1
|
León NY, Le TNU, Garvie A, Wong LH, Bagheri-Fam S, Harley VR. Y chromosome damage underlies testicular abnormalities in ATR-X syndrome. iScience 2024; 27:109629. [PMID: 38616920 PMCID: PMC11015497 DOI: 10.1016/j.isci.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when Atrx was deleted in Sertoli cells (ScAtrxKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects. In control mice, Sertoli cells contain a single novel "GATA4 PML nuclear body (NB)" that contained the transcription factor GATA4, ATRX, DAXX, HP1α, and PH3 and co-localized with the Y chromosome short arm (Yp). ScAtrxKO mice contain single giant GATA4 PML-NBs with frequent DNA double-strand breaks (DSBs) in G2/M-arrested apoptotic Sertoli cells. HP1α and PH3 were absent from giant GATA4 PML-NBs indicating a failure in heterochromatin formation and chromosome condensation. Our data suggest that ATRX protects a Yp region from DNA damage, thereby preventing Sertoli cell death. We discuss Y chromosome damage/decondensation as a mechanism for testicular failure.
Collapse
Affiliation(s)
- Nayla Y. León
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Thanh Nha Uyen Le
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lee H. Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Vincent R. Harley
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
2
|
Yamazaki W, Badescu D, Tan SL, Ragoussis J, Taketo T. Effects of the Sex Chromosome Complement, XX, XO, or XY, on the Transcriptome and Development of Mouse Oocytes During Follicular Growth. Front Genet 2021; 12:792604. [PMID: 34987552 PMCID: PMC8721172 DOI: 10.3389/fgene.2021.792604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
The sex chromosome complement, XX or XY, determines sexual differentiation of the gonadal primordium into a testis or an ovary, which in turn directs differentiation of the germ cells into sperm and oocytes, respectively, in eutherian mammals. When the X monosomy or XY sex reversal occurs, XO and XY females exhibit subfertility and infertility in the mouse on the C57BL/6J genetic background, suggesting that functional germ cell differentiation requires the proper sex chromosome complement. Using these mouse models, we asked how the sex chromosome complement affects gene transcription in the oocytes during follicular growth. An oocyte accumulates cytoplasmic components such as mRNAs and proteins during follicular growth to support subsequent meiotic progression, fertilization, and early embryonic development without de novo transcription. However, how gene transcription is regulated during oocyte growth is not well understood. Our results revealed that XY oocytes became abnormal in chromatin configuration, mitochondria distribution, and de novo transcription compared to XX or XO oocytes near the end of growth phase. Therefore, we compared transcriptomes by RNA-sequencing among the XX, XO, and XY oocytes of 50–60 µm in diameter, which were still morphologically comparable. The results showed that the X chromosome dosage limited the X-linked and autosomal gene transcript levels in XO oocytes whereas many genes were transcribed from the Y chromosome and made the transcriptome in XY oocytes closer to that in XX oocytes. We then compared the transcript levels of 3 X-linked, 3 Y-linked and 2 autosomal genes in the XX, XO, and XY oocytes during the entire growth phase as well as at the end of growth phase using quantitative RT-PCR. The results indicated that the transcript levels of most genes increased with oocyte growth while largely maintaining the X chromosome dosage dependence. Near the end of growth phase, however, transcript levels of some X-linked genes did not increase in XY oocytes as much as XX or XO oocytes, rendering their levels much lower than those in XX oocytes. Thus, XY oocytes established a distinct transcriptome at the end of growth phase, which may be associated with abnormal chromatin configuration and mitochondria distribution.
Collapse
Affiliation(s)
- Wataru Yamazaki
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Dunarel Badescu
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Seang Lin Tan
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, QC, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Teruko Taketo
- Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Department of Biology, McGill University, Montreal, QC, Canada
- *Correspondence: Teruko Taketo,
| |
Collapse
|
3
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
4
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Hsu KW, Chow SY, Su BY, Lu YH, Chen CJ, Chen WL, Cheng MY, Fan HF. The synergy between RSC, Nap1 and adjacent nucleosome in nucleosome remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:129-140. [PMID: 30593928 DOI: 10.1016/j.bbagrm.2018.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
Eukaryotes have evolved a specific strategy to package DNA. The nucleosome is a 147-base-pair DNA segment wrapped around histone core proteins that plays important roles regulating DNA-dependent biosynthesis and gene expression. Chromatin remodeling complexes (RSC, Remodel the Structure of Chromatin) hydrolyze ATP to perturb DNA-histone contacts, leading to nucleosome sliding and ejection. Here, we utilized tethered particle motion (TPM) experiments to investigate the mechanism of RSC-mediated nucleosome remodeling in detail. We observed ATP-dependent RSC-mediated DNA looping and nucleosome ejection along individual mononucleosomes and dinucleosomes. We found that nucleosome assembly protein 1 (Nap1) enhanced RSC-mediated nucleosome ejection in a two-step disassembly manner from dinucleosomes but not from mononucleosomes. Based on this work, we provide an entire reaction scheme for the RSC-mediated nucleosome remodeling process that includes DNA looping, nucleosome ejection, the influence of adjacent nucleosomes, and the coordinated action between Nap1 and RSC.
Collapse
Affiliation(s)
- Kuan-Wei Hsu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Sih-Yao Chow
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Bo-Yu Su
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Yi-Han Lu
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Cyuan-Ji Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Wen-Ling Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Ming-Yuan Cheng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taiwan.
| |
Collapse
|
6
|
Hirota T, Blakeley P, Sangrithi MN, Mahadevaiah SK, Encheva V, Snijders AP, ElInati E, Ojarikre OA, de Rooij DG, Niakan KK, Turner JMA. SETDB1 Links the Meiotic DNA Damage Response to Sex Chromosome Silencing in Mice. Dev Cell 2018; 47:645-659.e6. [PMID: 30393076 PMCID: PMC6286383 DOI: 10.1016/j.devcel.2018.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/15/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Meiotic synapsis and recombination ensure correct homologous segregation and genetic diversity. Asynapsed homologs are transcriptionally inactivated by meiotic silencing, which serves a surveillance function and in males drives meiotic sex chromosome inactivation. Silencing depends on the DNA damage response (DDR) network, but how DDR proteins engage repressive chromatin marks is unknown. We identify the histone H3-lysine-9 methyltransferase SETDB1 as the bridge linking the DDR to silencing in male mice. At the onset of silencing, X chromosome H3K9 trimethylation (H3K9me3) enrichment is downstream of DDR factors. Without Setdb1, the X chromosome accrues DDR proteins but not H3K9me3. Consequently, sex chromosome remodeling and silencing fail, causing germ cell apoptosis. Our data implicate TRIM28 in linking the DDR to SETDB1 and uncover additional factors with putative meiotic XY-silencing functions. Furthermore, we show that SETDB1 imposes timely expression of meiotic and post-meiotic genes. Setdb1 thus unites the DDR network, asynapsis, and meiotic chromosome silencing.
Collapse
Affiliation(s)
- Takayuki Hirota
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Paul Blakeley
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mahesh N Sangrithi
- KK Women's and Children's Hospital, Department of Reproductive Medicine, Singapore 229899, Singapore; Duke-NUS Graduate Medical School, Singapore 119077, Singapore
| | | | - Vesela Encheva
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Elias ElInati
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Obah A Ojarikre
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands; Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, the Netherlands
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
7
|
Rowland ME, Jiang Y, Beier F, Bérubé NG. Inactivation of hepatic ATRX in Atrx Foxg1cre mice prevents reversal of aging-like phenotypes by thyroxine. Aging (Albany NY) 2018; 10:1223-1238. [PMID: 29883366 PMCID: PMC6046231 DOI: 10.18632/aging.101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/30/2018] [Indexed: 11/25/2022]
Abstract
ATRX is an ATP-dependent chromatin remodeler required for the maintenance of genomic integrity. We previously reported that conditional Atrx ablation in the mouse embryonic forebrain and anterior pituitary using the Foxg1cre driver causes reduced health and lifespan. In these mice, premature aging-like phenotypes were accompanied by low circulating levels of insulin-like growth factor 1 (IGF-1) and thyroxine (T4), hormones that maintain stem cell pools and normal metabolic profiles, respectively. Based on emerging evidence that T4 stimulates expression of IGF-1 in pre-pubertal mice, we tested whether T4 supplementation in Atrx Foxg1cre mice could restore IGF-1 levels and ameliorate premature aging-like phenotypes. Despite restoration of normal serum T4 levels, we did not observe improvements in circulating IGF-1. In the liver, thyroid hormone target genes were differentially affected upon T4 treatment, with Igf1 and several other thyroid hormone responsive genes failing to recover normal expression levels. These findings hinted at Cre-mediated Atrx inactivation in the liver of Atrx Foxg1cre mice, which we confirmed. We conclude that the phenotypes observed in the Atrx Foxg1cre mice can be explained in part by a role of ATRX in the liver to promote T4-mediated Igf1 expression, thus explaining the inefficacy of T4 therapy observed in this study.
Collapse
Affiliation(s)
- Megan E Rowland
- Departments of Paediatrics and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Yan Jiang
- Departments of Paediatrics and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| | - Frank Beier
- Children's Health Research Institute, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Western Bone and Joint Institute, Western University, London, ON, Canada
| | - Nathalie G Bérubé
- Departments of Paediatrics and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Children's Health Research Institute, London, ON, Canada
| |
Collapse
|
8
|
Ho B, Greenlaw K, Al Tuwaijri A, Moussette S, Martínez F, Giorgio E, Brusco A, Ferrero GB, Linhares ND, Valadares ER, Svartman M, Kalscheuer VM, Rodríguez Criado G, Laprise C, Greenwood CMT, Naumova AK. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells. Biol Sex Differ 2018; 9:10. [PMID: 29463315 PMCID: PMC5819645 DOI: 10.1186/s13293-018-0169-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. RESULTS Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. CONCLUSIONS We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.
Collapse
Affiliation(s)
- Bianca Ho
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Abeer Al Tuwaijri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre (MUHC), 1001 Decarie Blvd., Bloc E, Room EM03226, Montreal, Quebec, H4A 3J1, Canada
| | - Francisco Martínez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | | | - Natália D Linhares
- Setor de Citogenética, Laboratório Central do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eugênia R Valadares
- Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Ambulatório de Erros Inatos do Metabolismo, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marta Svartman
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Centre intégré universitaire de santé et services sociaux du Saguenay, Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de santé et de services sociaux de Chicoutimi, Saguenay, Québec, Canada
| | - Celia M T Greenwood
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Montréal, Quebec, Canada
- Departments of Oncology and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
- The Research Institute of the McGill University Health Centre (MUHC), 1001 Decarie Blvd., Bloc E, Room EM03226, Montreal, Quebec, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Magaraki A, van der Heijden G, Sleddens-Linkels E, Magarakis L, van Cappellen WA, Peters AHFM, Gribnau J, Baarends WM, Eijpe M. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017; 10:11. [PMID: 28293300 PMCID: PMC5346203 DOI: 10.1186/s13072-017-0119-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
Background In the nuclei of most mammalian cells, pericentric heterochromatin is characterized by DNA methylation, histone modifications such as H3K9me3 and H4K20me3, and specific binding proteins like heterochromatin-binding protein 1 isoforms (HP1 isoforms). Maintenance of this specialized chromatin structure is of great importance for genome integrity and for the controlled repression of the repetitive elements within the pericentric DNA sequence. Here we have studied histone modifications at pericentric heterochromatin during primordial germ cell (PGC) development using different fixation conditions and fluorescent immunohistochemical and immunocytochemical protocols. Results We observed that pericentric heterochromatin marks, such as H3K9me3, H4K20me3, and HP1 isoforms, were retained on pericentric heterochromatin throughout PGC development. However, the observed immunostaining patterns varied, depending on the fixation method, explaining previous findings of a general loss of pericentric heterochromatic features in PGCs. Also, in contrast to the general clustering of multiple pericentric regions and associated centromeres in DAPI-dense regions in somatic cells, the pericentric regions of PGCs were more frequently organized as individual entities. We also observed a transient enrichment of the chromatin remodeler ATRX in pericentric regions in embryonic day 11.5 (E11.5) PGCs. At this stage, a similar and low level of major satellite repeat RNA transcription was detected in both PGCs and somatic cells. Conclusions These results indicate that in pericentric heterochromatin of mouse PGCs, only minor reductions in levels of some chromatin-associated proteins occur, in association with a transient increase in ATRX, between E11.5 and E13.5. These pericentric heterochromatin regions more frequently contain only a single centromere in PGCs compared to the surrounding soma, indicating a difference in overall organization, but there is no de-repression of major satellite transcription. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0119-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aristea Magaraki
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Godfried van der Heijden
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Erasmus MC, Rotterdam, The Netherlands
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Leonidas Magarakis
- Division of Reproductive Medicine, Department of Obstetrics and Gynecology, Central Hospital of Karlstad, Karlstad, Värmland Sweden
| | | | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.,Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maureen Eijpe
- Department of Developmental Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Nuclear distribution of the chromatin-remodeling protein ATRX in mouse early embryogenesis. Acta Histochem 2017; 119:18-25. [PMID: 27863708 DOI: 10.1016/j.acthis.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
The nucleus of mammalian embryos differs by transcriptional activity at different stages of early development. Here, we studied nuclear distribution of the chromatin-remodeling protein ATRX in pre-implantation mouse embryos. Immunofluorescent staining revealed the changes of ATRX nuclear distribution at the initial stages of early mouse development. At the stage of early zygote, a diffuse ATRX distribution pattern was prevalent. During the course of zygotic genome activation (ZGA), zones of increased ATRX concentration are observed, and they are most expressed in the nuclei of late 2-cell embryos. In the morula stage, the ATRX distribution becomes diffuse again. In zygotes, the patterns of ATRX distribution differ between male and female pronuclei. At all the stages, ATRX concentrates in the DAPI-positive areas of condensed chromatin. The level of colocalization between ATRX and heterochromatin was found the highest at the late 2-cell stage. When transcription was artificially suppressed, the pattern of intranuclear ATRX distribution was mostly determined by the mechanism of inhibitor action rather than the decreased level of transcriptional activity. Thus, the obvious changes of ATRX distribution occur and partially correlate with the main stages of ZGA during mouse early development, but these changes seem to be determined by other processes of structural and functional rearrangements of blastomere nuclei.
Collapse
|
11
|
Heterochromatin and the molecular mechanisms of ‘parent-of-origin’ effects in animals. J Biosci 2016; 41:759-786. [DOI: 10.1007/s12038-016-9650-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
He Q, Kim H, Huang R, Lu W, Tang M, Shi F, Yang D, Zhang X, Huang J, Liu D, Songyang Z. The Daxx/Atrx Complex Protects Tandem Repetitive Elements during DNA Hypomethylation by Promoting H3K9 Trimethylation. Cell Stem Cell 2016; 17:273-86. [PMID: 26340527 DOI: 10.1016/j.stem.2015.07.022] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/14/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
Abstract
In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription and recombination. In some developmental contexts (e.g., preimplantation embryos) DNA is hypomethylated but repetitive elements are not dysregulated, suggesting that alternative protection mechanisms exist. Here we explore the processes involved by investigating the role of the chromatin factors Daxx and Atrx. Using genome-wide binding and transcriptome analysis, we found that Daxx and Atrx have distinct chromatin-binding profiles and are co-enriched at tandem repetitive elements in wild-type mouse ESCs. Global DNA hypomethylation further promoted recruitment of the Daxx/Atrx complex to tandem repeat sequences, including retrotransposons and telomeres. Knockdown of Daxx/Atrx in cells with hypomethylated genomes exacerbated aberrant transcriptional de-repression of repeat elements and telomere dysfunction. Mechanistically, Daxx/Atrx-mediated repression seems to involve Suv39h recruitment and H3K9 trimethylation. Our data therefore suggest that Daxx and Atrx safeguard the genome by silencing repetitive elements when DNA methylation levels are low.
Collapse
Affiliation(s)
- Quanyuan He
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weisi Lu
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengfan Tang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fengtao Shi
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Dong Yang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiya Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junjiu Huang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, SYSU-BCM Joint Center for Biomedical Sciences and Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Acloque H, Bonnet-Garnier A, Mompart F, Pinton A, Yerle-Bouissou M. Sperm nuclear architecture is locally modified in presence of a Robertsonian translocation t(13;17). PLoS One 2013; 8:e78005. [PMID: 24205066 PMCID: PMC3815027 DOI: 10.1371/journal.pone.0078005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/17/2013] [Indexed: 11/19/2022] Open
Abstract
In mammals, the non-random organization of the sperm nucleus supports an early function during embryonic development. Altering this organization may interfere with the zygote development and reduce fertility or prolificity. Thus, rare studies on sperm cells from infertile patients described an altered nuclear organization that may be a cause or a consequence of their respective pathologies. Thereby, chromosomal rearrangements and aneuploidy can be studied not only for their adverse effects on production of normal/balanced gametes at meiosis but also for their possible impact on sperm nuclear architecture and the epigenetic consequences of altered chromosome positioning. We decided to compare the global architecture of sperm nuclei from boars, either with a normal chromosome composition or with a Robertsonian translocation involving chromosomes 13 and 17. We hypothesized that the fusion between these chromosomes may change their spatial organization and we examined to what extend it could also modify the global sperm nuclear architecture. Analysis of telomeres, centromeres and gonosomes repartition does not support a global nuclear disorganization. But specific analysis of chromosomes 13 and 17 territories highlights an influence of chromosome 17 for the positioning of the fused chromosomes within the nucleus. We also observed a specific clustering of centromeres depending of the chromosome subtypes. Altogether our results showed that chromosome fusion does not significantly alter sperm nucleus architecture but suggest that centromere remodelling after chromosome fusion locally impacts chromosome positioning.
Collapse
Affiliation(s)
- Hervé Acloque
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
- * E-mail:
| | - Amélie Bonnet-Garnier
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| | - Florence Mompart
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| | - Alain Pinton
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| | - Martine Yerle-Bouissou
- INRA, UMR444 Génétique Cellulaire, Castanet Tolosan, France
- Université de Toulouse, INP, ENVT, UMR444 Génétique Cellulaire, Toulouse, France
| |
Collapse
|
14
|
Taketo T, Naumova AK. Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse. Chromosoma 2013; 122:337-49. [DOI: 10.1007/s00412-013-0415-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 12/16/2022]
|
15
|
Watson LA, Solomon LA, Li JR, Jiang Y, Edwards M, Shin-ya K, Beier F, Bérubé NG. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. J Clin Invest 2013; 123:2049-63. [PMID: 23563309 DOI: 10.1172/jci65634] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 02/14/2013] [Indexed: 01/02/2023] Open
Abstract
Human ATRX mutations are associated with cognitive deficits, developmental abnormalities, and cancer. We show that the Atrx-null embryonic mouse brain accumulates replicative damage at telomeres and pericentromeric heterochromatin, which is exacerbated by loss of p53 and linked to ATM activation. ATRX-deficient neuroprogenitors exhibited higher incidence of telomere fusions and increased sensitivity to replication stress-inducing drugs. Treatment of Atrx-null neuroprogenitors with the G-quadruplex (G4) ligand telomestatin increased DNA damage, indicating that ATRX likely aids in the replication of telomeric G4-DNA structures. Unexpectedly, mutant mice displayed reduced growth, shortened life span, lordokyphosis, cataracts, heart enlargement, and hypoglycemia, as well as reduction of mineral bone density, trabecular bone content, and subcutaneous fat. We show that a subset of these defects can be attributed to loss of ATRX in the embryonic anterior pituitary that resulted in low circulating levels of thyroxine and IGF-1. Our findings suggest that loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary and causes tissue attrition and other systemic defects similar to those seen in aging.
Collapse
Affiliation(s)
- L Ashley Watson
- Children’s Health Research Institute, London, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Genome-wide DNA methylation analysis in patients with familial ATR-X mental retardation syndrome. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
De La Fuente R, Baumann C, Viveiros MM. Chromatin structure and ATRX function in mouse oocytes. Results Probl Cell Differ 2012; 55:45-68. [PMID: 22918800 DOI: 10.1007/978-3-642-30406-4_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Differentiation of chromatin structure and function during oogenesis is essential to confer the mammalian oocyte with meiotic and developmental potential. Errors in chromosome segregation during female meiosis and subsequent transmission of an abnormal chromosome complement (aneuploidy) to the early conceptus are one of the leading causes of pregnancy loss in women. The chromatin remodeling protein ATRX (α-thalassemia mental retardation X-linked) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres during meiosis. In mammalian oocytes, ATRX binds to centromeric heterochromatin domains where it is required for accurate chromosome segregation. Loss of ATRX function induces abnormal meiotic chromosome morphology, reduces histone H3 phosphorylation, and promotes a high incidence of aneuploidy associated with severely reduced fertility. The presence of centromeric breaks during the transition to the first mitosis in the early embryo indicates that the role of ATRX in chromosome segregation is mediated through an epigenetic mechanism involving the maintenance of chromatin modifications associated with pericentric heterochromatin (PCH) formation and chromosome condensation. This is consistent with the existence of a potential molecular link between centromeric and PCH in the epigenetic control of centromere function and maintenance of chromosome stability in mammalian oocytes. Dissecting the molecular mechanisms of ATRX function during meiosis will have important clinical implications towards uncovering the epigenetic factors contributing to the onset of aneuploidy in the human oocyte.
Collapse
|
18
|
Valadez-Graham V, Yoshioka Y, Velazquez O, Kawamori A, Vázquez M, Neumann A, Yamaguchi M, Zurita M. XNP/dATRX interacts with DREF in the chromatin to regulate gene expression. Nucleic Acids Res 2011; 40:1460-74. [PMID: 22021382 PMCID: PMC3287189 DOI: 10.1093/nar/gkr865] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ATRX gene encodes a chromatin remodeling protein that has two important domains, a helicase/ATPase domain and a domain composed of two zinc fingers called the ADD domain. The ADD domain binds to histone tails and has been proposed to mediate their binding to chromatin. The putative ATRX homolog in Drosophila (XNP/dATRX) has a conserved helicase/ATPase domain but lacks the ADD domain. In this study, we propose that XNP/dATRX interacts with other proteins with chromatin-binding domains to recognize specific regions of chromatin to regulate gene expression. We report a novel functional interaction between XNP/dATRX and the cell proliferation factor DREF in the expression of pannier (pnr). DREF binds to DNA-replication elements (DRE) at the pnr promoter to modulate pnr expression. XNP/dATRX interacts with DREF, and the contact between the two factors occurs at the DRE sites, resulting in transcriptional repression of pnr. The occupancy of XNP/dATRX at the DRE, depends on DNA binding of DREF at this site. Interestingly, XNP/dATRX regulates some, but not all of the genes modulated by DREF, suggesting a promoter-specific role of XNP/dATRX in gene regulation. This work establishes that XNP/dATRX directly contacts the transcriptional activator DREF in the chromatin to regulate gene expression.
Collapse
Affiliation(s)
- Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México Av Universidad 2001, Col Chamilpa 62250, Cuernavaca Mor, México
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bérubé NG. ATRX in chromatin assembly and genome architecture during development and disease. Biochem Cell Biol 2011; 89:435-44. [DOI: 10.1139/o11-038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The regulation of genome architecture is essential for a variety of fundamental cellular phenomena that underlie the complex orchestration of mammalian development. The ATP-dependent chromatin remodeling protein ATRX is emerging as a key regulatory component of nucleosomal dynamics and higher order chromatin conformation. Here we provide an overview of the role of ATRX at chromatin and during development, and discuss recent studies exposing a repertoire of ATRX functions at heterochromatin, in gene regulation, and during mitosis and meiosis. Exciting new progress on several fronts suggest that ATRX operates in histone variant deposition and in the modulation of higher order chromatin structure. Not surprisingly, dysfunction or absence of ATRX protein has devastating consequences on embryonic development and leads to human disease.
Collapse
Affiliation(s)
- Nathalie G. Bérubé
- Victoria Research Laboratories 800 Commissioners Road East London, ON, Canada N6C 2V5
| |
Collapse
|
20
|
De La Fuente R, Baumann C, Viveiros MM. Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease. Reproduction 2011; 142:221-34. [PMID: 21653732 PMCID: PMC3253860 DOI: 10.1530/rep-10-0380] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional differentiation of chromatin structure is essential for the control of gene expression, nuclear architecture, and chromosome stability. Compelling evidence indicates that alterations in chromatin remodeling proteins play an important role in the pathogenesis of human disease. Among these, α-thalassemia mental retardation X-linked protein (ATRX) has recently emerged as a critical factor involved in heterochromatin formation at mammalian centromeres and telomeres as well as facultative heterochromatin on the murine inactive X chromosome. Mutations in human ATRX result in an X-linked neurodevelopmental condition with various degrees of gonadal dysgenesis (ATRX syndrome). Patients with ATRX syndrome may exhibit skewed X chromosome inactivation (XCI) patterns, and ATRX-deficient mice exhibit abnormal imprinted XCI in the trophoblast cell line. Non-random or skewed XCI can potentially affect both the onset and severity of X-linked disease. Notably, failure to establish epigenetic modifications associated with the inactive X chromosome (Xi) results in several conditions that exhibit genomic and chromosome instability such as fragile X syndrome as well as cancer development. Insight into the molecular mechanisms of ATRX function and its interacting partners in different tissues will no doubt contribute to our understanding of the pathogenesis of ATRX syndrome as well as the epigenetic origins of aneuploidy. In turn, this knowledge will be essential for the identification of novel drug targets and diagnostic tools for cancer progression as well as the therapeutic management of global epigenetic changes commonly associated with malignant neoplastic transformation.
Collapse
Affiliation(s)
- Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
21
|
Tang P, Frankenberg S, Argentaro A, Graves JM, Familari M. Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function. BMC Res Notes 2011; 4:200. [PMID: 21676266 PMCID: PMC3144453 DOI: 10.1186/1756-0500-4-200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 06/15/2011] [Indexed: 12/18/2022] Open
Abstract
Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs) in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.
Collapse
Affiliation(s)
- Paisu Tang
- Department of Zoology, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
22
|
Dhayalan A, Tamas R, Bock I, Tattermusch A, Dimitrova E, Kudithipudi S, Ragozin S, Jeltsch A. The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of K4 and K9. Hum Mol Genet 2011; 20:2195-203. [PMID: 21421568 DOI: 10.1093/hmg/ddr107] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mutations in the ATRX protein are associated with the alpha-thalassemia and mental retardation X-linked syndrome (ATR-X). Almost half of the disease-causing mutations occur in its ATRX-Dnmt3-Dnmt3L (ADD) domain. By employing peptide arrays, chromatin pull-down and peptide binding assays, we show specific binding of the ADD domain to H3 histone tail peptides containing H3K9me3. Peptide binding was disrupted by the presence of the H3K4me3 and H3K4me2 modification marks indicating that the ATRX-ADD domain has a combined readout of these two important marks (absence of H3K4me2 and H3K4me3 and presence of H3K9me3). Disease-causing mutations reduced ATRX-ADD binding to H3 tail peptides. ATRX variants, which fail in the H3K9me3 interaction, show a loss of heterochromatic localization in cells, which indicates the chromatin targeting function of the ADD domain of ATRX. Disruption of H3K9me3 binding may be a general pathogenicity pathway of ATRX mutations in the ADD domain which may explain the clustering of disease mutations in this part of the ATRX protein.
Collapse
Affiliation(s)
- Arunkumar Dhayalan
- Biochemistry Laboratory, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Baumann C, Viveiros MM, De La Fuente R. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo. PLoS Genet 2010; 6:e1001137. [PMID: 20885787 PMCID: PMC2944790 DOI: 10.1371/journal.pgen.1001137] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 08/24/2010] [Indexed: 01/10/2023] Open
Abstract
The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA–containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis. The transmission of an abnormal chromosome complement from the gametes to the early embryo, a condition called aneuploidy, is a major cause of congenital birth defects and pregnancy loss. Human embryos are particularly susceptible to aneuploidy, which in the majority of cases is the result of abnormal meiosis in the female gamete. However, the molecular mechanisms involved in the onset of aneuploidy in mammalian oocytes are not fully understood. We show here that, the α-thalassemia/mental retardation X-linked protein (ATRX) is essential for the maintenance of chromosome stability during female meiosis. ATRX is required to recruit the transcriptional regulator DAXX to pericentric heterochromatin at prophase I of meiosis. Notably, lack of ATRX function at the metaphase II stage interferes with the establishment of chromatin modifications associated with chromosome condensation leading to segregation defects, chromosome fragmentation, and severely reduced fertility. Our results provide direct evidence for a role of ATRX in the regulation of pericentric heterochromatin structure and function in mammalian oocytes and have important implications for our understanding of the epigenetic factors contributing to the onset of aneuploidy in the female gamete.
Collapse
Affiliation(s)
- Claudia Baumann
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Maria M. Viveiros
- Department of Animal Biology, Center for Animal Transgenesis and Germ Cell Research, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
| | - Rabindranath De La Fuente
- Female Germ Cell Biology Group, Department of Clinical Studies, University of Pennsylvania, Kennett Square, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
24
|
Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci U S A 2010; 107:14075-80. [PMID: 20651253 DOI: 10.1073/pnas.1008850107] [Citation(s) in RCA: 621] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The histone variant H3.3 is implicated in the formation and maintenance of specialized chromatin structure in metazoan cells. H3.3-containing nucleosomes are assembled in a replication-independent manner by means of dedicated chaperone proteins. We previously identified the death domain associated protein (Daxx) and the alpha-thalassemia X-linked mental retardation protein (ATRX) as H3.3-associated proteins. Here, we report that the highly conserved N terminus of Daxx interacts directly with variant-specific residues in the H3.3 core. Recombinant Daxx assembles H3.3/H4 tetramers on DNA templates, and the ATRX-Daxx complex catalyzes the deposition and remodeling of H3.3-containing nucleosomes. We find that the ATRX-Daxx complex is bound to telomeric chromatin, and that both components of this complex are required for H3.3 deposition at telomeres in murine embryonic stem cells (ESCs). These data demonstrate that Daxx functions as an H3.3-specific chaperone and facilitates the deposition of H3.3 at heterochromatin loci in the context of the ATRX-Daxx complex.
Collapse
|
25
|
Regulation of ICP0-null mutant herpes simplex virus type 1 infection by ND10 components ATRX and hDaxx. J Virol 2010; 84:4026-40. [PMID: 20147399 DOI: 10.1128/jvi.02597-09] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) immediate-early gene product ICP0 activates lytic infection and relieves cell-mediated repression of viral gene expression. This repression is conferred by preexisting cellular proteins and is commonly referred to as intrinsic antiviral resistance or intrinsic defense. PML and Sp100, two core components of nuclear substructures known as ND10 or PML nuclear bodies, contribute to intrinsic resistance, but it is clear that other proteins must also be involved. We have tested the hypothesis that additional ND10 factors, particularly those that are involved in chromatin remodeling, may have roles in intrinsic resistance against HSV-1 infection. The two ND10 component proteins investigated in this report are ATRX and hDaxx, which are known to interact with each other and comprise components of a repressive chromatin-remodeling complex. We generated stable cell lines in which endogenous ATRX or hDaxx expression is severely suppressed by RNA interference. We found increases in both gene expression and plaque formation induced by ICP0-null mutant HSV-1 in both ATRX- and hDaxx-depleted cells. Reconstitution of wild-type hDaxx expression reversed the effects of hDaxx depletion, but reconstitution with a mutant form of hDaxx unable to interact with ATRX did not. Our results suggest that ATRX and hDaxx act as a complex that contributes to intrinsic antiviral resistance to HSV-1 infection, which is counteracted by ICP0.
Collapse
|
26
|
Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8:1056-72. [PMID: 19833297 DOI: 10.1016/s1474-4422(09)70262-5] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic mechanisms such as DNA methylation and modifications to histone proteins regulate high-order DNA structure and gene expression. Aberrant epigenetic mechanisms are involved in the development of many diseases, including cancer. The neurological disorder most intensely studied with regard to epigenetic changes is Rett syndrome; patients with Rett syndrome have neurodevelopmental defects associated with mutations in MeCP2, which encodes the methyl CpG binding protein 2, that binds to methylated DNA. Other mental retardation disorders are also linked to the disruption of genes involved in epigenetic mechanisms; such disorders include alpha thalassaemia/mental retardation X-linked syndrome, Rubinstein-Taybi syndrome, and Coffin-Lowry syndrome. Moreover, aberrant DNA methylation and histone modification profiles of discrete DNA sequences, and those at a genome-wide level, have just begun to be described for neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and in other neurological disorders such as multiple sclerosis, epilepsy, and amyotrophic lateral sclerosis. In this Review, we describe epigenetic changes present in neurological diseases and discuss the therapeutic potential of epigenetic drugs, such as histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Catalonia, Spain
| | | | | |
Collapse
|
27
|
Abstract
The packaging of chromosomal DNA by nucleosomes condenses and organizes the genome, but occludes many regulatory DNA elements. However, this constraint also allows nucleosomes and other chromatin components to actively participate in the regulation of transcription, chromosome segregation, DNA replication, and DNA repair. To enable dynamic access to packaged DNA and to tailor nucleosome composition in chromosomal regions, cells have evolved a set of specialized chromatin remodeling complexes (remodelers). Remodelers use the energy of ATP hydrolysis to move, destabilize, eject, or restructure nucleosomes. Here, we address many aspects of remodeler biology: their targeting, mechanism, regulation, shared and unique properties, and specialization for particular biological processes. We also address roles for remodelers in development, cancer, and human syndromes.
Collapse
Affiliation(s)
- Cedric R Clapier
- Howard Hughes Medical Institute, Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
28
|
Tang P, Argentaro A, Pask AJ, O'Donnell L, Marshall-Graves J, Familari M, Harley VR. Localization of the chromatin remodelling protein, ATRX in the adult testis. J Reprod Dev 2009; 57:317-21. [PMID: 19444003 DOI: 10.1262/jrd.20221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in ATRX (alpha-thalassaemia and mental retardation on the X-chromosome) can give rise to ambiguous or female genitalia in XY males, implying a role for ATRX in testicular development. Studies on ATRX have mainly focused on its crucial role in brain development and α-globin regulation; however, little is known about its function in sexual differentiation and its expression in the adult testis. Here we show that the ATRX protein is present in adult human and rat testis and is expressed in the somatic cells; Sertoli, Leydig, and peritubular myoid cells, and also in germ cells; spermatogonia and early meiotic spermatocytes. The granular pattern of ATRX staining is consistent with that observed in other cell-types and suggests a role in chromatin regulation. The findings suggest that ATRX in humans may play a role in adult spermatogenesis as well as in testicular development.
Collapse
Affiliation(s)
- Paisu Tang
- Prince Henry's Institute of Medical Research, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Tsend-Ayush E, Lim SL, Pask AJ, Hamdan DDM, Renfree MB, Grützner F. Characterisation of ATRX, DMRT1, DMRT7 and WT1 in the platypus (Ornithorhynchus anatinus). Reprod Fertil Dev 2009; 21:985-91. [DOI: 10.1071/rd09090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/28/2009] [Indexed: 11/23/2022] Open
Abstract
One of the most puzzling aspects of monotreme reproductive biology is how they determine sex in the absence of the SRY gene that triggers testis development in most other mammals. Although monotremes share a XX female/XY male sex chromosome system with other mammals, their sex chromosomes show homology to the chicken Z chromosome, including the DMRT1 gene, which is a dosage-dependent sex determination gene in birds. In addition, monotremes feature an extraordinary multiple sex chromosome system. However, no sex determination gene has been identified as yet on any of the five X or five Y chromosomes and there is very little knowledge about the conservation and function of other known genes in the monotreme sex determination and differentiation pathway. We have analysed the expression pattern of four evolutionarily conserved genes that are important at different stages of sexual development in therian mammals. DMRT1 is a conserved sex-determination gene that is upregulated in the male developing gonad in vertebrates, while DMRT7 is a mammal-specific spermatogenesis gene. ATRX, a chromatin remodelling protein, lies on the therian X but there is a testis-expressed Y-copy in marsupials. However, in monotremes, the ATRX orthologue is autosomal. WT1 is an evolutionarily conserved gene essential for early gonadal formation in both sexes and later in testis development. We show that these four genes in the adult platypus have the same expression pattern as in other mammals, suggesting that they have a conserved role in sexual development independent of genomic location.
Collapse
|
30
|
ATRX marks the inactive X chromosome (Xi) in somatic cells and during imprinted X chromosome inactivation in trophoblast stem cells. Chromosoma 2008; 118:209-22. [PMID: 19005673 DOI: 10.1007/s00412-008-0189-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/06/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
Mammalian X chromosome inactivation (XCI) is an essential mechanism to compensate for dosage imbalances between male and female embryos. Although the molecular pathways are not fully understood, heterochromatinization of the Xi requires the coordinate recruitment of multiple epigenetic marks. Using fluorescence in situ hybridization analysis combined with immunocytochemistry, we demonstrate that the chromatin remodeling protein ATRX decorates the chromatids of a single, late replicating X chromosome in female somatic cells and co-localizes with the bona fide marker of the Xi, macroH2A1.2. Chromatin immunoprecipitation using somatic, embryonic stem (ES) cells and trophoblast stem (TS) cells as model for random and imprinted XCI, respectively, revealed that, in somatic and TS cells, ATRX exhibits a specific association with sequences located within the previously described H3K9me2-hotspot, a region 5' to the X inactive-specific transcript (Xist) locus. While no ATRX-Xi interaction was detectable in undifferentiated ES cells, an enrichment of ATRX was observed after 8 days of differentiation, indicating that ATRX associates with the Xi following the onset of random XCI, consistent with a potential role in maintenance of XCI. These results have important implications regarding a previously described escape from imprinted XCI in ATRX-deficient mice as well as cases of skewed XCI in patients with ATRX syndrome.
Collapse
|
31
|
Human cytomegalovirus protein pp71 displaces the chromatin-associated factor ATRX from nuclear domain 10 at early stages of infection. J Virol 2008; 82:12543-54. [PMID: 18922870 DOI: 10.1128/jvi.01215-08] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (HCMV) tegument protein pp71, encoded by gene UL82, stimulates viral immediate-early (IE) transcription. pp71 interacts with the cellular protein hDaxx at nuclear domain 10 (ND10) sites, resulting in the reversal of hDaxx-mediated repression of viral transcription. We demonstrate that pp71 displaces an hDaxx-binding protein, ATRX, from ND10 prior to any detectable effects on hDaxx itself and that this event contributes to the role of pp71 in alleviating repression. Introduction of pp71 into cells by transfection, infection with a pp71-expressing herpes simplex virus type 1 vector, or by generation of transformed cell lines promoted the rapid relocation of ATRX from ND10 to the nucleoplasm without alteration of hDaxx levels or localization. A pp71 mutant protein unable to interact with hDaxx did not affect the intranuclear distribution of ATRX. Infection with HCMV at a high multiplicity of infection resulted in rapid displacement of ATRX from ND10, the effect being observed maximally by 2 h after adsorption, whereas infection with the UL82-null HCMV mutant ADsubUL82 did not affect ATRX localization even at 7 h postinfection. Cell lines depleted of ATRX by transduction with shRNA-expressing lentiviruses supported increased IE gene expression and virus replication after infection with ADsubUL82, demonstrating that ATRX has a role in repressing IE transcription. The results show that ATRX, in addition to hDaxx, is a component of cellular intrinsic defenses that limit HCMV IE transcription and that displacement of ATRX from ND10 by pp71 is important for the efficient initiation of viral gene expression.
Collapse
|