1
|
Guo S, Feng H, Feng W, Lv G, Chen D, Liu Y, Wu X. Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3216-3225. [PMID: 34106854 DOI: 10.1109/tuffc.2021.3087949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The conventional machine learning algorithm for analyzing ultrasonic signals to detect structural defects necessarily identifies and extracts either time- or frequency-domain features manually, which has problems in reliability and effectiveness. This work proposes a novel approach by combining convolutional neural networks (CNNs) and wavelet transform to analyze the laser-generated ultrasonic signals for detecting the width of subsurface defects accurately. The novelty of this work is to convert the laser ultrasonic signals into the scalograms (images) via wavelet transform, which are subsequently utilized as the image input for the pretrained CNN to extract the defect features automatically to quantify the width of defects, avoiding the necessity and inaccuracy induced by artificial feature selection. The experimentally validated numerical model that simulates the interaction of laser-generated ultrasonic waves with subsurface defects is first established, which is further utilized to generate adequate laser ultrasonic signals for training the CNN model. A total number of 3104 data are obtained from simulation and experiments, with 2480 simulated signals for training the CNN model and the remaining 620 simulated data together with 4 experimental signals for verifying the performance of the proposed algorithm. This approach achieves the prediction accuracy of 98.5% on validation set, particularly with the prediction accuracy of 100% for the four experimental data. This work proves the feasibility and reliability of the proposed method for quantifying the width of subsurface defects and can be further expanded as a universal approach to various other defects detection, such as defect locations and shapes.
Collapse
|
2
|
Dimitrov T, He M, Stickgold R, Prerau MJ. Sleep spindles comprise a subset of a broader class of electroencephalogram events. Sleep 2021; 44:zsab099. [PMID: 33857311 PMCID: PMC8436142 DOI: 10.1093/sleep/zsab099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES Sleep spindles are defined based on expert observations of waveform features in the electroencephalogram (EEG) traces. This is a potentially limiting characterization, as transient oscillatory bursts like spindles are easily obscured in the time domain by higher amplitude activity at other frequencies or by noise. It is therefore highly plausible that many relevant events are missed by current approaches based on traditionally defined spindles. Given their oscillatory structure, we reexamine spindle activity from first principles, using time-frequency activity in comparison to scored spindles. METHODS Using multitaper spectral analysis, we observe clear time-frequency peaks in the sigma (10-16 Hz) range (TFσ peaks). While nearly every scored spindle coincides with a TFσ peak, numerous similar TFσ peaks remain undetected. We therefore perform statistical analyses of spindles and TFσ peaks using manual and automated detection methods, comparing event cooccurrence, morphological similarities, and night-to-night consistency across multiple datasets. RESULTS On average, TFσ peaks have more than three times the rate of spindles (mean rate: 9.8 vs. 3.1 events/minute). Moreover, spindles subsample the most prominent TFσ peaks with otherwise identical spectral morphology. We further demonstrate that detected TFσ peaks have stronger night-to-night rate stability (ρ = 0.98) than spindles (ρ = 0.67), while covarying with spindle rates across subjects (ρ = 0.72). CONCLUSIONS These results provide compelling evidence that traditionally defined spindles constitute a subset of a more generalized class of EEG events. TFσ peaks are therefore a more complete representation of the underlying phenomenon, providing a more consistent and robust basis for future experiments and analyses.
Collapse
Affiliation(s)
- Tanya Dimitrov
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital Department of Medicine, Boston, MA
| | - Mingjian He
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital Department of Medicine, Boston, MA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Robert Stickgold
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Michael J Prerau
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital Department of Medicine, Boston, MA
| |
Collapse
|
3
|
Höller P, Trinka E, Höller Y. MEEGIPS-A Modular EEG Investigation and Processing System for Visual and Automated Detection of High Frequency Oscillations. Front Neuroinform 2019; 13:20. [PMID: 31024284 PMCID: PMC6460903 DOI: 10.3389/fninf.2019.00020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 03/11/2019] [Indexed: 11/21/2022] Open
Abstract
High frequency oscillations (HFOs) are electroencephalographic correlates of brain activity detectable in a frequency range above 80 Hz. They co-occur with physiological processes such as saccades, movement execution, and memory formation, but are also related to pathological processes in patients with epilepsy. Localization of the seizure onset zone, and, more specifically, of the to-be resected area in patients with refractory epilepsy seems to be supported by the detection of HFOs. The visual identification of HFOs is very time consuming with approximately 8 h for 10 min and 20 channels. Therefore, automated detection of HFOs is highly warranted. So far, no software for visual marking or automated detection of HFOs meets the needs of everyday clinical practice and research. In the context of the currently available tools and for the purpose of related local HFO study activities we aimed at converging the advantages of clinical and experimental systems by designing and developing a comprehensive and extensible software framework for HFO analysis that, on the one hand, focuses on the requirements of clinical application and, on the other hand, facilitates the integration of experimental code and algorithms. The development project included the definition of use cases, specification of requirements, software design, implementation, and integration. The work comprised the engineering of component-specific requirements, component design, as well as component- and integration-tests. A functional and tested software package is the deliverable of this activity. The project MEEGIPS, a Modular EEG Investigation and Processing System for visual and automated detection of HFOs, introduces a highly user friendly software that includes five of the most prominent automated detection algorithms. Future evaluation of these, as well as implementation of further algorithms is facilitated by the modular software architecture.
Collapse
Affiliation(s)
- Peter Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Medical Centre and Centre for Cognitive Neuroscience, Paracelsus Medical University, Salzburg, Austria,Department of Psychology, University of Akureyri, Akureyri, Iceland,*Correspondence: Yvonne Höller
| |
Collapse
|
4
|
|
5
|
Houmani N, Vialatte F, Gallego-Jutglà E, Dreyfus G, Nguyen-Michel VH, Mariani J, Kinugawa K. Diagnosis of Alzheimer's disease with Electroencephalography in a differential framework. PLoS One 2018; 13:e0193607. [PMID: 29558517 PMCID: PMC5860733 DOI: 10.1371/journal.pone.0193607] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/14/2018] [Indexed: 11/19/2022] Open
Abstract
This study addresses the problem of Alzheimer’s disease (AD) diagnosis with Electroencephalography (EEG). The use of EEG as a tool for AD diagnosis has been widely studied by comparing EEG signals of AD patients only to those of healthy subjects. By contrast, we perform automated EEG diagnosis in a differential diagnosis context using a new database, acquired in clinical conditions, which contains EEG data of 169 patients: subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, possible Alzheimer’s disease (AD) patients, and patients with other pathologies. We show that two EEG features, namely epoch-based entropy (a measure of signal complexity) and bump modeling (a measure of synchrony) are sufficient for efficient discrimination between these groups. We studied the performance of our methodology for the automatic discrimination of possible AD patients from SCI patients and from patients with MCI or other pathologies. A classification accuracy of 91.6% (specificity = 100%, sensitivity = 87.8%) was obtained when discriminating SCI patients from possible AD patients and 81.8% to 88.8% accuracy was obtained for the 3-class classification of SCI, possible AD and other patients.
Collapse
Affiliation(s)
- Nesma Houmani
- SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, 9 rue Charles Fourier EVRY, France
- * E-mail:
| | - François Vialatte
- UMR CNRS 8249 Brain Plasticity Laboratory, Paris, France
- ESPCI Paris, PSL Research University, Paris, France
| | - Esteve Gallego-Jutglà
- Data and Signal Processing Research Group, U Science Tech, University of Vic–Central University of Catalonia, Vic, Catalonia, Spain
| | | | - Vi-Huong Nguyen-Michel
- AP-HP, DHU FAST, GH Pitié-Salpêtrière-Charles Foix, Functional Exploration Unit of older patients, Ivry-sur-Seine, France
| | - Jean Mariani
- AP-HP, DHU FAST, GH Pitié-Salpêtrière-Charles Foix, Functional Exploration Unit of older patients, Ivry-sur-Seine, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing, Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing, Paris, France
| | - Kiyoka Kinugawa
- AP-HP, DHU FAST, GH Pitié-Salpêtrière-Charles Foix, Functional Exploration Unit of older patients, Ivry-sur-Seine, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Biological Adaptation and Ageing, Paris, France
- CNRS, UMR 8256, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
6
|
Sonification and textification: Proposing methods for classifying unspoken words from EEG signals. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
|
8
|
Gallego-Jutglà E, Solé-Casals J, Vialatte FB, Elgendi M, Cichocki A, Dauwels J. A hybrid feature selection approach for the early diagnosis of Alzheimer’s disease. J Neural Eng 2015; 12:016018. [DOI: 10.1088/1741-2560/12/1/016018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Ghanbari Z, Gharibzadeh S. Synchrony analysis: application in early diagnosis, staging and prognosis of multiple sclerosis. Front Comput Neurosci 2014; 8:73. [PMID: 25100985 PMCID: PMC4104700 DOI: 10.3389/fncom.2014.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/27/2014] [Indexed: 11/21/2022] Open
Affiliation(s)
- Zahra Ghanbari
- Department of Biomedical Engineering, Amirkabir University of Technology Tehran, Iran
| | - Shahriar Gharibzadeh
- Department of Biomedical Engineering, Amirkabir University of Technology Tehran, Iran
| |
Collapse
|
10
|
Garn H, Waser M, Lechner M, Dorfer M, Grossegger D. Robust, automatic real-time monitoring of the time course of the individual alpha frequency in the time and frequency domain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:2227-31. [PMID: 23366366 DOI: 10.1109/embc.2012.6346405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We analyzed three different approaches to automatic real-time monitoring of the time course of individual alpha frequencies (IAFs) of the human electro-encephalograms. Fast Fourier transform and wavelet transform were compared to classical automated cycle counting in the time domain. With fast Fourier and wavelet transform, test results with healthy adult subjects, demented and psychiatric patients revealed typical short-term variations of the instantaneous IAFs of about ± 2 Hz. When cycles were counted in the time domain, however, variations of only ± 1 Hz were recorded. Thus, IAF measurement in the time domain appears to be particularly suitable. We also observed long-term IAF trends that typically amounted to about ± 0.5 to ± 1.0 Hz. Therefore, our hypothesis is that the IAF does not constitute an intra-individual constant but varies with time and cognitive state. Our fully automatic real-time signal-processing procedure includes pre-processing for artifact detection and for localization of segments with synchronized alpha oscillations where the IAF should preferably be measured.
Collapse
Affiliation(s)
- Heinrich Garn
- Austrian Institute of Technology GmbH, Vienna, Austria.
| | | | | | | | | |
Collapse
|
11
|
Vialatte FB, Dauwels J, Maurice M, Musha T, Cichocki A. Improving the specificity of EEG for diagnosing Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:259069. [PMID: 21660242 PMCID: PMC3109519 DOI: 10.4061/2011/259069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/18/2011] [Accepted: 03/28/2011] [Indexed: 12/04/2022] Open
Abstract
Objective. EEG has great potential as a cost-effective screening tool for Alzheimer's disease (AD). However, the specificity of EEG is not yet sufficient to be used in clinical practice. In an earlier study, we presented preliminary results suggesting improved specificity of EEG to early stages of Alzheimer's disease. The key to this improvement is a new method for extracting sparse oscillatory events from EEG signals in the time-frequency domain. Here we provide a more detailed analysis, demonstrating improved EEG specificity for clinical screening of MCI (mild cognitive impairment) patients. Methods. EEG data was recorded of MCI patients and age-matched control subjects, in rest condition with eyes closed. EEG frequency bands of interest were θ (3.5–7.5 Hz), α1 (7.5–9.5 Hz),
α2 (9.5–12.5 Hz), and β
(12.5–25 Hz). The EEG signals were transformed in the time-frequency domain using complex Morlet wavelets; the resulting time-frequency maps are represented by sparse bump models. Results. Enhanced EEG power in the θ
range is more easily detected through sparse bump modeling; this phenomenon explains the improved EEG specificity obtained in our previous studies. Conclusions. Sparse bump modeling yields informative features in EEG signal. These features increase the specificity of EEG for diagnosing AD.
Collapse
|
12
|
Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer's disease based on EEG. Neuroimage 2010; 49:668-93. [PMID: 19573607 DOI: 10.1016/j.neuroimage.2009.06.056] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/08/2009] [Accepted: 06/17/2009] [Indexed: 11/18/2022] Open
Affiliation(s)
- J Dauwels
- Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|