1
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2024:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
2
|
Saunier M, Fortier LC, Soutourina O. RNA-based regulation in bacteria-phage interactions. Anaerobe 2024; 87:102851. [PMID: 38583547 DOI: 10.1016/j.anaerobe.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Interactions of bacteria with their viruses named bacteriophages or phages shape the bacterial genome evolution and contribute to the diversity of phages. RNAs have emerged as key components of several anti-phage defense systems in bacteria including CRISPR-Cas, toxin-antitoxin and abortive infection. Frequent association with mobile genetic elements and interplay between different anti-phage defense systems are largely discussed. Newly discovered defense systems such as retrons and CBASS include RNA components. RNAs also perform their well-recognized regulatory roles in crossroad of phage-bacteria regulatory networks. Both regulatory and defensive function can be sometimes attributed to the same RNA molecules including CRISPR RNAs. This review presents the recent advances on the role of RNAs in the bacteria-phage interactions with a particular focus on clostridial species including an important human pathogen, Clostridioides difficile.
Collapse
Affiliation(s)
- Marion Saunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Gladysh NS, Bogdanova AS, Kovalev MA, Krasnov GS, Volodin VV, Shuvalova AI, Ivanov NV, Popchenko MI, Samoilova AD, Polyakova AN, Dmitriev AA, Melnikova NV, Karpov DS, Bolsheva NL, Fedorova MS, Kudryavtseva AV. Culturable Bacterial Endophytes of Wild White Poplar ( Populus alba L.) Roots: A First Insight into Their Plant Growth-Stimulating and Bioaugmentation Potential. BIOLOGY 2023; 12:1519. [PMID: 38132345 PMCID: PMC10740426 DOI: 10.3390/biology12121519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The white poplar (Populus alba L.) has good potential for a green economy and phytoremediation. Bioaugmentation using endophytic bacteria can be considered as a safe strategy to increase poplar productivity and its resistance to toxic urban conditions. The aim of our work was to find the most promising strains of bacterial endophytes to enhance the growth of white poplar in unfavorable environmental conditions. To this end, for the first time, we performed whole-genome sequencing of 14 bacterial strains isolated from the tissues of the roots of white poplar in different geographical locations. We then performed a bioinformatics search to identify genes that may be useful for poplar growth and resistance to environmental pollutants and pathogens. Almost all endophytic bacteria obtained from white poplar roots are new strains of known species belonging to the genera Bacillus, Corynebacterium, Kocuria, Micrococcus, Peribacillus, Pseudomonas, and Staphylococcus. The genomes of the strains contain genes involved in the enhanced metabolism of nitrogen, phosphorus, and metals, the synthesis of valuable secondary metabolites, and the detoxification of heavy metals and organic pollutants. All the strains are able to grow on media without nitrogen sources, which indicates their ability to fix atmospheric nitrogen. It is concluded that the strains belonging to the genus Pseudomonas and bacteria of the species Kocuria rosea have the best poplar growth-stimulating and bioaugmentation potential, and the roots of white poplar are a valuable source for isolation of endophytic bacteria for possible application in ecobiotechnology.
Collapse
Affiliation(s)
- Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Vsevolod V. Volodin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia I. Shuvalova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Nikita V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Institute of Geography, Russian Academy of Sciences, Staromonetny Pereulok, 29/4, 119017 Moscow, Russia
| | - Aleksandra D. Samoilova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Aleksandra N. Polyakova
- Faculty of Soil Science, Lomonosov Moscow State University, Leninskie Gory, 1/12, 119234 Moscow, Russia; (A.D.S.); (A.N.P.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (N.S.G.); (A.S.B.); (M.A.K.); (G.S.K.); (V.V.V.); (A.I.S.); (N.V.I.); (M.I.P.); (A.A.D.); (N.V.M.); (D.S.K.); (N.L.B.); (M.S.F.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
4
|
Gao Z, Feng Y. Bacteriophage strategies for overcoming host antiviral immunity. Front Microbiol 2023; 14:1211793. [PMID: 37362940 PMCID: PMC10286901 DOI: 10.3389/fmicb.2023.1211793] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Phages and their bacterial hosts together constitute a vast and diverse ecosystem. Facing the infection of phages, prokaryotes have evolved a wide range of antiviral mechanisms, and phages in turn have adopted multiple tactics to circumvent or subvert these mechanisms to survive. An in-depth investigation into the interaction between phages and bacteria not only provides new insight into the ancient coevolutionary conflict between them but also produces precision biotechnological tools based on anti-phage systems. Moreover, a more complete understanding of their interaction is also critical for the phage-based antibacterial measures. Compared to the bacterial antiviral mechanisms, studies into counter-defense strategies adopted by phages have been a little slow, but have also achieved important advances in recent years. In this review, we highlight the numerous intracellular immune systems of bacteria as well as the countermeasures employed by phages, with an emphasis on the bacteriophage strategies in response to host antiviral immunity.
Collapse
Affiliation(s)
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
5
|
Romero DA, Magill D, Millen A, Horvath P, Fremaux C. Dairy lactococcal and streptococcal phage-host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiol Rev 2021; 44:909-932. [PMID: 33016324 DOI: 10.1093/femsre/fuaa048] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage-host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the composition of an industrial phage collection, providing insight into the development of starter strains and cultures and the evolution of phages in the industry. Research advances in the diversity of phages and structural bases for phage-host recognition and an overview of the perpetual arms race between phage virulence and host defense are presented, with a perspective toward the development of improved phage-resistant starter culture systems.
Collapse
Affiliation(s)
- Dennis A Romero
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Damian Magill
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Anne Millen
- DuPont Nutrition and Biosciences, 3329 Agriculture Dr., Madison, WI 53716, USA
| | - Philippe Horvath
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| | - Christophe Fremaux
- DuPont Nutrition and Biosciences, CS 10010, Dangé-Saint-Romain 86220, France
| |
Collapse
|
6
|
Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y. The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol 2019; 40:119-137. [PMID: 31793351 DOI: 10.1080/07388551.2019.1674774] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since the dawn of life, bacteria and phages are locked in a constant battle and both are perpetually changing their tactics to overcome each other. Bacteria use various strategies to overcome the invading phages, including adsorption inhibition, restriction-modification (R/E) systems, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems, abortive infection (Abi), etc. To counteract, phages employ intelligent tactics for the nullification of bacterial defense systems, such as accessing host receptors, evading R/E systems, and anti-CRISPR proteins. Intense knowledge about the details of these defense pathways is the basis for their broad utilities in various fields of research from microbiology to biotechnology. Hence, in this review, we discuss some strategies used by bacteria to inhibit phage infections as well as phage tactics to circumvent bacterial defense systems. In addition, the application of these strategies will be described as a lesson learned from bacteria and phage combats. The ecological factors that affect the evolution of bacterial immune systems is the other issue represented in this review.
Collapse
Affiliation(s)
- Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Sharifi
- Department of Emergency Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Cheng K, Van de Waal DB, Niu XY, Zhao YJ. Combined Effects of Elevated pCO 2 and Warming Facilitate Cyanophage Infections. Front Microbiol 2017; 8:1096. [PMID: 28659906 PMCID: PMC5468398 DOI: 10.3389/fmicb.2017.01096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Elevated pCO2 and warming are generally expected to influence cyanobacterial growth, and may promote the formation of blooms. Yet, both climate change factors may also influence cyanobacterial mortality by favoring pathogens, such as viruses, which will depend on the ability of the host to adapt. To test this hypothesis, we grew Plectonema boryanum IU597 under two temperature (25 and 29°C) and two pCO2 (400 and 800 μatm) conditions for 1 year, after which all treatments were re-exposed to control conditions for a period of 3 weeks. At several time points during the 1 year period, and upon re-exposure, we measured various infection characteristics of it associated cyanophage PP, including the burst size, latent period, lytic cycle and the efficiency of plaquing (EOP). As expected, elevated pCO2 promoted growth of P. boryanum equally over the 1 year period, but warming did not. Burst size increased in the warm treatment, but decreased in both the elevated pCO2 and combined treatment. The latent period and lytic cycle both became shorter in the elevated pCO2 and higher temperature treatment, and were further reduced by the combined effect of both factors. Efficiency of plaquing (EOP) decreased in the elevated pCO2 treatment, increased in the warm treatment, and increased even stronger in the combined treatment. These findings indicate that elevated pCO2 enhanced the effect of warming, thereby further promoting the virus infection rate. The re-exposure experiments demonstrate adaptation of the host leading to higher biomass build-up with elevated pCO2 over the experimental period, and lower performance upon re-exposure to control conditions. Similarly, virus burst size and EOP increased when given warm adapted host, but were lower as compared to the control when the host was re-exposed to control conditions. Our results demonstrate that adaptation but particularly physiological acclimation to climate change conditions favored viral infections, while limited host plasticity and slow adaptation after re-exposure to control conditions impeded host biomass build-up and viral infections.
Collapse
Affiliation(s)
- Kai Cheng
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of TechnologyWuhan, China
- College of Life Science, Central China Normal UniversityWuhan, China
| | - Dedmer B. Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of EcologyWageningen, Netherlands
| | - Xiao Ying Niu
- College of Life Science, Central China Normal UniversityWuhan, China
| | - Yi Jun Zhao
- Hubei Key Laboratory of Ecological Restoration for River-Lakes and Algal Utilization, College of Resources and Environmental Engineering, Hubei University of TechnologyWuhan, China
| |
Collapse
|
8
|
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol 2014; 1:307-31. [DOI: 10.1146/annurev-virology-031413-085500] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - Corinna Richter
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| | - George P.C. Salmond
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
9
|
Ainsworth S, Stockdale S, Bottacini F, Mahony J, van Sinderen D. The Lactococcus lactis plasmidome: much learnt, yet still lots to discover. FEMS Microbiol Rev 2014; 38:1066-88. [PMID: 24861818 DOI: 10.1111/1574-6976.12074] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/20/2023] Open
Abstract
Lactococcus lactis is used extensively worldwide for the production of a variety of fermented dairy products. The ability of L. lactis to successfully grow and acidify milk has long been known to be reliant on a number of plasmid-encoded traits. The recent availability of low-cost, high-quality genome sequencing, and the quest for novel, technologically desirable characteristics, such as novel flavour development and increased stress tolerance, has led to a steady increase in the number of available lactococcal plasmid sequences. We will review both well-known and very recent discoveries regarding plasmid-encoded traits of biotechnological significance. The acquired lactococcal plasmid sequence information has in recent years progressed our understanding of the origin of lactococcal dairy starter cultures. Salient points on the acquisition and evolution of lactococcal plasmids will be discussed in this review, as well as prospects of finding novel plasmid-encoded functions.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
10
|
The plasmid complement of Lactococcus lactis UC509.9 encodes multiple bacteriophage resistance systems. Appl Environ Microbiol 2014; 80:4341-9. [PMID: 24814781 DOI: 10.1128/aem.01070-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lactococcus lactis subsp. cremoris strains are used globally for the production of fermented dairy products, particularly hard cheeses. Believed to be of plant origin, L. lactis strains that are used as starter cultures have undergone extensive adaptation to the dairy environment, partially through the acquisition of extrachromosomal DNA in the form of plasmids that specify technologically important phenotypic traits. Here, we present a detailed analysis of the eight plasmids of L. lactis UC509.9, an Irish dairy starter strain. Key industrial phenotypes were mapped, and genes that are typically associated with lactococcal plasmids were identified. Four distinct, plasmid-borne bacteriophage resistance systems were identified, including two abortive infection systems, AbiB and AbiD1, thereby supporting the observed phage resistance of L. lactis UC509.9. AbiB escape mutants were generated for phage sk1, which were found to carry mutations in orf6, which encodes the major capsid protein of this phage.
Collapse
|
11
|
Dy RL, Przybilski R, Semeijn K, Salmond GP, Fineran PC. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Res 2014; 42:4590-605. [PMID: 24465005 PMCID: PMC3985639 DOI: 10.1093/nar/gkt1419] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 01/17/2023] Open
Abstract
Bacterial abortive infection (Abi) systems are 'altruistic' cell death systems that are activated by phage infection and limit viral replication, thereby providing protection to the bacterial population. Here, we have used a novel approach of screening Abi systems as a tool to identify and characterize toxin-antitoxin (TA)-acting Abi systems. We show that AbiE systems are encoded by bicistronic operons and function via a non-interacting (Type IV) bacteriostatic TA mechanism. The abiE operon was negatively autoregulated by the antitoxin, AbiEi, a member of a widespread family of putative transcriptional regulators. AbiEi has an N-terminal winged-helix-turn-helix domain that is required for repression of abiE transcription, and an uncharacterized bi-functional C-terminal domain, which is necessary for transcriptional repression and sufficient for toxin neutralization. The cognate toxin, AbiEii, is a predicted nucleotidyltransferase (NTase) and member of the DNA polymerase β family. AbiEii specifically bound GTP, and mutations in conserved NTase motifs (I-III) and a newly identified motif (IV), abolished GTP binding and subsequent toxicity. The AbiE systems can provide phage resistance and enable stabilization of mobile genetic elements, such as plasmids. Our study reveals molecular insights into the regulation and function of the widespread bi-functional AbiE Abi-TA systems and the biochemical properties of both toxin and antitoxin proteins.
Collapse
Affiliation(s)
- Ron L. Dy
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Rita Przybilski
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Koen Semeijn
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - George P.C. Salmond
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, PO Box 56, Dunedin 9054, New Zealand and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| |
Collapse
|
12
|
SP10 infectivity is aborted after bacteriophage SP10 infection induces nonA transcription on the prophage SPβ region of the Bacillus subtilis genome. J Bacteriol 2013; 196:693-706. [PMID: 24272782 DOI: 10.1128/jb.01240-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Bacteria have developed various strategies for phage resistance. Infection with phage induces the transcription of part of the phage resistance gene, but the regulatory mechanisms of such transcription remain largely unknown. The phage resistance gene nonA is located on the SPβ prophage region of the Bacillus subtilis Marburg strain genome. The nonA transcript was detected at the late stage of SP10 infection but is undetectable in noninfected cells. The nonA transcript was detected after the induction of the sigma factor Orf199-Orf200 (σ(Orf199-200)), when sigma factors encoded in the SP10 genome were expressed from a xylose-inducible plasmid. Thus, the SP10 sigma factor is an activator of a set of SP10 genes and nonA. The nonA gene encodes a 72-amino-acid protein with a transmembrane motif and has no significant homology with any protein in any database. NonA overexpression halted cell growth and reduced the efficiency of B. subtilis colony formation and respiration activity. In addition, SP10 virion protein synthesis was inhibited in the nonA(+) strain, and SP10 virion particles were scarce in it. These results indicate that NonA is a novel protein that can abort SP10 infection, and its transcription was regulated by SP10 sigma factor.
Collapse
|
13
|
Effect of the abortive infection mechanism and type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J Bacteriol 2013; 195:3947-56. [PMID: 23813728 DOI: 10.1128/jb.00296-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To survive in phage-containing environments, bacteria have evolved an array of antiphage systems. Similarly, phages have overcome these hurdles through various means. Here, we investigated how phages are able to circumvent the Lactococcus lactis AbiQ system, a type III toxin-antitoxin with antiviral activities. Lactococcal phage escape mutants were obtained in the laboratory, and their genomes were sequenced. Three unrelated genes of unknown function were mutated in derivatives of three distinct lactococcal siphophages: orf38 of phage P008, m1 of phage bIL170, and e19 of phage c2. One-step growth curve experiments revealed that the phage mutations had a fitness cost while transcriptional analyses showed that AbiQ modified the early-expressed phage mRNA profiles. The L. lactis AbiQ system was also transferred into Escherichia coli MG1655 and tested against several coliphages. While AbiQ was efficient against phages T4 (Myoviridae) and T5 (Siphoviridae), escape mutants of only phage 2 (Myoviridae) could be isolated. Genome sequencing revealed a mutation in gene orf210, a putative DNA polymerase. Taking these observations together, different phage genes or gene products are targeted or involved in the AbiQ phenotype. Moreover, this antiviral system is active against various phage families infecting Gram-positive and Gram-negative bacteria. A model for the mode of action of AbiQ is proposed.
Collapse
|
14
|
Abstract
Bacteria and their viral predators (bacteriophages) are locked in a constant battle. In order to proliferate in phage-rich environments, bacteria have an impressive arsenal of defence mechanisms, and in response, phages have evolved counter-strategies to evade these antiviral systems. In this Review, we describe the various tactics that are used by phages to overcome bacterial resistance mechanisms, including adsorption inhibition, restriction-modification, CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) systems and abortive infection. Furthermore, we consider how these observations have enhanced our knowledge of phage biology, evolution and phage-host interactions.
Collapse
|
15
|
Samson JE, Spinelli S, Cambillau C, Moineau S. Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system. Mol Microbiol 2013; 87:756-68. [PMID: 23279123 DOI: 10.1111/mmi.12129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 01/21/2023]
Abstract
AbiQ is a phage resistance mechanism found on a native plasmid of Lactococcus lactis that abort virulent phage infections. In this study, we experimentally demonstrate that AbiQ belongs to the recently described type III toxin-antitoxin systems. When overexpressed, the AbiQ protein (ABIQ) is toxic and causes bacterial death in a bacteriostatic manner. Northern and Western blot experiments revealed that the abiQ gene is transcribed and translated constitutively, and its expression is not activated by a phage product. ABIQ is an endoribonuclease that specifically cleaves its cognate antitoxin RNA molecule in vivo. The crystal structure of ABIQ was solved and site-directed mutagenesis identified key amino acids for its anti-phage and/or its RNase function. The AbiQ system is the first lactococcal abortive infection system characterized to date at a structural level.
Collapse
Affiliation(s)
- Julie E Samson
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et génie, Université Laval, Québec, Canada, G1V 0A6
| | | | | | | |
Collapse
|
16
|
Samson JE, Moineau S. Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 2012; 4:347-68. [PMID: 23244395 DOI: 10.1146/annurev-food-030212-182541] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phage contamination represents an important risk to any process requiring bacterial growth, particularly in the biotechnology and food industries. The presence of unwanted phages may lead to manufacturing delays, lower quality product, or, in the worst cases, total production loss. Thus, constant phage monitoring and stringent application of the appropriate control measures are indispensable. In fact, a systematic preventive approach to phage contamination [phage analysis and critical control points (PACCP)] should be put in place. In this review, sources of phage contamination and novel phage detection methods are described, with an emphasis on bacterial viruses that infect lactic acid bacteria used in food fermentations. Recent discoveries related to antiphage systems that are changing our views on phage-host interactions are highlighted. Finally, future directions are also discussed.
Collapse
Affiliation(s)
- Julie E Samson
- Département debiochimie, de microbiologie et de bio-informatique, Université Laval, Québec, Canada.
| | | |
Collapse
|
17
|
Abstract
Although viruses encode many of the functions that are required for viral replication, they are completely reliant on the protein synthesis machinery that is present in their host cells. Recruiting cellular ribosomes to translate viral mRNAs represents a crucial step in the replication of all viruses. To ensure translation of their mRNAs, viruses use a diverse collection of strategies (probably pirated from their cellular hosts) to commandeer key translation factors that are required for the initiation, elongation and termination steps of translation. Viruses also neutralize host defences that seek to incapacitate the translation machinery in infected cells.
Viruses rely on the translation machinery of the host cell to produce the proteins that are essential for their replication. Here, Walsh and Mohr discuss the diverse strategies by which viruses subvert the host protein synthesis machinery and regulate the translation of viral mRNAs. Viruses are fully reliant on the translation machinery of their host cells to produce the polypeptides that are essential for viral replication. Consequently, viruses recruit host ribosomes to translate viral mRNAs, typically using virally encoded functions to seize control of cellular translation factors and the host signalling pathways that regulate their activity. This not only ensures that viral proteins will be produced, but also stifles innate host defences that are aimed at inhibiting the capacity of infected cells for protein synthesis. Remarkably, nearly every step of the translation process can be targeted by virally encoded functions. This Review discusses the diverse strategies that viruses use to subvert host protein synthesis functions and regulate mRNA translation in infected cells.
Collapse
|
18
|
Garneau JE, Moineau S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 2011; 10 Suppl 1:S20. [PMID: 21995802 PMCID: PMC3231927 DOI: 10.1186/1475-2859-10-s1-s20] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every biotechnology process that relies on the use of bacteria to make a product or to overproduce a molecule may, at some time, struggle with the presence of virulent phages. For example, phages are the primary cause of fermentation failure in the milk transformation industry. This review focuses on the recent scientific advances in the field of lactic acid bacteria phage research. Three specific topics, namely, the sources of contamination, the detection methods and the control procedures will be discussed.
Collapse
Affiliation(s)
- Josiane E Garneau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec city, Québec, G1V 0A6, Canada
| | | |
Collapse
|
19
|
Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P. A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 2011; 39:5597-610. [PMID: 21421560 PMCID: PMC3141236 DOI: 10.1093/nar/gkr098] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg++ buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. coli.
Collapse
Affiliation(s)
- Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | |
Collapse
|
20
|
Pouillot F, Blois H, Iris F. Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur Bioterror 2010; 8:155-69. [PMID: 20569057 DOI: 10.1089/bsp.2009.0057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.
Collapse
|
21
|
Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J Bacteriol 2009; 191:6029-39. [PMID: 19633081 DOI: 10.1128/jb.00720-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria are constantly challenged by bacteriophage (phage) infection and have developed multiple adaptive resistance mechanisms. These mechanisms include the abortive infection systems, which promote "altruistic suicide" of an infected cell, protecting the clonal population. A cryptic plasmid of Erwinia carotovora subsp. atroseptica, pECA1039, has been shown to encode an abortive infection system. This highly effective system is active across multiple genera of gram-negative bacteria and against a spectrum of phages. Designated ToxIN, this two-component abortive infection system acts as a toxin-antitoxin module. ToxIN is the first member of a new type III class of protein-RNA toxin-antitoxin modules, of which there are multiple homologues cross-genera. We characterized in more detail the abortive infection phenotype of ToxIN using a suite of Erwinia phages and performed mutagenesis of the ToxI and ToxN components. We determined the minimal ToxI RNA sequence in the native operon that is both necessary and sufficient for abortive infection and to counteract the toxicity of ToxN. Furthermore, site-directed mutagenesis of ToxN revealed key conserved amino acids in this defining member of the new group of toxic proteins. The mechanism of phage activation of the ToxIN system was investigated and was shown to have no effect on the levels of the ToxN protein. Finally, evidence of negative autoregulation of the toxIN operon, a common feature of toxin-antitoxin systems, is presented. This work on the components of the ToxIN system suggests that there is very tight toxin regulation prior to suicide activation by incoming phage.
Collapse
|