1
|
Xue Q, Huang Y, Cheng C, Wang Y, Liao F, Duan Q, Wang X, Miao C. Progress in epigenetic regulation of milk synthesis, with particular emphasis on mRNA regulation and DNA methylation. Cell Cycle 2023; 22:1675-1693. [PMID: 37409592 PMCID: PMC10446801 DOI: 10.1080/15384101.2023.2225939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Inadequate milk secretion and a lack of nutrients in humans and mammals are serious problems. It is of great significance to clarify the mechanisms of milk synthesis and treatment methods. Epigenetic modification, represented by RNA methylation, is an important way of gene expression regulation that profoundly affects human gene expression and participates in various physiological and pathological mechanisms. Epigenetic disorders also have an important impact on the production and secretion of milk. This review systematically summarized the research results of epigenetics in the process of lactation in PubMed, Web of Science, NSTL, and other databases and reviewed the effects of epigenetics on human and mammalian lactation, including miRNAs, circRNAs, lncRNAs, DNA methylations, and RNA methylations. The abnormal expression of miRNAs was closely related to the synthesis and secretion of milk fat, milk protein, and other nutrients in the milk of cattle, sheep, and other mammals. MiRNAs are also involved in the synthesis of human milk and the secretion of nutrients. CircRNAs and lncRNAs mainly target miRNAs and regulate the synthesis of nutrients in milk by ceRNA mechanisms. The abnormal expression of DNA and RNA methylation also has an important impact on milk synthesis. Epigenetic modification has the potential to regulate the milk synthesis of breast epithelial cells. Analyzing the mechanisms of human and mammalian milk secretion deficiency and nutrient deficiency from the perspective of epigenetics will provide a new perspective for the treatment of postpartum milk deficiency in pregnant women and mammalian milk secretion deficiency.
Collapse
Affiliation(s)
- Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Qiangjun Duan
- Department of Experimental (Practical Training) Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Nakaya Y, Miyazawa T. The Roles of Syncytin-Like Proteins in Ruminant Placentation. Viruses 2015; 7:2928-42. [PMID: 26057168 PMCID: PMC4488720 DOI: 10.3390/v7062753] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 05/29/2015] [Indexed: 01/02/2023] Open
Abstract
Recent developments in genome sequencing techniques have led to the identification of huge numbers of endogenous retroviruses (ERV) in various mammals. ERVs, which occupy 8%–13% of mammalian genomes, are believed to affect mammalian evolution and biological diversity. Although the functional significance of most ERVs remains to be elucidated, several ERVs are thought to have pivotal roles in host physiology. We and other groups recently identified ERV envelope proteins (e.g., Fematrin-1, Syncytin-Rum1, endogenous Jaagsiekte sheep retrovirus Env) that may determine the morphogenesis of the unique fused trophoblast cells, termed trinucleate cells and syncytial plaques, found in ruminant placentas; however, there are still a number of outstanding issues with regard to the role of ERVs that remain to be resolved. Here, we review what is known about how these ERVs have contributed to the development of ruminant-specific trophoblast cells.
Collapse
Affiliation(s)
- Yuki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kawaramachi-hirokoji-Kajiicho, Kamigyo-ku, Kyoto 602-8566, Japan.
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Sandra O, Mansouri-Attia N, Lea RG. Novel aspects of endometrial function: a biological sensor of embryo quality and driver of pregnancy success. Reprod Fertil Dev 2012; 24:68-79. [PMID: 22394719 DOI: 10.1071/rd11908] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Successful pregnancy depends on complex biological processes that are regulated temporally and spatially throughout gestation. The molecular basis of these processes have been examined in relation to gamete quality, early blastocyst development and placental function, and data have been generated showing perturbations of these developmental stages by environmental insults or embryo biotechnologies. The developmental period falling between the entry of the blastocyst into the uterine cavity to implantation has also been examined in terms of the biological function of the endometrium. Indeed several mechanisms underlying uterine receptivity, controlled by maternal factors, and the maternal recognition of pregnancy, requiring conceptus-produced signals, have been clarified. Nevertheless, recent data based on experimental perturbations have unveiled unexpected biological properties of the endometrium (sensor/driver) that make this tissue a dynamic and reactive entity. Persistent or transient modifications in organisation and functionality of the endometrium can dramatically affect pre-implantation embryo trajectory through epigenetic alterations with lasting consequences on later stages of pregnancy, including placentation, fetal development, pregnancy outcome and post-natal health. Developing diagnostic and prognostic tools based on endometrial factors may enable the assessment of maternal reproductive capacity and/or the developmental potential of the embryo, particularly when assisted reproductive technologies are applied.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France.
| | | | | |
Collapse
|
4
|
Nakaya Y, Shimode S, Kobayashi T, Imakawa K, Miyazawa T. Binding of transcription factor activating protein 2 γ on the 5'-proximal promoter region of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Xenotransplantation 2012; 19:177-85. [PMID: 22702469 DOI: 10.1111/j.1399-3089.2012.00701.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Xenotransplantation is one of the solutions for the shortage of organ donors, and pigs have been considered to be the most suitable animal donors. Specific pathogen-free pigs are utilized in the xenotransplantation; however, pigs have infectious gammaretroviruses, named porcine endogenous retroviruses (PERVs) in their genome. Of them, PERV-A and PERV-B can infect human cells in vitro and potentially induce diseases like other gammaretroviruses. The human cellular receptors for PERV-A were identified and named human PERV-A receptor (HuPAR)-1 and HuPAR-2 (also called as GPR172A and GPR172B, respectively). We have recently reported that HuPAR-2 expression was regulated by epigenetic modification and preferentially expressed in placenta. However, the detailed mechanisms of HuPAR-2 expression have not been fully characterized. In this study, we analyzed molecular mechanisms associated with HuPAR-2 transcription through the identification of transcription factors that bind to the promoter region of HuPAR-2. METHODS In situ hybridization was performed to identify the cells expressing HuPAR-2 in placental tissues. Transcriptional activities were measured by dual-luciferase reporter assay using serial deletion mutants of HuPAR-2 5'-flanking region. To identify the transcription factors bound to the promoter region, in silico analysis, electrophoresis mobility shift assay, and chromatin immunoprecipitation assay were conducted. The effect of the transcription factor transcription factor activator protein (TFAP)-2γ on the promoter activities was investigated by overexpression of the factor. RESULTS We identified that HuPAR-2 was specifically expressed in villous trophoblast cells. We also identified that a region spanning from -126 to -32 had proximal promoter activities and TFAP-2γ bound to a region spanning from -58 to -35 in vitro and in vivo. The overexpression of TFAP-2γ also augmented the proximal promoter activity. CONCLUSION We demonstrated that TFAP-2γ is one of the transcription factors involved in the HuPAR-2 expression in human villous trophoblast cells. By studying transcriptional factors involved in the expression of HuPAR-2, we may find a clue to control the potential risks caused by PERV-A infection in xenotransplantation.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
5
|
De Loof A. Longevity and aging in insects: Is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the "trade-off" concept. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1-11. [PMID: 20920508 DOI: 10.1016/j.jinsphys.2010.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/16/2010] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
The most prevalent hypothesis concerning the relationship between reproduction and longevity predicts that reproduction is costly, particularly in females. Specifically, egg production and sexual harassment of females by males reduce female longevity. This may apply to some short-lived species such as Drosophila, but not to some long-lived species such as the queens of ants and bees. Bee queens lay up to 2000 eggs a day for several years, but they nevertheless live at least 20 times longer than their sisters, the sterile workers. This discrepancy necessitates a critical reevaluation of the validity of both the trade-off concept as such, and of the current theories of aging. The widely accepted oxidative stress theory of aging with its links to metabolism and the insulin/IGF-I system has been disproven in Caenorhabditis elegans and mice, but not in Drosophila, necessitating other approaches. The recent spermidine/mitophagy theory is gaining momentum. Two major mechanisms may have been largely overlooked, namely epigenetic control of longevity by imprinting through DNA methylation as suggested by recent data in the honey bee, and especially, a mechanism of which the principles are outlined here, the progressive weakening of the "electrical dimension" of cells up to the point of total collapse, namely death.
Collapse
Affiliation(s)
- Arnold De Loof
- Zoological Institute, Laboratory for Developmental Physiology, Genomics, Proteomics, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
6
|
Identification of novel endogenous betaretroviruses which are transcribed in the bovine placenta. J Virol 2010; 85:1237-45. [PMID: 21084469 DOI: 10.1128/jvi.01234-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sequences of retroviral origin occupy approximately 10% of mammalian genomes. Various infectious endogenous retroviruses (ERVs) and functional retroviral elements have been reported for several mammals but not cattle. Here, we identified two proviruses, designated bovine endogenous retrovirus K1 (BERV-K1) and BERV-K2, containing full-length envelope (env) genes in the bovine genome. Phylogenetic analysis revealed that they belong to the genus Betaretrovirus. By reverse transcription (RT)-PCR, both BERV-K1 and -K2 env mRNAs were detected in the placenta and cultured bovine trophoblast cells. Real-time RT-PCR analysis using RNAs isolated from various bovine tissues revealed that BERV-K1 env mRNA was preferentially expressed in the placenta. Moreover, we also found the expression of doubly spliced transcripts, named the REBK1 and REBK2 genes. Both the REBK1 and REBK2 proteins have motifs for a putative nuclear localization signal and a nuclear export signal. REBK1 and REBK2 fused with green fluorescent proteins were localized mainly in the nuclei when they were expressed in bovine and porcine cells. In the env and 3' long terminal repeats of BERV-K1 and -K2, we found regulatory elements responsible for the splicing and transport of viral RNAs and/or translation of the env genes. Although we have not identified the expressed Env proteins in bovine tissues, these data suggest that both BERV-K1 and BERV-K2 express Env proteins and that these proteins may have physiological functions in vivo.
Collapse
|
7
|
Nakaya Y, Shojima T, Yasuda J, Imakawa K, Miyazawa T. Epigenetic regulation on the 5'-proximal CpG island of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Microbes Infect 2010; 13:49-57. [PMID: 20951222 DOI: 10.1016/j.micinf.2010.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
Abstract
Porcine endogenous retroviruses (PERVs) have been considered one of the major risks of xenotransplantation from pigs to humans. PERV-A efficiently utilizes human PERV-A receptor 2 (HuPAR-2)/GPR172B to infect human cells; however, there has been no study on the regulation mechanisms of HuPAR-2/GPR172B expression. In this study, we examined the expression of HuPAR-2/GPR172B from the standpoint of epigenetic regulation and discussed the risks of PERV-A infection in xenotransplantation. Quantitative real-time RT-PCR revealed that HuPAR-2 mRNA was preferentially expressed in placental tissue, whereas it was highly suppressed in BeWo cells (a human choriocarcinoma cell line) and HEK293 cells. A CpG island containing the HuPAR-2 transcription starting site was identified by in silico analysis. The DNA methylation ratio (the relative quantity of methylcytosine to total cytosine) and histone modification (H3K9me3) levels in the CpG island measured by bisulfite genomic sequencing and ChIP assay, respectively, were inversely correlated with the mRNA levels. Both HuPAR-2 mRNA and HuPAR-2 protein were up-regulated in HEK293 cells by inhibiting DNA methylation and histone deacetylation. Additionally, promoter/enhancer activities within the CpG island were suppressed by in vitro DNA methylation. Our results demonstrated that epigenetic modification regulates HuPAR-2 expression.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|