1
|
Xue P, You X, Ren L, Yue W, Ma Z. PPARγ-mediated amelioration of lipid metabolism abnormality by kaempferol. Arch Biochem Biophys 2024; 761:110154. [PMID: 39278305 DOI: 10.1016/j.abb.2024.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Kaempferol can exert biological functions by regulating various signaling pathways. This study evaluated the ameliorative effect of kaempferol on lipid accumulation using oleic acid and palmitic acid-treated HepG2 cells and high-fat diet mice. In vitro oil red O staining showed that kaempferol treatment improved lipid accumulation (p < 0.001 for TG content and p < 0.05 for TC content). Immunofluorescence, western blot analysis and RT-qPCR showed that kaempferol could promote nuclear translocation of PPARγ and reduce the expression of PPARγ, C/EBPβ, and SREBP-1c. Dietary intervention with kaempferol could reduce the lipid accumulation in hepatocytes and inflammatory cell infiltration, as well as attenuated serum levels of IL-6 and TNF-α in HFD-fed mice (p < 0.001 for IL-6 and p < 0.01 for TNF-α at kaempferol 60 mg/kg/d). Meanwhile, histopathological examination revealed that there was no substantial damage or distinct inflammation lesions in organs at the experimental dose, including the heart, lung, kidney, and spleen. The aforementioned research findings can serve as references for further preclinical investigations on the potential of kaempferol to mitigate lipid accumulation.
Collapse
Affiliation(s)
- Peiyu Xue
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xinyong You
- School of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Weiming Yue
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Zheng Ma
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
2
|
Nakagawa K, Watanabe K, Mizutani K, Takeda K, Takemura S, Sakaniwa E, Mikami R, Kido D, Saito N, Kominato H, Hattori A, Iwata T. Genetic analysis of impaired healing responses after periodontal therapy in type 2 diabetes: Clinical and in vivo studies. J Periodontal Res 2024; 59:712-727. [PMID: 38501307 DOI: 10.1111/jre.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/28/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study aims to investigate the mechanisms underlying the impaired healing response by diabetes after periodontal therapy. BACKGROUND Outcomes of periodontal therapy in patients with diabetes are impaired compared with those in patients without diabetes. However, the mechanisms underlying impaired healing response to periodontal therapy have not been sufficiently investigated. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) and lean (ZL) rats underwent experimental periodontitis by ligating the mandibular molars for one week. The gingiva at the ligated sites was harvested one day after ligature removal, and gene expression was comprehensively analyzed using RNA-Seq. In patients with and without type 2 diabetes (T2D), the corresponding gene expression was quantified in the gingiva of the shallow sulcus and residual periodontal pocket after non-surgical periodontal therapy. RESULTS Ligation-induced bone resorption and its recovery after ligature removal were significantly impaired in the ZDF group than in the ZL group. The RNA-Seq analysis revealed 252 differentially expressed genes. Pathway analysis demonstrated the enrichment of downregulated genes involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. PPARα and PPARγ were decreased in mRNA level and immunohistochemistry in the ZDF group than in the ZL group. In clinical, probing depth reduction was significantly less in the T2D group than control. Significantly downregulated expression of PPARα and PPARγ were detected in the residual periodontal pocket of the T2D group compared with those of the control group, but not in the shallow sulcus between the groups. CONCLUSIONS Downregulated PPAR subtypes expression may involve the impaired healing of periodontal tissues by diabetes.
Collapse
Affiliation(s)
- Keita Nakagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Takemura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Sakaniwa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Risako Mikami
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Kido
- Department of General Dentistry, Tokyo Medical and Dental University Dental Hospital, Tokyo, Japan
| | - Natsumi Saito
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Kominato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hattori
- Department of Sport and Wellness, College of Sport and Wellness, Rikkyo University, Saitama, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Kunhorm P, Chaicharoenaudomrung N, Noisa P. Cordycepin-induced Keratinocyte Secretome Promotes Skin Cell Regeneration. In Vivo 2023; 37:574-590. [PMID: 36881050 PMCID: PMC10026670 DOI: 10.21873/invivo.13116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Skin regeneration is the intrinsic ability to repair damaged skin tissues to regaining skin well-being. Processes of wound healing, a major part of skin regeneration, involve various types of cells, including keratinocytes and dermal fibroblasts, through their autocrine/paracrine signals. The releasable factors from keratinocytes were reported to influence dermal fibroblasts behavior during wound-healing processes. Here, we developed a strategy to modulate cytokine components and improve the secretome quality of HaCaT cells, a nontumorigenic immortalized keratinocyte cell line, via the treatment of cordycepin, and designated as cordycepin-induced HaCaT secretome (CHS). MATERIALS AND METHODS The bioactivities of CHS were investigated in vitro on human dermal fibroblasts (HDF). The effects of CHS on HDF proliferation, reactive oxygen species-scavenging, cell migration, extracellular matrix production and autophagy activation were investigated by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide cell viability assay, dichloro-dihydro-fluorescein diacetate, the wound-healing assay, reverse transcription polymerase chain reaction and immunofluorescent microscopy. Finally, Proteome Profiler™ Array was used to determine the composition of the secretome. RESULTS CHS induced fibroblast proliferation/migration, reactive oxygen species-scavenging property, regulation of extracellular matrix synthesis, and autophagy activation. Such enhanced bioactivities of CHS were related to the increase of some key cytokines, including C-X-C motif chemokine ligand 1, interleukin 1 receptor A, interleukin 8, macrophage migration-inhibitory factor, and serpin family E member 1. CONCLUSION These findings highlight the implications of cordycepin alteration of the cytokine profile of the HaCaT secretome, which represents a novel biosubstance for the development of wound healing and skin regeneration products.
Collapse
Affiliation(s)
- Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
4
|
Interleukin 1β and Prostaglandin E2 affect expression of DNA methylating and demethylating enzymes in human gingival fibroblasts. Int Immunopharmacol 2019; 78:105920. [PMID: 31810887 DOI: 10.1016/j.intimp.2019.105920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023]
Abstract
Periodontitis is a common chronic inflammatory condition that results in increased levels of inflammatory cytokines and inflammatory mediators. In addition to oral disease and tooth loss, it also causes low-grade systemic inflammation that contributes to development of systemic conditions including cardiovascular disease, pre-term birth, diabetes and cancer. Chronic inflammation is associated with epigenetic change, and it has been suggested that such changes can alter cell phenotypes in ways that contribute to both ongoing inflammation and development of associated pathologies. Here we show that exposure of human gingival fibroblasts to IL-1β increases expression of maintenance methyltransferase DNMT1 but decreases expression of de novo methyltransferase DNMT3a and the demethylating enzyme TET1, while exposure to PGE2 decreases expression of all three enzymes. IL-1β and PGE2 both affect global levels of DNA methylation and hydroxymethylation, as well as methylation of some specific CpG in inflammation-associated genes. The effects of IL-1β are independent of its ability to induce production of PGE2, and the effects of PGE2 on DNMT3a expression are mediated by the EP4 receptor. The finding that exposure of fibroblasts to IL-1β and PGE2 can result in altered expression of DNA methylating/demethylating enzymes and in changing patterns of DNA methylation suggests a mechanism through which inflammatory mediators might contribute to the increased risk of carcinogenesis associated with inflammation.
Collapse
|
5
|
The associations between serum vascular endothelial growth factor, tumor necrosis factor and interleukin 4 with the markers of blood-brain barrier breakdown in patients with paraneoplastic neurological syndromes. J Neural Transm (Vienna) 2018; 126:149-158. [PMID: 30374596 PMCID: PMC6373237 DOI: 10.1007/s00702-018-1950-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022]
Abstract
The blood–brain barrier (BBB) disruption is a critical step in paraneoplastic neurological syndrome (PNS) development. Several cytokines have been implicated in BBB breakdown. However, the exact step-by-step mechanism in which PNS develops is unknown, and the relationship between a systemic neoplasm and BBB is multilevel. The aim of the present study was to examine serum markers of BBB breakdown (S100B protein, neuron-specific enolase, NSE) and concentrations of proinflammatory (TNF-alpha, VEGF) and anti-inflammatory/immunosuppressive cytokines (IL-4), and to establish their interrelationship in patients with PNS. We analyzed 84 patients seropositive for onconeural antibodies that originated from a cohort of 250 cases with suspected PNS. Onconeural antibodies were estimated with indirect immunofluorescence and confirmed with Western blotting. Serum S-100B was estimated using electrochemiluminescence immunoassay. NSE, VEGF, TNF-alpha and IL-4 were analyzed with ELISA. We found that S-100B protein and NSE serum concentrations were elevated in PNS patients without diagnosed malignancy, and S-100B additionally in patients with peripheral nervous system manifestation of PNS. Serum VEGF levels showed several abnormalities, including a decrease in anti-Hu positive patients and increase in PNS patients with typical manifestation and/or central nervous system involvement. Increase in TNF-alpha was observed in patients with undetermined antibodies. To conclude, the presence of paraneoplastic neurological syndrome in seropositive patients does not affect serum markers of BBB breakdown, with the exception of the group without clinically demonstrated malignancy and patients with peripheral manifestation of PNS. S-100B and NSE might increase during early phase of PNS. VEGF may be involved in typical PNS pathophysiology.
Collapse
|
6
|
Sharma J, Bhar S, Devi CS. A review on interleukins: The key manipulators in rheumatoid arthritis. Mod Rheumatol 2017; 27:723-746. [DOI: 10.1080/14397595.2016.1266071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jatin Sharma
- School of Biosciences and Technology, VIT University, Vellore, India
| | - Sutonuka Bhar
- School of Biosciences and Technology, VIT University, Vellore, India
| | - C. Subathra Devi
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
7
|
Chambers M, Kirkpatrick G, Evans M, Gorski G, Foster S, Borghaei RC. IL-4 inhibition of IL-1 induced Matrix metalloproteinase-3 (MMP-3) expression in human fibroblasts involves decreased AP-1 activation via negative crosstalk involving of Jun N-terminal kinase (JNK). Exp Cell Res 2013; 319:1398-408. [PMID: 23608488 DOI: 10.1016/j.yexcr.2013.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase-3 (MMP-3) over-expression is associated with tissue destruction in the context of chronic inflammation. Previous studies showed that IL-4 inhibits induction of MMP-3 by IL-1β, and suggested that AP-1 might be involved. Here we show that IL-1 induced binding of transcription factor AP-1 to the MMP-3 promoter consists primarily of c-Jun, JunB, and c-Fos and that binding of c-Jun and c-Fos is inhibited by the combination of cytokines while binding of Jun B is not. Mutation of the AP-1 site in the MMP-3 promoter decreased the ability of IL-4 to inhibit its transcription in transfected MG-63 cells. Western blotting showed that both cytokines activate Jun N-terminal kinase (JNK), but with somewhat different kinetics, and that activation of JNK by both cytokines individually is inhibited by the combination. These results indicate that IL-4 inhibition of MMP-3 expression is associated with reduction of IL-1 induced binding of active forms of the AP-1 dimer, while less active JunB-containing dimers remain, and suggest that these changes are associated with decreased activation of JNK.
Collapse
Affiliation(s)
- Mariah Chambers
- Department of Biochemistry and Molecular Biology, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA 19131, USA
| | | | | | | | | | | |
Collapse
|
8
|
Rand TG, Dipenta J, Robbins C, Miller JD. Effects of low molecular weight fungal compounds on inflammatory gene transcription and expression in mouse alveolar macrophages. Chem Biol Interact 2011; 190:139-47. [PMID: 21356202 DOI: 10.1016/j.cbi.2011.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 12/01/2022]
Abstract
The inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays. Multianalyte ELISA was used to measure expression of 6 pro-inflammatory cytokines common to the transcriptional assays (Cxcl1, Cxcl10, Ccl3, IL1β, Ifn-λ and Tnf-α) to determine whether gene expression corresponded to the transcription data. Compared to controls, all of these compounds induced significant (≥2.5-fold or ≤-2.5-fold change at p≤0.05) time- and compound-specific transcriptional gene alterations in treatment AMs. The highest number of transcribed genes were in LPS treatment AMs at 12h PE (12/13) followed by neoechinulin B at 4h PE (11/13). Highest fold change values (>30) were associated with KC, Cxcl2, Cxcl5 and IL1β genes in cells exposed to LPS. Compound exposures also induced significant (p≤0.05) time- and compound-specific pro-inflammatory responses manifest as differentially elevated Cxcl1, Cxcl10, Ccl3, Ifn-λ and Tnf-α concentrations in culture supernatant of treatment AMs. Dissimilarity in transcriptional responses in AMs and our in vivo model of lung disease is likely attributable to whole lung vs. isolated cell responsive and dose differences between the two studies. The results not only indicate that low molecular weight compounds from fungi that grow in damp built environments are potently pro-inflammatory in vitro, it further highlights the important role AMs play in innate lung defence, and against exposure to low molecular weight fungal compounds. These observations further support our position that exposure to low molecular weight compounds from indoor-associated fungi may provoke some of the inflammatory health effects reported from humans in damp building environments. They also open up a hypothesis building process that could explain the rise of non-atopic asthma associated with fungi.
Collapse
Affiliation(s)
- Thomas G Rand
- Department of Biology, Saint Mary's University, Halifax, NS, Canada B3H 3C3
| | | | | | | |
Collapse
|