1
|
Sikorski V, Vento A, Kankuri E. Emerging roles of the RNA modifications N6-methyladenosine and adenosine-to-inosine in cardiovascular diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:426-461. [PMID: 35991314 PMCID: PMC9366019 DOI: 10.1016/j.omtn.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases lead the mortality and morbidity disease metrics worldwide. A multitude of chemical base modifications in ribonucleic acids (RNAs) have been linked with key events of cardiovascular diseases and metabolic disorders. Named either RNA epigenetics or epitranscriptomics, the post-transcriptional RNA modifications, their regulatory pathways, components, and downstream effects substantially contribute to the ways our genetic code is interpreted. Here we review the accumulated discoveries to date regarding the roles of the two most common epitranscriptomic modifications, N6-methyl-adenosine (m6A) and adenosine-to-inosine (A-to-I) editing, in cardiovascular disease.
Collapse
Affiliation(s)
- Vilbert Sikorski
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Antti Vento
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - IHD-EPITRAN Consortium
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Heart and Lung Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
2
|
Li W, Hao Y, Zhang X, Xu S, Pang D. Targeting RNA N 6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Mol Cancer 2022; 21:176. [PMID: 36071523 PMCID: PMC9454167 DOI: 10.1186/s12943-022-01652-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/03/2022] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy, especially immune checkpoint inhibitors (ICIs), has revolutionized the treatment of many types of cancer, particularly advanced-stage cancers. Nevertheless, although a subset of patients experiences dramatic and long-term disease regression in response to ICIs, most patients do not benefit from these treatments. Some may even experience cancer progression. Immune escape by tumor cells may be a key reason for this low response rate. N6-methyladenosine (m6A) is the most common type of RNA methylation and has been recognized as a critical regulator of tumors and the immune system. Therefore, m6A modification and related regulators are promising targets for improving the efficacy of tumor immunotherapy. However, the association between m6A modification and tumor immune escape (TIE) has not been comprehensively summarized. Therefore, this review summarizes the existing knowledge regarding m6A modifications involved in TIE and their potential mechanisms of action. Moreover, we provide an overview of currently available agents targeting m6A regulators that have been tested for their elevated effects on TIE. This review establishes the association between m6A modifications and TIE and provides new insights and strategies for maximizing the efficacy of immunotherapy by specifically targeting m6A modifications involved in TIE.
Collapse
Affiliation(s)
- Wei Li
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Yi Hao
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Xingda Zhang
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China
| | - Shouping Xu
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China.
| | - Da Pang
- Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, Heilongjiang, China.
| |
Collapse
|
3
|
Yi M, Tan Y, Wang L, Cai J, Li X, Zeng Z, Xiong W, Li G, Li X, Tan P, Xiang B. TP63 links chromatin remodeling and enhancer reprogramming to epidermal differentiation and squamous cell carcinoma development. Cell Mol Life Sci 2020; 77:4325-4346. [PMID: 32447427 PMCID: PMC7588389 DOI: 10.1007/s00018-020-03539-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/21/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Squamous cell carcinoma (SCC) is an aggressive malignancy that can originate from various organs. TP63 is a master regulator that plays an essential role in epidermal differentiation. It is also a lineage-dependent oncogene in SCC. ΔNp63α is the prominent isoform of TP63 expressed in epidermal cells and SCC, and overexpression promotes SCC development through a variety of mechanisms. Recently, ΔNp63α was highlighted to act as an epidermal-specific pioneer factor that binds closed chromatin and enhances chromatin accessibility at epidermal enhancers. ΔNp63α coordinates chromatin-remodeling enzymes to orchestrate the tissue-specific enhancer landscape and three-dimensional high-order architecture of chromatin. Moreover, ΔNp63α establishes squamous-like enhancer landscapes to drive oncogenic target expression during SCC development. Importantly, ΔNp63α acts as an upstream regulator of super enhancers to activate a number of oncogenic transcripts linked to poor prognosis in SCC. Mechanistically, ΔNp63α activates genes transcription through physically interacting with a number of epigenetic modulators to establish enhancers and enhance chromatin accessibility. In contrast, ΔNp63α also represses gene transcription via interacting with repressive epigenetic regulators. ΔNp63α expression is regulated at multiple levels, including transcriptional, post-transcriptional, and post-translational levels. In this review, we summarize recent advances of p63 in epigenomic and transcriptional control, as well as the mechanistic regulation of p63.
Collapse
Affiliation(s)
- Mei Yi
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha, 410011, Hunan, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Cai
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pingqing Tan
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Department of Head and Neck Surgery, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
4
|
Zaccara S, Jaffrey SR. A Unified Model for the Function of YTHDF Proteins in Regulating m 6A-Modified mRNA. Cell 2020; 181:1582-1595.e18. [PMID: 32492408 PMCID: PMC7508256 DOI: 10.1016/j.cell.2020.05.012] [Citation(s) in RCA: 440] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/14/2020] [Accepted: 05/04/2020] [Indexed: 02/05/2023]
Abstract
N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.
Collapse
Affiliation(s)
- Sara Zaccara
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
5
|
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N 6-methyladenosine-modified RNA. Cell Res 2017; 27:315-328. [PMID: 28106072 PMCID: PMC5339834 DOI: 10.1038/cr.2017.15] [Citation(s) in RCA: 1218] [Impact Index Per Article: 174.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/06/2016] [Accepted: 12/10/2016] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in cell differentiation and tissue development. It regulates multiple steps throughout the RNA life cycle including RNA processing, translation, and decay, via the recognition by selective binding proteins. In the cytoplasm, m6A binding protein YTHDF1 facilitates translation of m6A-modified mRNAs, and YTHDF2 accelerates the decay of m6A-modified transcripts. The biological function of YTHDF3, another cytoplasmic m6A binder of the YTH (YT521-B homology) domain family, remains unknown. Here, we report that YTHDF3 promotes protein synthesis in synergy with YTHDF1, and affects methylated mRNA decay mediated through YTHDF2. Cells deficient in all three YTHDF proteins experience the most dramatic accumulation of m6A-modified transcripts. These results indicate that together with YTHDF1 and YTHDF2, YTHDF3 plays critical roles to accelerate metabolism of m6A-modified mRNAs in the cytoplasm. All three YTHDF proteins may act in an integrated and cooperative manner to impact fundamental biological processes related to m6A RNA methylation.
Collapse
Affiliation(s)
- Hailing Shi
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiao Wang
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhike Lu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Boxuan S Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Honghui Ma
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Phillip J Hsu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, The University of Chicago, Chicago, IL 60637, USA
| | - Chang Liu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Kouwenhoven EN, van Bokhoven H, Zhou H. Gene regulatory mechanisms orchestrated by p63 in epithelial development and related disorders. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:590-600. [PMID: 25797018 DOI: 10.1016/j.bbagrm.2015.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 01/30/2023]
Abstract
The transcription factor p63 belongs to the p53 family and is a key regulator in epithelial commitment and development. Mutations in p63 give rise to several epithelial related disorders with defects in skin, limb and orofacial structures. Since the discovery of p63, efforts have been made to identify its target genes using individual gene approaches and to understand p63 function in normal epithelial development and related diseases. Recent genome-wide approaches have identified tens of thousands of potential p63-regulated target genes and regulatory elements, and reshaped the concept of gene regulation orchestrated by p63. These data also provide insights into p63-related disease mechanisms. In this review, we discuss the regulatory role of p63 in normal and diseased epithelial development in light of these novel findings. We also propose future perspectives for dissecting the molecular mechanism of p63-mediated epithelial development and related disorders as well as for potential therapeutic strategies.
Collapse
Affiliation(s)
- Evelyn N Kouwenhoven
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Hans van Bokhoven
- Radboud university medical center, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| | - Huiqing Zhou
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands; Radboud university medical center, Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Monti P, Ciribilli Y, Bisio A, Foggetti G, Raimondi I, Campomenosi P, Menichini P, Fronza G, Inga A. ∆N-P63α and TA-P63α exhibit intrinsic differences in transactivation specificities that depend on distinct features of DNA target sites. Oncotarget 2015; 5:2116-30. [PMID: 24926492 PMCID: PMC4039150 DOI: 10.18632/oncotarget.1845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TP63 is a member of the TP53 gene family that encodes for up to ten different TA and ΔN isoforms through alternative promoter usage and alternative splicing. Besides being a master regulator of gene expression for squamous epithelial proliferation, differentiation and maintenance, P63, through differential expression of its isoforms, plays important roles in tumorigenesis. All P63 isoforms share an immunoglobulin-like folded DNA binding domain responsible for binding to sequence-specific response elements (REs), whose overall consensus sequence is similar to that of the canonical p53 RE. Using a defined assay in yeast, where P63 isoforms and RE sequences are the only variables, and gene expression assays in human cell lines, we demonstrated that human TA- and ΔN-P63α proteins exhibited differences in transactivation specificity not observed with the corresponding P73 or P53 protein isoforms. These differences 1) were dependent on specific features of the RE sequence, 2) could be related to intrinsic differences in their oligomeric state and cooperative DNA binding, and 3) appeared to be conserved in evolution. Since genotoxic stress can change relative ratio of TA- and ΔN-P63α protein levels, the different transactivation specificity of each P63 isoform could potentially influence cellular responses to specific stresses.
Collapse
|
8
|
Sethi I, Sinha S, Buck MJ. Role of chromatin and transcriptional co-regulators in mediating p63-genome interactions in keratinocytes. BMC Genomics 2014; 15:1042. [PMID: 25433490 PMCID: PMC4302094 DOI: 10.1186/1471-2164-15-1042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 11/18/2014] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The Transcription Factor (TF) p63 is a master regulator of epidermal development and differentiation as evident from the remarkable skin phenotype of p63 mouse knockouts. Furthermore, ectopic expression of p63 alone is sufficient to convert simple epithelium into stratified epithelial tissues in vivo and p63 is required for efficient transdifferentiation of fibroblasts into keratinocytes. However, little is known about the molecular mechanisms of p63 function, in particular how it selects its target sites in the genome. p63, which acts both as an activator and repressor of transcription, recognizes a canonical binding motif that occurs over 1 million times in the human genome. But, in human keratinocytes less than 12,000 of these sites are bound in vivo suggesting that underlying chromatin architecture and cooperating TFs mediate p63-genome interactions. RESULTS We find that the chromatin architecture at p63-bound targets possess distinctive features and can be used to categorize p63 targets into proximal promoters (1%), enhancers (59%) and repressed or inactive (40%) regulatory elements. Our analysis shows that the chromatin modifications H3K4me1, H3K27me3, along with overall chromatin accessibility status can accurately predict bonafide p63-bound sites without a priori DNA sequence information. Interestingly, however there exists a qualitative correlation between the p63 binding motif and accessibility and H3K4me1 levels. Furthermore, we use a comprehensive in silico approach that leverages ENCODE data to identify several known TFs such as AP1, AP2 and novel TFs (RFX5 for e.g.) that can potentially cooperate with p63 to modulate its myriad biological functions in keratinocytes. CONCLUSIONS Our analysis shows that p63 bound genomic locations in keratinocytes are accessible, marked by active histone modifications, and co-targeted by other developmentally important transcriptional regulators. Collectively, our results suggest that p63 might actively remodel and/or influence chromatin dynamics at its target sites and in the process dictate its own DNA binding and possibly that of adjacent TFs.
Collapse
Affiliation(s)
| | - Satrajit Sinha
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, USA.
| | | |
Collapse
|
9
|
Ochieng JK, Schilders K, Kool H, Boerema-De Munck A, Buscop-Van Kempen M, Gontan C, Smits R, Grosveld FG, Wijnen RMH, Tibboel D, Rottier RJ. Sox2 regulates the emergence of lung basal cells by directly activating the transcription of Trp63. Am J Respir Cell Mol Biol 2014; 51:311-22. [PMID: 24669837 DOI: 10.1165/rcmb.2013-0419oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung development is determined by the coordinated expression of several key genes. Previously, we and others have shown the importance of the sex determining region Y-box 2 (Sox2) gene in lung development. Transgenic expression of Sox2 during lung development resulted in cystic airways, and here we show that modulating the timing of ectopic Sox2 expression in the branching regions of the developing lung results in variable cystic lesions resembling the spectrum of the human congenital disorder congenital cystic adenomatoid malformation (CCAM). Sox2 dominantly differentiated naive epithelial cells into the proximal lineage irrespective of the presence of Fgf10. Sox2 directly induced the expression of Trp63, the master switch toward the basal cell lineage and induced the expression of Gata6, a factor involved in the emergence of bronchoalveolar stem cells. We showed that SOX2 and TRP63 are coexpressed in the lungs of human patients with type II CCAM. The combination of premature differentiation toward the proximal cell lineage and the induction of proliferation resulted in the cyst-like structures. Thus, we show that Sox2 is directly responsible for the emergence of two lung progenitor cells: basal cells by regulating the master gene Trp63 and bronchoalveolar stem cells by regulating Gata6.
Collapse
Affiliation(s)
- Joshua K Ochieng
- Departments of 1 Pediatric Surgery of the Erasmus MC-Sophia Children's Hospital
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Warner SMB, Hackett TL, Shaheen F, Hallstrand TS, Kicic A, Stick SM, Knight DA. Transcription factor p63 regulates key genes and wound repair in human airway epithelial basal cells. Am J Respir Cell Mol Biol 2014; 49:978-88. [PMID: 23837456 DOI: 10.1165/rcmb.2012-0447oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The airway epithelium in asthma displays altered repair and incomplete barrier formation. Basal cells are the progenitor cells of the airway epithelium, and can repopulate other cell types after injury. We previously reported increased numbers of basal cells expressing the transcription factor p63 in the airway epithelium of patients with asthma. Here we sought to determine the molecular consequences of p63 expression in basal human airway epithelial cells during wound repair. Because at least six isoforms of p63 exist (N-terminally truncated [ΔN] versus transcriptional activation promoter variants and α, β, or γ 3' splice variants), the expression of all isoforms was investigated in primary human airway epithelial cells (pHAECs). We modulated p63 expression, using small interfering RNA (siRNA) and adenoviral constructs to determine the effects of p63 on 21 candidate target genes by RT-PCR, and on repair using a scratch wound assay. We found that basal pHAECs from asthmatic and nonasthmatic donors predominantly expressed the N-terminally truncated p63α variant (ΔNp63α) isoform, with no disease-specific differences in expression. The knockdown of ΔNp63, using specific siRNA, decreased the expression of 11 out of 21 genes associated with epithelial repair and differentiation, including β-catenin, epidermal growth factor receptor, and Jagged1. The loss of ΔNp63 significantly inhibited wound closure (which was associated with the decreased expression of β-catenin and Jagged1), reduced epithelial proliferation as measured by Ki-67 staining, and increased E-cadherin expression, potentially preventing cytokinesis. In conclusion, ΔNp63α is the major isoform expressed in basal pHAECs, and is essential for epithelial wound repair. The role of ΔNp63α in epithelial barrier integrity requires further study to understand its role in health and disease.
Collapse
Affiliation(s)
- Stephanie M B Warner
- 1 University of British Columbia James Hogg Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Fujimoto A, Kurban M, Nakamura M, Farooq M, Fujikawa H, Kibbi AG, Ito M, Dahdah M, Matta M, Diab H, Shimomura Y. GJB6, of which mutations underlie Clouston syndrome, is a potential direct target gene of p63. J Dermatol Sci 2012; 69:159-66. [PMID: 23219093 DOI: 10.1016/j.jdermsci.2012.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Clouston syndrome is a rare autosomal dominant condition characterized by hypotrichosis, nail dystrophy, and occasionally palmoplantar keratoderma. The disease is caused by mutations in GJB6 gene, which encodes a gap junction protein connexin 30 (Cx30). OBJECTIVE To disclose the molecular basis of Clouston syndrome in a Lebanese-German family, and also to determine precise expression of Cx30 in normal skin of humans and mice, as well as transcriptional regulation for the GJB6 expression. METHODS We searched for mutations in the GJB6 gene using DNA of the family members with Clouston syndrome. We performed immunostaining to localize the Cx30 expression in normal human skin and mouse embryos. In addition, we did a series of in vitro studies to investigate if the GJB6 could be a direct transcriptional target gene of p63. RESULTS We identified a recurrent heterozygous mutation c.31G>C (p.Gly11Arg) in the GJB6 gene in the Lebanese-German family with Clouston syndrome. Immunostaining in normal human skin sections demonstrated predominant expression of Cx30 in hair follicles, nails, and palmoplantar epidermis, which partially overlapped with p63 expression. We also showed co-expression of Cx30 and p63 in developing mouse hair follicles and nail units. In cultured cells, the GJB6 expression was significantly upregulated by ΔNp63α isoform. Further in vitro analyses suggested that ΔNp63α was potentially involved in the GJB6 expression via binding to the sequences in intron 1 of the GJB6 gene. CONCLUSION Our data further underscore the crucial roles of Cx30 in morphogenesis and development of skin and its appendages.
Collapse
Affiliation(s)
- Atsushi Fujimoto
- Laboratory of Genetic Skin Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ben Khalifa Y, Teissier S, Tan MKM, Phan QT, Daynac M, Wong WQ, Thierry F. The human papillomavirus E6 oncogene represses a cell adhesion pathway and disrupts focal adhesion through degradation of TAp63β upon transformation. PLoS Pathog 2011; 7:e1002256. [PMID: 21980285 PMCID: PMC3182928 DOI: 10.1371/journal.ppat.1002256] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022] Open
Abstract
Cervical carcinomas result from cellular transformation by the human papillomavirus (HPV) E6 and E7 oncogenes which are constitutively expressed in cancer cells. The E6 oncogene degrades p53 thereby modulating a large set of p53 target genes as shown previously in the cervical carcinoma cell line HeLa. Here we show that the TAp63β isoform of the p63 transcription factor is also a target of E6. The p63 gene plays an essential role in skin homeostasis and is expressed as at least six isoforms. One of these isoforms, ΔNp63α, has been found overexpressed in squamous cell carcinomas and is shown here to be constitutively expressed in Caski cells associated with HPV16. We therefore explored the role of p63 in these cells by performing microarray analyses after repression of endogenous E6/E7 expression. Upon repression of the oncogenes, a large set of p53 target genes was found activated together with many p63 target genes related to cell adhesion. However, through siRNA silencing and ectopic expression of various p63 isoforms we demonstrated that TAp63β is involved in activation of this cell adhesion pathway instead of the constitutively expressed ΔNp63α and β. Furthermore, we showed in cotransfection experiments, combined with E6AP siRNA silencing, that E6 induces an accelerated degradation of TAp63β although not through the E6AP ubiquitin ligase used for degradation of p53. Repression of E6 transcription also induces stabilization of endogenous TAp63β in cervical carcinoma cells that lead to an increased concentration of focal adhesions at the cell surface. Consequently, TAp63β is the only p63 isoform suppressed by E6 in cervical carcinoma as demonstrated previously for p53. Down-modulation of focal adhesions through disruption of TAp63β therefore appears as a novel E6-dependent pathway in transformation. These findings identify a major physiological role for TAp63β in anchorage independent growth that might represent a new critical pathway in human carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Qi Wong
- Institute of Medical Biology, A*STAR, Singapore
| | | |
Collapse
|
13
|
Abstract
The transcription factor p63 is essential for the formation of the epidermis and other stratifying epithelia. This is clearly demonstrated by the severe abnormality of p63-deficient mice and by the development of certain types of ectodermal dysplasias in humans as a result of p63 mutations. Investigation of the in vivo functions of p63 is complicated by the occurrence of 10 different splicing isoforms and by its interaction with the other family members, p53 and p73. In vitro and in vivo models have been used to unravel the functions of p63 and its different isoforms, but the results or their interpretation are often contradictory. This review focuses on what mammalian in vivo models and patient studies have taught us in the last 10 years.
Collapse
Affiliation(s)
- Hans Vanbokhoven
- Department of Human Genetics, Molecular Neurogenetics Unit, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Du Z, Li J, Wang L, Bian C, Wang Q, Liao L, Dou X, Bian X, Zhao RC. Overexpression of ΔNp63α induces a stem cell phenotype in MCF7 breast carcinoma cell line through the Notch pathway. Cancer Sci 2010; 101:2417-24. [PMID: 20950370 PMCID: PMC11159882 DOI: 10.1111/j.1349-7006.2010.01700.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To elucidate a role of ΔNp63α in breast cancer, the expression levels of p63, estrogen receptor, progesterone receptor, p53, CK5, cerBb-2, and Notch1 were assayed in 50 clinical breast cancer specimens using immunochemistry. P63 was highly expressed in a subset of breast cancer with basal-like features. We then transfected MCF7 cells with ΔNp63α plasmid, and assayed its cancer stem cell-like features after transfection. Overexpression of ΔNp63α in MCF7 cells increased the percentage of CD24(-) CD44(+) subpopulation from 2.2±0.2% to 25.1±1.5% (P<0.05) and led to increased cancer cell proliferation, clonogenicity, anchorage-independent growth, and the incidence of xenograft grown in vivo. In addition, ΔNp63α overexpressing cancer cells were more drug resistant. Further studies suggested ΔNp63α-induced activation of the Notch pathway may play a role in these effects. Chromatin immunoprecipitation confirmed that ΔNp63α could directly bind to Notch1. In clinical breast cancer specimens, the expression level of p63 was also found to positively correlate with the expression level of Notch1. Our results suggest that ΔNp63α might serve as a tumor initiating transcription factor in breast cancer.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- CD24 Antigen/metabolism
- Cell Line, Tumor
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Humans
- Hyaluronan Receptors/metabolism
- Immunohistochemistry
- Immunophenotyping
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein Binding
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Transfection
- Transplantation, Heterologous
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Zhijian Du
- Institute of Basic Medical Sciences and School of Basic Medicine, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Escamilla-Hernandez R, Chakrabarti R, Romano RA, Smalley K, Zhu Q, Lai W, Halfon MS, Buck MJ, Sinha S. Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. BMC Mol Biol 2010; 11:68. [PMID: 20831799 PMCID: PMC2949602 DOI: 10.1186/1471-2199-11-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022] Open
Abstract
Background The ETS transcription factor Elf5 (also known as ESE-2) is highly expressed in the mammary gland and plays an important role in its development and differentiation. Indeed studies in mice have illustrated an essential role for Elf5 in directing alveologenesis during pregnancy. Although the molecular mechanisms that underlie the developmental block in Elf5 null mammary glands are beginning to be unraveled, this investigation has been hampered by limited information about the identity of Elf5-target genes. To address this shortcoming, in this study we have performed ChIP-cloning experiments to identify the specific genomic segments that are occupied by Elf5 in pregnant mouse mammary glands. Results Sequencing and genomic localization of cis-regulatory regions bound by Elf5 in vivo has identified several potential target genes covering broad functional categories. A subset of these target genes demonstrates higher expression levels in Elf5-null mammary glands suggesting a repressive functional role for this transcription factor. Here we focus on one putative target of Elf5, the Ccnd2 gene that appeared in our screen. We identify a novel Elf5-binding segment upstream of the Ccnd2 gene and demonstrate that Elf5 can transcriptionally repress Ccnd2 by directly binding to the proximal promoter region. Finally, using Elf5-null mammary epithelial cells and mammary glands, we show that loss of Elf5 in vivo leads to up regulation of Ccnd2 and an altered expression pattern in luminal cells. Conclusions Identification of Elf5-targets is an essential first step in elucidating the transcriptional landscape that is shaped by this important regulator. Our studies offer new toolbox in examining the biological role of Elf5 in mammary gland development and differentiation.
Collapse
Affiliation(s)
- Rosalba Escamilla-Hernandez
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nekulová M, Zitterbart K, Sterba J, Veselská R. Analysis of the intracellular localization of p73 N-terminal protein isoforms TAp73 and ∆Np73 in medulloblastoma cell lines. J Mol Histol 2010; 41:267-75. [PMID: 20803057 DOI: 10.1007/s10735-010-9288-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/18/2010] [Indexed: 12/13/2022]
Abstract
The protein homologous to the tumor suppressor p53, p73, has essential roles in development and tumorigenesis. This protein exists in a wide range of isoforms with different, even antagonistic, functions. However, there are virtually no detailed morphological studies analyzing the endogenous expression of p73 isoforms at the cellular level in cancer cells. In this study, we investigated the expression and subcellular distribution of two N-terminal isoforms, TAp73 and ΔNp73, in medulloblastoma cells using immunofluorescence microscopy. Both proteins were observed in all cell lines examined, but differences were noted in their intracellular localization between the reference Daoy cell line and four newly established medulloblastoma cell lines (MBL-03, MBL-06, MBL-07 and MBL-10). In the new cell lines, TAp73 and ΔNp73 were located predominantly in cell nuclei. However, there was heterogeneity in TAp73 distribution in the cells of all MBL cell lines, with the protein located in the nucleus and also in a limited non-random area in the cytoplasm. In a small percentage of cells, we detected cytoplasmic localization of TAp73 only, i.e., nuclear exclusion was observed. Our results provide a basis for future studies on the causes and function of distinct intracellular localization of p73 protein isoforms with respect to different protein-protein interactions in medulloblastoma cells.
Collapse
Affiliation(s)
- Marta Nekulová
- Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic
| | | | | | | |
Collapse
|
17
|
Mouse Homologue of the Schizophrenia Susceptibility Gene ZNF804A as a Target of Hoxc8. J Biomed Biotechnol 2010; 2010:231708. [PMID: 20508826 PMCID: PMC2876248 DOI: 10.1155/2010/231708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 02/10/2010] [Accepted: 03/08/2010] [Indexed: 12/03/2022] Open
Abstract
Using a ChIP-cloning technique, we identified a Zinc finger protein 804a (Zfp804a) as one of the putative Hoxc8 downstream target genes. We confirmed binding of Hoxc8 to an intronic region of Zfp804a by ChIP-PCR in F9 cells as well as in mouse embryos. Hoxc8 upregulated Zfp804a mRNA levels and augmented minimal promoter activity in vitro. In E11.5 mouse embryos, Zfp804a and Hoxc8 were coexpressed. Recent genome-wide studies identified Zfp804a (or ZNF804A in humans) as a plausible marker for schizophrenia, leading us to hypothesize that this embryogenic regulatory control might also exert influence in development of complex traits such as psychosis.
Collapse
|
18
|
Kim S, Choi IF, Quante JR, Zhang L, Roop DR, Koster MI. p63 directly induces expression of Alox12, a regulator of epidermal barrier formation. Exp Dermatol 2010; 18:1016-21. [PMID: 19555433 DOI: 10.1111/j.1600-0625.2009.00894.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epidermal development and differentiation are tightly controlled processes that culminate in the formation of the epidermal barrier. A critical regulator of different stages of epidermal development and differentiation is the transcription factor p63. More specifically, we previously demonstrated elsewhere that p63 is required for both the commitment to stratification and the commitment to terminal differentiation. We now demonstrate that DeltaNp63alpha, the predominantly expressed p63 isoform in postnatal epidermis, also plays a role in the final stages of epidermal differentiation, namely the formation of the epidermal barrier. We found that DeltaNp63alpha contributes to epidermal barrier formation by directly inducing expression of ALOX12, a lipoxygenase which contributes to epidermal barrier function. Our data demonstrate that DeltaNp63alpha directly interacts with the promoter of Alox12 in the developing epidermis. Furthermore, we found that the induction of Alox12 expression by DeltaNp63alpha depends on intact p63 binding sites in the Alox12 promoter. Finally, we found that DeltaNp63alpha can induce Alox12 expression only in differentiating keratinocytes, consistent with the role of ALOX12 in epidermal barrier formation.
Collapse
Affiliation(s)
- Soeun Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ortt K, Sinha S. Chromatin immunoprecipitation for identifying transcription factor targets in keratinocytes. Methods Mol Biol 2010; 585:159-170. [PMID: 19908003 DOI: 10.1007/978-1-60761-380-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Protein-DNA interactions, such as those that are necessary for transcription, are critical in regulating cellular function and behavior. The identification of DNA sequences that interact with transcriptional regulatory proteins is an important step necessary to better understand the molecular mechanisms regulating gene expression. Chromatin immunoprecipitation (ChIP) is one such procedure that provides a snapshot of which transcription factors are occupying specific DNA sequences. This method allows one not only to determine whether a particular genomic region is occupied by transcription factors but also to identify specific regulatory sequences that potentially control expression of their target genes. Recently, ChIP has been combined with both microarray analysis and a new generation of sequencing allowing a true genome-wide examination of transcription factor binding. Identifying the exact DNA sequence that a transcriptional regulatory protein binds, the precise timing of this association, and what other factors are involved in these interactions are important steps that will shed light on the transcriptional control mechanisms that dictate the biology of all cells, including keratinocytes.
Collapse
Affiliation(s)
- Kori Ortt
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
20
|
Pozzi S, Boergesen M, Sinha S, Mandrup S, Mantovani R. Peroxisome proliferator-activated receptor-alpha is a functional target of p63 in adult human keratinocytes. J Invest Dermatol 2009; 129:2376-85. [PMID: 19458633 DOI: 10.1038/jid.2009.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p63 is a master switch in the complex network of signaling pathways controlling the establishment and maintenance of stratified epithelia. We provide evidence that peroxisome proliferator-activated receptor-alpha (PPARalpha), a ligand-activated nuclear receptor that participates in the skin wound healing process, is a target of p63 in human keratinocytes. Silencing of p63 by RNA interference and transient transfections showed that p63 represses PPARalpha through a functional region of promoter B. Chromatin immunoprecipitation analyses indicate that p63 is bound to this region, in the absence of a recognizable p63-binding motif, suggesting that it acts through interactions with other transcription factors (TFs). Distinct PPARalpha transcripts are differentially regulated by p63, indicating a bimodal action in promoter and/or transcription start specification. PPARalpha repression is consistent with lack of expression in the interfollicular epidermis under physiological conditions. Furthermore, we show that PPARalpha is a negative regulator of DeltaNp63alpha levels and that it also binds to a functional region of the DeltaNp63 promoter that lacks PPRE motifs. Therefore, the reciprocal regulation is exerted either through binding to non-consensus sites or through interactions with other DNA-bound TFs. In conclusion, our data establish a link between two TFs intimately involved in the maintenance of skin homeostatic conditions.
Collapse
Affiliation(s)
- Silvia Pozzi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
21
|
An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 2009; 4:e5623. [PMID: 19461998 PMCID: PMC2680039 DOI: 10.1371/journal.pone.0005623] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 04/22/2009] [Indexed: 11/19/2022] Open
Abstract
Background One major defining characteristic of the basal keratinocytes of the stratified epithelium is the expression of the keratin genes K5 and K14. The temporal and spatial expression of these two genes is usually tightly and coordinately regulated at the transcriptional level. This ensures the obligate pairing of K5 and K14 proteins to generate an intermediate filament (IF) network that is essential for the structure and function of the proliferative keratinocytes. Our previous studies have shown that the basal-keratinocyte restricted transcription factor p63 is a direct regulator of K14 gene. Methodology/Principal Findings Here we provide evidence that p63, specifically the ΔN isoform also regulates the expression of the K5 gene by binding to a conserved enhancer within the 5′ upstream region. By using specific antibodies against ΔNp63, we show a concordance in the expression between basal keratins and ΔNp63 proteins but not the TAp63 isoforms during early embryonic skin development. We demonstrate, that contrary to a previous report, transgenic mice expressing ΔNp63 in lung epithelium exhibit squamous metaplasia with de novo induction of K5 and K14 as well as transdifferentiation to the epidermal cell lineage. Interestingly, the in vivo epidermal inductive properties of ΔNp63 do not require the C-terminal SAM domain. Finally, we show that ΔNp63 alone can restore the expression of the basal keratins and reinitiate the failed epidermal differentiation program in the skin of p63 null animals. Significance ΔNp63 is a critical mediator of keratinocyte stratification program and directly regulates the basal keratin genes.
Collapse
|
22
|
Barton CE, Tahinci E, Barbieri CE, Johnson KN, Hanson AJ, Jernigan KK, Chen TW, Lee E, Pietenpol JA. DeltaNp63 antagonizes p53 to regulate mesoderm induction in Xenopus laevis. Dev Biol 2009; 329:130-9. [PMID: 19272371 DOI: 10.1016/j.ydbio.2009.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/25/2009] [Accepted: 02/25/2009] [Indexed: 01/20/2023]
Abstract
p63, a homolog of the tumor suppressor p53, is critical for the development and maintenance of complex epithelia. The developmentally regulated p63 isoform, DeltaNp63, can act as a transcriptional repressor, but the link between the transcriptional functions of p63 and its biological roles is unclear. Based on our initial finding that the mesoderm-inducing factor activin A is suppressed by DeltaNp63 in human keratinocytes, we investigated the role of DeltaNp63 in regulating mesoderm induction during early Xenopus laevis development. We find that down-regulation of DeltaNp63 by morpholino injection in the early Xenopus embryo potentiates mesoderm formation whereas ectopic expression of DeltaNp63 inhibits mesoderm formation. Furthermore, we show that mesodermal induction after down-regulation of DeltaNp63 is dependent on p53. We propose that a key function for p63 in defining a squamous epithelial phenotype is to actively suppress mesodermal cell fates during early development. Collectively, we show that there is a distinct requirement for different p53 family members during the development of both mesodermal and ectodermal tissues. These findings have implications for the role of p63 and p53 in both development and tumorigenesis of human epithelia.
Collapse
Affiliation(s)
- Christopher E Barton
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ortt K, Raveh E, Gat U, Sinha S. A chromatin immunoprecipitation screen in mouse keratinocytes reveals Runx1 as a direct transcriptional target of DeltaNp63. J Cell Biochem 2008; 104:1204-19. [PMID: 18275068 DOI: 10.1002/jcb.21700] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Development of the skin epidermis and appendages such as hair follicles involves coordinated processes of keratinocyte proliferation and differentiation. The transcription factor p63 plays a critical role in these steps as evident by a complete lack of these structures in p63 null mice. The p63 gene encodes for two proteins TAp63 and DeltaNp63, the latter being the more prevalent and dominant isoform expressed in keratinocytes. Although numerous p63 target genes have been identified, these studies have been limited to transformed human keratinocyte cell lines. Here, we have employed a genomic screening approach of chromatin immunoprecipitation (ChIP) coupled with an enrichment strategy to identify DeltaNp63 response elements in primary mouse keratinocytes. Analysis of p63-ChIP-derived DNA segments has revealed more than 100 potential target genes including novel as well as mouse counterparts of established human p63 targets. Among these is Runx1, a transcription factor important for hair follicle development. We demonstrate that DeltaNp63 binds to a p63-response element located within a well-conserved enhancer of the Runx1 gene. Furthermore, siRNA mediated reduction of DeltaNp63 in mouse keratinocytes reduces Runx1 expression. Consistent with this, endogenous Runx1 levels are lower in the skin of p63(+/-) animals as compared to wild type animals. Lastly, we demonstrate that DeltaNp63 and Runx1 are co-expressed in specific compartments of the hair follicle in a dynamic fashion. Taken together our data demonstrate that p63 directly regulates Runx1 gene expression through a novel enhancer element and suggests a role for these two transcription factors in dictating skin keratinocyte and appendage development.
Collapse
Affiliation(s)
- Kori Ortt
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|