1
|
Zheng L, Zhou ZZ. An overview of phosphodiesterase 9 inhibitors: Insights from skeletal structure, pharmacophores, and therapeutic potential. Eur J Med Chem 2023; 259:115682. [PMID: 37536210 DOI: 10.1016/j.ejmech.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Cyclic nucleotide phosphodiesterase 9 (PDE9), a specifically hydrolytic enzyme with the highest affinity for cyclic guanosine monophosphate (cGMP) among the phosphodiesterases family, plays a critical role in many biological processes. Consequently, the development of PDE9 inhibitors has received increasing attention in recent years, with several compounds undergoing clinical trials for the treatment of central nervous system (CNS) diseases such as Alzheimer's disease, schizophrenia, and psychotic disorders, as well as heart failure and sickle cell disease. This review analyzes the recent primary literatures and patents published from 2004 to 2023, focusing on the structure, pharmacophores, selectivity, and therapeutic potential of PDE9 inhibitors. It hoped to provide a comprehensive overview of the field's current state to inform the development of novel PDE9 inhibitors.
Collapse
Affiliation(s)
- Lei Zheng
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Zhen Zhou
- Innovation Program of Drug Research on Neurological and Metabolic Diseases, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Brockway HM, Wilson SL, Kallapur SG, Buhimschi CS, Muglia LJ, Jones HN. Characterization of methylation profiles in spontaneous preterm birth placental villous tissue. PLoS One 2023; 18:e0279991. [PMID: 36952446 PMCID: PMC10035933 DOI: 10.1371/journal.pone.0279991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 03/25/2023] Open
Abstract
Preterm birth is a global public health crisis which results in significant neonatal and maternal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous preterm birth, and we have few diagnostic markers for adequate assessment of placental development and function. Previous studies of placental pathology and our transcriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm birth. It is known that placental DNA methylation changes over gestation. We hypothesized that if placental hypermaturity is present in our samples, we would observe a unique idiopathic spontaneous preterm birth DNA methylation profile potentially driving the gene expression differences we previously identified in our placental samples. Our results indicate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern suggesting hypermaturity. Only seven significant differentially methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the controls) profile were identified, indicating unusually high similarity in DNA methylation between idiopathic spontaneous preterm birth and term birth samples. We identified an additional 1,718 significantly methylated regions in our gestational age matched controls where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern, again indicating a striking level of similarity between the idiopathic spontaneous preterm birth and term birth samples. Pathway analysis of these regions revealed differences in genes within the WNT and Cadherin signaling pathways, both of which are essential in placental development and maturation. Taken together, these data demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature methylation signature than expected given their respective gestational age which likely impacts birth timing.
Collapse
Affiliation(s)
- Heather M. Brockway
- Department of Physiology and Functional Genomics, College of Medicine at the University of Florida, Gainesville, Florida, United States of America
| | - Samantha L. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, UCLA Mattel Children’s Hospital, Los Angeles, California, United States of America
| | - Catalin S. Buhimschi
- Department of Obstetrics and Gynecology, The University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Louis J. Muglia
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, United States of America
| | - Helen N. Jones
- Department of Physiology and Functional Genomics, College of Medicine at the University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
3
|
Taal K, Tuvikene J, Rullinkov G, Piirsoo M, Sepp M, Neuman T, Tamme R, Timmusk T. Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Sci Rep 2019; 9:7104. [PMID: 31068605 PMCID: PMC6506465 DOI: 10.1038/s41598-019-43069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/01/2019] [Indexed: 11/15/2022] Open
Abstract
Neuralized functions as a positive regulator of the Notch pathway by promoting ubiquitination of Notch ligands via its E3 ligase activity, resulting in their efficient endocytosis and signaling. Using a yeast two-hybrid screen, we have identified a cGMP-hydrolysing phosphodiesterase, PDE9A, as a novel interactor and substrate of Neuralized E3 ubiquitin protein ligase 1 (NEURL1). We confirmed this interaction with co-immunoprecipitation experiments and show that both Neuralized Homology Repeat domains of NEURL1 can interact with PDE9A. We also demonstrate that NEURL1 can promote polyubiquitination of PDE9A that leads to its proteasome-mediated degradation mainly via lysine residue K27 of ubiquitin. Our results suggest that NEURL1 acts as a novel regulator of protein levels of PDE9A.
Collapse
Affiliation(s)
- Kati Taal
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Grete Rullinkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Marko Piirsoo
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | | | - Richard Tamme
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
4
|
Dorner-Ciossek C, Kroker KS, Rosenbrock H. Role of PDE9 in Cognition. ADVANCES IN NEUROBIOLOGY 2017; 17:231-254. [DOI: 10.1007/978-3-319-58811-7_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Jansen C, Kooistra AJ, Kanev GK, Leurs R, de Esch IJP, de Graaf C. PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. J Med Chem 2016; 59:7029-65. [DOI: 10.1021/acs.jmedchem.5b01813] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Chimed Jansen
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Albert J. Kooistra
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Georgi K. Kanev
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute
of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Phosphodiesterase 9: Insights from protein structure and role in therapeutics. Life Sci 2014; 106:1-11. [DOI: 10.1016/j.lfs.2014.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/17/2023]
|
7
|
Wong JWY, Chan CL, Tang WK, Cheng CHK, Fong WP. Is antiquitin a mitochondrial Enzyme? J Cell Biochem 2010; 109:74-81. [PMID: 19885858 DOI: 10.1002/jcb.22381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antiquitin is an aldehyde dehydrogenase involved in the catabolism of lysine. Mutations of antiquitin have been linked with the disease pyridoxine-dependent seizures. While it is well established that lysine metabolism takes place in the mitochondrial matrix, evidence for the mitochondrial localization of antiquitin has been lacking. In the present study, the subcellular localization of antiquitin was investigated using human embryonic kidney HEK293 cells. Three different approaches were used. First, confocal microscopic analysis was carried out on cells transiently transfected with fusion constructs containing enhanced green fluorescent protein with different lengths of antiquitin based on the different potential start codons of translation. Second, immunofluorescence staining was used to detect the localization of antiquitin directly in the cells. Third, subcellular fractionation was carried out and the individual fraction was analyzed for the presence of antiquitin by Western blot and flow cytometric analyses. All the results showed that antiquitin was present not only in the cytosol but also in the mitochondria.
Collapse
Affiliation(s)
- Judy Wei-Yan Wong
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
8
|
Deninno MP, Andrews M, Bell AS, Chen Y, Eller-Zarbo C, Eshelby N, Etienne JB, Moore DE, Palmer MJ, Visser MS, Yu LJ, Zavadoski WJ, Michael Gibbs E. The discovery of potent, selective, and orally bioavailable PDE9 inhibitors as potential hypoglycemic agents. Bioorg Med Chem Lett 2009; 19:2537-41. [PMID: 19339180 DOI: 10.1016/j.bmcl.2009.03.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 11/24/2022]
Abstract
Starting from a non-selective pyrazolo-pyrimidone lead, the sequential use of parallel medicinal chemistry and directed synthesis led to the discovery of potent, highly selective, and orally bioavailable PDE9 inhibitors. The availability of these tools allowed for a thorough evaluation of the therapeutic potential of PDE9 inhibition.
Collapse
Affiliation(s)
- Michael P Deninno
- Pfizer Global Research and Development, Groton Laboratories, Groton, CT 06340, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
TISs-ST: a web server to evaluate polymorphic translation initiation sites and their reflections on the secretory targets. BMC Bioinformatics 2007; 8:160. [PMID: 17517132 PMCID: PMC1891115 DOI: 10.1186/1471-2105-8-160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 05/21/2007] [Indexed: 11/21/2022] Open
Abstract
Background The nucleotide sequence flanking the translation initiation codon (start codon context) affects the translational efficiency of eukaryotic mRNAs, and may indicate the presence of an alternative translation initiation site (TIS) to produce proteins with different properties. Multi-targeting may reflect the translational variability of these other protein forms. In this paper we present a web server that performs computations to investigate the usage of alternative translation initiation sites for the synthesis of new protein variants that might have different functions. Results An efficient web-based tool entitled TISs-ST (Translation Initiation Sites and Secretory Targets) evaluates putative translation initiation sites and indicates the prediction of a signal peptide of the protein encoded from this site. The TISs-ST web server is freely available to both academic and commercial users and can be accessed at . Conclusion The program can be used to evaluate alternative translation initiation site consensus with user-specified sequences, based on their composition or on many position weight matrix models. TISs-ST provides analytical and visualization tools for evaluating the periodic frequency, the consensus pattern and the total information content of a sequence data set. A search option allows for the identification of signal peptides from predicted proteins using the PrediSi software.
Collapse
|