplies a simple user-friendly interface for retrieving and exploring relevant information about predicted features (such as signal peptide cleavage sites and transmembrane segments). Data are organized into three work-sets ("specialized tools", "meta-tools" and "additional tools"). The database can be queried using the organism name, a locus tag or a list of locus tags and may be browsed using numerous graphical and text displays. CONCLUSIONS With its new functionalities, CoBaltDB is a novel powerful platform that provides easy access to the results of multiple localization tools and support for predicting prokaryotic protein localizations with higher confidence than previously possible. CoBaltDB is available at http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software/cobalten.
Collapse
Affiliation(s)
- David Goudenège
- CNRS UMR 6026, ICM, Equipe B@SIC, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | |
Collapse
|