1
|
Mandapati M, Ranjan P. Virtual reality based audio visual brainwave entrainment to improve learning in children with attention deficit hyperactive disorder. APPLIED NEUROPSYCHOLOGY. CHILD 2025:1-15. [PMID: 39847472 DOI: 10.1080/21622965.2025.2455102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Attention deficit/hyperactive disorder is increasing in prevalence among children all over the world which affects the children's communication, learning, and behavior, which in turn affects the quality of life. The depolarization of neurons is modulated by neural stimulation which triggers activity-based mechanisms of neuroplasticity. An external periodic stimulus that can modify the oscillations of the brain through synchronization is called entrainment. In this research virtual reality is combined with brainwave entrainment to improve learning in children with ADHD. The experiment is conducted with 11 subjects diagnosed with ADHD by pediatricians and psychiatrists. Binaural Beats (10 Hz via wired earphones, sine waves) are used for audio, and pulses of light (10 Hz via VR device) are used for visual entrainment. This audio-visual entrainment is done for 20 days with 15 minutes of entrainment per day. EEG was recorded pre and post entrainment sessions using an Emotiv Epoc X device. The analysis revealed an improvement in 8 subjects out of 11 subjects in terms of attention and spatial learning. The overall analysis reveals a significant difference in attention and cognitive ability before and after the AVE sessions in 72% of the subjects. The brain topological map shown also reveals the difference in the brain activity before and after the AVE sessions.
Collapse
Affiliation(s)
- Manasa Mandapati
- School of Interdisciplinary Studies and Research, DY Patil International University (DYPIU), Akurdi, Pune, India
| | - Prabhat Ranjan
- School of Interdisciplinary Studies and Research, DY Patil International University (DYPIU), Akurdi, Pune, India
| |
Collapse
|
2
|
Chen X, Ma R, Zhang W, Zeng GQ, Wu Q, Yimiti A, Xia X, Cui J, Liu Q, Meng X, Bu J, Chen Q, Pan Y, Yu NX, Wang S, Deng ZD, Sack AT, Laughlin MM, Zhang X. Alpha oscillatory activity is causally linked to working memory retention. PLoS Biol 2023; 21:e3001999. [PMID: 36780560 PMCID: PMC9983870 DOI: 10.1371/journal.pbio.3001999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
Although previous studies have reported correlations between alpha oscillations and the "retention" subprocess of working memory (WM), causal evidence has been limited in human neuroscience due to the lack of delicate modulation of human brain oscillations. Conventional transcranial alternating current stimulation (tACS) is not suitable for demonstrating the causal evidence for parietal alpha oscillations in WM retention because of its inability to modulate brain oscillations within a short period (i.e., the retention subprocess). Here, we developed an online phase-corrected tACS system capable of precisely correcting for the phase differences between tACS and concurrent endogenous oscillations. This system permits the modulation of brain oscillations at the target stimulation frequency within a short stimulation period and is here applied to empirically demonstrate that parietal alpha oscillations causally relate to WM retention. Our experimental design included both in-phase and anti-phase alpha-tACS applied to participants during the retention subprocess of a modified Sternberg paradigm. Compared to in-phase alpha-tACS, anti-phase alpha-tACS decreased both WM performance and alpha activity. These findings strongly support a causal link between alpha oscillations and WM retention and illustrate the broad application prospects of phase-corrected tACS.
Collapse
Affiliation(s)
- Xueli Chen
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ru Ma
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Wei Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Ginger Qinghong Zeng
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
| | - Qianying Wu
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Ajiguli Yimiti
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Xinzhao Xia
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science & Technology of China, Hefei, China
| | - Jiangtian Cui
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science & Technology of China, Hefei, China
- School of Optometry and Vision Science, Cardiff University, Cardiff, United Kingdom
| | - Qiongwei Liu
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Xueer Meng
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Junjie Bu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yu Pan
- Shanghai Key Laboratory of Brain-Machine Intelligence for Information Behavior, School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Nancy Xiaonan Yu
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Shouyan Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, USA
| | - Alexander T. Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Xiaochu Zhang
- Department of Radiology, the First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale and School of Life Science, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
- Application Technology Center of Physical Therapy to Brain Disorders, Institute of Advanced Technology, University of Science & Technology of China, Hefei, China
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- * E-mail:
| |
Collapse
|
3
|
Xu G, Fu J, Qi H, Li L, Chen W, Gao Y, Ma T, Ye Z, Li Z. The theory of critical flicker fusion frequency and its application in cataracts. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:29-32. [PMID: 37846427 PMCID: PMC10577820 DOI: 10.1016/j.aopr.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 10/18/2023]
Abstract
Background Due to media opacity, it is usually difficult to accurately evaluate the postoperative visual acuity in cataracts patients. As a small and portable tool, the critical flicker fusion frequency (CFF) device reflects the temporal resolution of visual function and has been widely used in clinical research. However, poor understanding of the technique and equipment limitations have restricted its clinical application in China. Main text There was a decrease in the CFF value in various ophthalmic diseases, indicating that the CFF is sensitive to detect visual functional changes. A number of studies have shown that the CFF test can accurately distinguish patients with simple cataracts from those with cataracts combined with fundus disease, and, as a visual test, it can more accurately predict postoperative visual acuity without being affected by media opacity. This study comprehensive reviews the basic principles of CFF and its application in ophthalmology, especially in cataracts. Conclusions As one of the tools for dynamic visual function detection, the CFF test could help doctors to assess the possible presence of fundus disease in cataracts patients, especially in eyes with dense cataracts, and more precisely provide a reasonable visual prognosis than other available visual tests.
Collapse
Affiliation(s)
- Guangcan Xu
- School of Medicine, Nankai University, Tianjin, China
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Junxia Fu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haolan Qi
- School of Medicine, Nankai University, Tianjin, China
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Linyu Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wenqian Chen
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yi Gao
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Tianju Ma
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zi Ye
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
- The Chinese People's Liberation Army Medical School, Beijing, China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Ophthalmology, The Third Medical Center, The Chinese People's Liberation Army General Hospital, Beijing, China
- The Chinese People's Liberation Army Medical School, Beijing, China
| |
Collapse
|
4
|
Huang Y, Deng Y, Jiang X, Chen Y, Mao T, Xu Y, Jiang C, Rao H. Resting-state occipito-frontal alpha connectome is linked to differential word learning ability in adult learners. Front Neurosci 2022; 16:953315. [PMID: 36188469 PMCID: PMC9521374 DOI: 10.3389/fnins.2022.953315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Adult language learners show distinct abilities in acquiring a new language, yet the underlying neural mechanisms remain elusive. Previous studies suggested that resting-state brain connectome may contribute to individual differences in learning ability. Here, we recorded electroencephalography (EEG) in a large cohort of 106 healthy young adults (50 males) and examined the associations between resting-state alpha band (8-12 Hz) connectome and individual learning ability during novel word learning, a key component of new language acquisition. Behavioral data revealed robust individual differences in the performance of the novel word learning task, which correlated with their performance in the language aptitude test. EEG data showed that individual resting-state alpha band coherence between occipital and frontal regions positively correlated with differential word learning performance (p = 0.001). The significant positive correlations between resting-state occipito-frontal alpha connectome and differential world learning ability were replicated in an independent cohort of 35 healthy adults. These findings support the key role of occipito-frontal network in novel word learning and suggest that resting-state EEG connectome may be a reliable marker for individual ability during new language learning.
Collapse
Affiliation(s)
- Yan Huang
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
- School of Foreign Languages, East China University of Science and Technology, Shanghai, China
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Xiaoming Jiang
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Yiyuan Chen
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
| | - Tianxin Mao
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Yong Xu
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Caihong Jiang
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research, Key Laboratory of Applied Brain and Cognitive Sciences, Shanghai International Studies University, Shanghai, China
- Institute of Linguistics, Shanghai International Studies University, Shanghai, China
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Karatygin NA, Korobeinikova II, Pertsov SS. Influence of Rhythmically Organized Optical Stimulation on the Performance of Human Cognitive Activity and Spatial Characteristics of the EEG Alpha Range. Bull Exp Biol Med 2022; 173:409-414. [DOI: 10.1007/s10517-022-05558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 10/14/2022]
|
6
|
Mankowska ND, Marcinkowska AB, Waskow M, Sharma RI, Kot J, Winklewski PJ. Reply to Vrijdag et al. Comment on “Mankowska et al. Critical Flicker Fusion Frequency: A Narrative Review. Medicina 2021, 57, 1096”. Medicina (B Aires) 2022; 58:medicina58060765. [PMID: 35744028 PMCID: PMC9228208 DOI: 10.3390/medicina58060765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Natalia D. Mankowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: ; Tel./Fax: +48-58-3491515
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
| | - Monika Waskow
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
| | - Rita I. Sharma
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anaesthesiology and Intensive Care, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Pawel J. Winklewski
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
7
|
Korobeinikova II, Karatygin NA, Pertsov SS. Analysis of Endogenous Spectral Power of EEG Alpha-Range Biopotentials during Mnestic Activity under Conditions of Rhythmically Organized Optical Stimulation. Bull Exp Biol Med 2021; 171:695-698. [PMID: 34709519 DOI: 10.1007/s10517-021-05297-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 11/24/2022]
Abstract
We studied the effect of optical stimulation (10 Hz) on the effectiveness of mnestic activity in the n-back task in healthy subjects (n=32). EEG was recorded at all stages of the examination. The absolute values of the spectral power of the 10 Hz frequency (μV2) of the alpha range were calculated. According to the results of the test without optical stimulation, the examinees were divided into groups with high (group 1) and low (group 2) task performance. In the initial state, the spectral power of 10 Hz was significantly higher in group 1 subjects. Under conditions of screen flickering, the results became poorer in group 1 and better in group 2 in comparison with the results under normal conditions. These changes were accompanied by an increase in the spectral power of 10 Hz only in group 2 subjects. These findings can provide the basis for the development of practical recommendations for improving the mnestic functions in patients with consideration for the individual characteristics of their initial EEG.
Collapse
Affiliation(s)
- I I Korobeinikova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - N A Karatygin
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S S Pertsov
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
8
|
Mankowska ND, Marcinkowska AB, Waskow M, Sharma RI, Kot J, Winklewski PJ. Critical Flicker Fusion Frequency: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1096. [PMID: 34684133 PMCID: PMC8537539 DOI: 10.3390/medicina57101096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
This review presents the current knowledge of the usage of critical flicker fusion frequency (CFF) in human and animal model studies. CFF has a wide application in different fields, especially as an indicator of cortical arousal and visual processing. In medicine, CFF may be helpful for diagnostic purposes, for example in epilepsy or minimal hepatic encephalopathy. Given the environmental studies and a limited number of other methods, it is applicable in diving and hyperbaric medicine. Current research also shows the relationship between CFF and other electrophysiological methods, such as electroencephalography. The human eye can detect flicker at 50-90 Hz but reports are showing the possibility to distinguish between steady and modulated light up to 500 Hz. Future research with the use of CFF is needed to better understand its utility and application.
Collapse
Affiliation(s)
- Natalia D. Mankowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
| | - Monika Waskow
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
| | - Rita I. Sharma
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anaesthesiology and Intensive Care, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Pawel J. Winklewski
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Institute of Health Sciences, Pomeranian University in Slupsk, 76-200 Slupsk, Poland;
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
9
|
Pople CB, Meng Y, Li DZ, Bigioni L, Davidson B, Vecchio LM, Hamani C, Rabin JS, Lipsman N. Neuromodulation in the Treatment of Alzheimer's Disease: Current and Emerging Approaches. J Alzheimers Dis 2021; 78:1299-1313. [PMID: 33164935 DOI: 10.3233/jad-200913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuromodulation as a treatment strategy for psychiatric and neurological diseases has grown in popularity in recent years, with the approval of repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression being one such example. These approaches offer new hope in the treatment of diseases that have proven largely intractable to traditional pharmacological approaches. For this reason, neuromodulation is increasingly being explored for the treatment of Alzheimer's disease. However, such approaches have variable, and, in many cases, very limited evidence for safety and efficacy, with most human evidence obtained in small clinical trials. Here we review work in animal models and humans with Alzheimer's disease exploring emerging neuromodulation modalities. Approaches reviewed include deep brain stimulation, transcranial magnetic stimulation, transcranial electrical stimulation, ultrasound stimulation, photobiomodulation, and visual or auditory stimulation. In doing so, we clarify the current evidence for these approaches in treating Alzheimer's disease and identify specific areas where additional work is needed to facilitate their clinical translation.
Collapse
Affiliation(s)
- Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Daniel Z Li
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Luca Bigioni
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Laura M Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
10
|
The steady-state visual evoked potential (SSVEP) reflects the activation of cortical object representations: evidence from semantic stimulus repetition. Exp Brain Res 2020; 239:545-555. [PMID: 33315126 PMCID: PMC7936959 DOI: 10.1007/s00221-020-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
We applied high-density EEG to examine steady-state visual evoked potentials (SSVEPs) during a perceptual/semantic stimulus repetition design. SSVEPs are evoked oscillatory cortical responses at the same frequency as visual stimuli flickered at this frequency. In repetition designs, stimuli are presented twice with the repetition being task irrelevant. The cortical processing of the second stimulus is commonly characterized by decreased neuronal activity (repetition suppression). The behavioral consequences of stimulus repetition were examined in a companion reaction time pre-study using the same experimental design as the EEG study. During the first presentation of a stimulus, we confronted participants with drawings of familiar object images or object words, respectively. The second stimulus was either a repetition of the same object image (perceptual repetition; PR) or an image depicting the word presented during the first presentation (semantic repetition; SR)—all flickered at 15 Hz to elicit SSVEPs. The behavioral study revealed priming effects in both experimental conditions (PR and SR). In the EEG, PR was associated with repetition suppression of SSVEP amplitudes at left occipital and repetition enhancement at left temporal electrodes. In contrast, SR was associated with SSVEP suppression at left occipital and central electrodes originating in bilateral postcentral and occipital gyri, right middle frontal and right temporal gyrus. The conclusion of the presented study is twofold. First, SSVEP amplitudes do not only index perceptual aspects of incoming sensory information but also semantic aspects of cortical object representation. Second, our electrophysiological findings can be interpreted as neuronal underpinnings of perceptual and semantic priming.
Collapse
|
11
|
Jones M, McDermott B, Oliveira BL, O'Brien A, Coogan D, Lang M, Moriarty N, Dowd E, Quinlan L, Mc Ginley B, Dunne E, Newell D, Porter E, Elahi MA, O' Halloran M, Shahzad A. Gamma Band Light Stimulation in Human Case Studies: Groundwork for Potential Alzheimer's Disease Treatment. J Alzheimers Dis 2020; 70:171-185. [PMID: 31156180 PMCID: PMC6700637 DOI: 10.3233/jad-190299] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: It is known that proteins associated with Alzheimer’s disease (AD) pathogenesis are significantly reduced by 40 Hz entrainment in mice. If this were to translate to humans, verifying that such a light stimulus can induce a 40 Hz entrainment response in humans and harnessing insights from these case studies could be one step in the development of a multisensory device to prevent and treat AD. Objective: Verify the inducement of a 40 Hz response in the human brain by a 40 Hz light stimulus and obtain insights that could potentially aid in the development of a multisensory device for the prevention and treatment of AD. Methods: Electroencephalographic brain activity was recorded simultaneously with application of stimulus at different frequencies and intensities. Power spectral densities were analyzed. Results: Entrainment to visual stimuli occurred with the largest response at 40 Hz. The high intensity 40 Hz stimulus caused widespread entrainment. The number of electrodes demonstrating entrainment increased with increasing light intensity. Largest amplitudes for the high intensity 40 Hz stimulus were consistently found at the primary visual cortex. There was a harmonic effect at double the frequency for the 40 Hz stimulus. An eyes-open protocol caused more entrainment than an eyes-closed protocol. Conclusion: It was possible to induce widespread entrainment using a 40 Hz light stimulus in this sample cohort. Insights gleaned from these case studies could potentially aid in the development of a multisensory medical device to prevent and treat AD.
Collapse
Affiliation(s)
- Marggie Jones
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - Barry McDermott
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - Bárbara Luz Oliveira
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland
| | - Aoife O'Brien
- School of Psychology, National University of Ireland Galway, Ireland
| | - Declan Coogan
- School of Psychology, National University of Ireland Galway, Ireland
| | - Mark Lang
- School of Physics, National University of Ireland Galway, Ireland
| | - Niamh Moriarty
- Discipline of Pharmacology, National University of Ireland Galway, Ireland
| | - Eilis Dowd
- Discipline of Pharmacology, National University of Ireland Galway, Ireland
| | - Leo Quinlan
- Discipline of Physiology, National University of Ireland Galway, Ireland
| | - Brian Mc Ginley
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,Departments of Computer Science & Applied Physics, Galway-Mayo Institute of Technology, Ireland
| | - Eoghan Dunne
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - David Newell
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - Emily Porter
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - Muhammad Adnan Elahi
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - Martin O' Halloran
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| | - Atif Shahzad
- Translational Medical Device Lab (TMD Lab), National University of Ireland Galway, Ireland.,School of Electrical & Electronic Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
12
|
Yuan D, Ji X, Hao S, Gestrich JY, Duan W, Wang X, Xiang Y, Yang J, Hu P, Xu M, Liu L, Wei H. Lamina feedback neurons regulate the bandpass property of the flicker-induced orientation response in Drosophila. J Neurochem 2020; 156:59-75. [PMID: 32383496 DOI: 10.1111/jnc.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/28/2022]
Abstract
Natural scenes contain complex visual cues with specific features, including color, motion, flicker, and position. It is critical to understand how different visual features are processed at the early stages of visual perception to elicit appropriate cellular responses, and even behavioral output. Here, we studied the visual orientation response induced by flickering stripes in a novel behavioral paradigm in Drosophila melanogaster. We found that free walking flies exhibited bandpass orientation response to flickering stripes of different frequencies. The most sensitive frequency spectrum was confined to low frequencies of 2-4 Hz. Through genetic silencing, we showed that lamina L1 and L2 neurons, which receive visual inputs from R1 to R6 neurons, were the main components in mediating flicker-induced orientation behavior. Moreover, specific blocking of different types of lamina feedback neurons Lawf1, Lawf2, C2, C3, and T1 modulated orientation responses to flickering stripes of particular frequencies, suggesting that bandpass orientation response was generated through cooperative modulation of lamina feedback neurons. Furthermore, we found that lamina feedback neurons Lawf1 were glutamatergic. Thermal activation of Lawf1 neurons could suppress neural activities in L1 and L2 neurons, which could be blocked by the glutamate-gated chloride channel inhibitor picrotoxin (PTX). In summary, lamina monopolar neurons L1 and L2 are the primary components in mediating flicker-induced orientation response. Meanwhile, lamina feedback neurons cooperatively modulate the orientation response in a frequency-dependent way, which might be achieved through modulating neural activities of L1 and L2 neurons.
Collapse
Affiliation(s)
- Deliang Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Ji
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Julia Yvonne Gestrich
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinwei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuanhang Xiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Pengbo Hu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Mengbo Xu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
13
|
Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc Natl Acad Sci U S A 2019; 116:5747-5755. [PMID: 30833389 DOI: 10.1073/pnas.1815958116] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spike timing is thought to play a critical role in neural computation and communication. Methods for adjusting spike timing are therefore of great interest to researchers and clinicians alike. Transcranial electrical stimulation (tES) is a noninvasive technique that uses weak electric fields to manipulate brain activity. Early results have suggested that this technique can improve subjects' behavioral performance on a wide range of tasks and ameliorate some clinical conditions. Nevertheless, considerable skepticism remains about its efficacy, especially because the electric fields reaching the brain during tES are small, whereas the likelihood of indirect effects is large. Our understanding of its effects in humans is largely based on extrapolations from simple model systems and indirect measures of neural activity. As a result, fundamental questions remain about whether and how tES can influence neuronal activity in the human brain. Here, we demonstrate that tES, as typically applied to humans, affects the firing patterns of individual neurons in alert nonhuman primates, which are the best available animal model for the human brain. Specifically, tES consistently influences the timing, but not the rate, of spiking activity within the targeted brain region. Such effects are frequency- and location-specific and can reach deep brain structures; control experiments show that they cannot be explained by sensory stimulation or other indirect influences. These data thus provide a strong mechanistic rationale for the use of tES in humans and will help guide the development of future tES applications.
Collapse
|
14
|
Ramayya AG, Pedisich I, Levy D, Lyalenko A, Wanda P, Rizzuto D, Baltuch GH, Kahana MJ. Proximity of Substantia Nigra Microstimulation to Putative GABAergic Neurons Predicts Modulation of Human Reinforcement Learning. Front Hum Neurosci 2017; 11:200. [PMID: 28536513 PMCID: PMC5422436 DOI: 10.3389/fnhum.2017.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal firing in the substantia nigra (SN) immediately following reward is thought to play a crucial role in human reinforcement learning. As in Ramayya et al. (2014a) we applied microstimulation in the SN of patients undergoing deep brain stimulation (DBS) for the treatment of Parkinson's disease as they engaged in a two-alternative reinforcement learning task. We obtained microelectrode recordings to assess the proximity of the electrode tip to putative dopaminergic and GABAergic SN neurons and applied stimulation to assess the functional importance of these neuronal populations for learning. We found that the proximity of SN microstimulation to putative GABAergic neurons predicted the degree of stimulation-related changes in learning. These results extend previous work by supporting a specific role for SN GABA firing in reinforcement learning. Stimulation near these neurons appears to dampen the reinforcing effect of rewarding stimuli.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Isaac Pedisich
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Deborah Levy
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Anastasia Lyalenko
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paul Wanda
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Daniel Rizzuto
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
15
|
Rausch M, Zehetleitner M. Should metacognition be measured by logistic regression? Conscious Cogn 2017; 49:291-312. [PMID: 28236748 DOI: 10.1016/j.concog.2017.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 11/30/2022]
Abstract
Are logistic regression slopes suitable to quantify metacognitive sensitivity, i.e. the efficiency with which subjective reports differentiate between correct and incorrect task responses? We analytically show that logistic regression slopes are independent from rating criteria in one specific model of metacognition, which assumes (i) that rating decisions are based on sensory evidence generated independently of the sensory evidence used for primary task responses and (ii) that the distributions of evidence are logistic. Given a hierarchical model of metacognition, logistic regression slopes depend on rating criteria. According to all considered models, regression slopes depend on the primary task criterion. A reanalysis of previous data revealed that massive numbers of trials are required to distinguish between hierarchical and independent models with tolerable accuracy. It is argued that researchers who wish to use logistic regression as measure of metacognitive sensitivity need to control the primary task criterion and rating criteria.
Collapse
Affiliation(s)
- Manuel Rausch
- Katholische Universität Eichstätt-Ingolstadt, Eichstätt, Germany; Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Michael Zehetleitner
- Katholische Universität Eichstätt-Ingolstadt, Eichstätt, Germany; Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
16
|
Schutter DJLG, Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia 2016; 86:110-8. [PMID: 27085766 DOI: 10.1016/j.neuropsychologia.2016.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/19/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Abstract
The assumption that transcranial alternating current stimulation (tACS) enhances perceptual and cognitive ability in healthy volunteers by exposing the brain to exogenous oscillatory electric fields is increasingly finding its way into society and commercial parties. The aim of the present study is to quantify the effects of exogenous oscillatory electric field potentials on neuroenhancement in healthy volunteers. The meta-analysis included fifty-one sham controlled experiments that investigated the effects of tACS on perception and cognitive performance. Results from random effects modelling of the cumulative effect size showed small, but robust perceptual and cognitive enhancement in healthy participants to weak exogenous oscillatory electric field potentials. Analyses of tACS parameters indicate that simultaneous stimulation of the anterior and posterior locations of the scalp at >1mA intensity currently has the highest probability of increasing performance. However, technical and methodological issues currently limit the applicability of tACS in neuroenhancement. Additional research is needed to further evaluate the potential of tACS in perception and cognitive ability, and to establish the contexts and parameters under which tACS is effective.
Collapse
Affiliation(s)
- Dennis J L G Schutter
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| | - Miles Wischnewski
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| |
Collapse
|
17
|
Brokaw K, Tishler W, Manceor S, Hamilton K, Gaulden A, Parr E, Wamsley EJ. Resting state EEG correlates of memory consolidation. Neurobiol Learn Mem 2016; 130:17-25. [PMID: 26802698 DOI: 10.1016/j.nlm.2016.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/11/2016] [Accepted: 01/16/2016] [Indexed: 11/29/2022]
Abstract
Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well.
Collapse
Affiliation(s)
- Kate Brokaw
- Furman University, Department of Psychology, United States
| | - Ward Tishler
- Furman University, Department of Psychology, United States
| | | | - Kelly Hamilton
- Furman University, Department of Psychology, United States
| | - Andrew Gaulden
- Furman University, Department of Psychology, United States
| | - Elaine Parr
- Furman University, Department of Psychology, United States
| | - Erin J Wamsley
- Furman University, Department of Psychology, United States.
| |
Collapse
|
18
|
Kim S, Kim S, Khalid A, Jeong Y, Jeong B, Lee ST, Jung KH, Chu K, Lee SK, Jeon D. Rhythmical Photic Stimulation at Alpha Frequencies Produces Antidepressant-Like Effects in a Mouse Model of Depression. PLoS One 2016; 11:e0145374. [PMID: 26727023 PMCID: PMC4699699 DOI: 10.1371/journal.pone.0145374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/01/2015] [Indexed: 11/27/2022] Open
Abstract
Current therapies for depression consist primarily of pharmacological agents, including antidepressants, and/or psychiatric counseling, such as psychotherapy. However, light therapy has recently begun to be considered as an effective tool for the treatment of the neuropsychiatric behaviors and symptoms of a variety of brain disorders or diseases, including depression. One methodology employed in light therapy involves flickering photic stimulation within a specific frequency range. The present study investigated whether flickering and flashing photic stimulation with light emitting diodes (LEDs) could improve depression-like behaviors in a corticosterone (CORT)-induced mouse model of depression. Additionally, the effects of the flickering and flashing lights on depressive behavior were compared with those of fluoxetine. Rhythmical flickering photic stimulation at alpha frequencies from 9–11 Hz clearly improved performance on behavioral tasks assessing anxiety, locomotor activity, social interaction, and despair. In contrast, fluoxetine treatment did not strongly improve behavioral performance during the same period compared with flickering photic stimulation. The present findings demonstrated that LED-derived flickering photic stimulation more rapidly improved behavioral outcomes in a CORT-induced mouse model of depression compared with fluoxetine. Thus, the present study suggests that rhythmical photic stimulation at alpha frequencies may aid in the improvement of the quality of life of patients with depression.
Collapse
Affiliation(s)
- Shinheun Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Sangwoo Kim
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
| | - Arshi Khalid
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Bumseok Jeong
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Yuseong, Daejeon, Republic of Korea
| | - Soon-Tae Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
| | - Keun-Hwa Jung
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
| | - Kon Chu
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
- * E-mail: (DJ); (KC); (SKL)
| | - Sang Kun Lee
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
- * E-mail: (DJ); (KC); (SKL)
| | - Daejong Jeon
- Laboratory for Neurotherapeutics, Department of Neurology, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital (SNUH), Jongno-gu, Seoul, Republic of Korea
- * E-mail: (DJ); (KC); (SKL)
| |
Collapse
|
19
|
Abstract
OBJECTIVE Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. APPROACH We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. MAIN RESULTS Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. SIGNIFICANCE These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.
Collapse
Affiliation(s)
- Tsvetomira Tsoneva
- Philips Research, High Tech Campus 36, 5656 AE, Eindhoven, The Netherlands. Donders Institute for Brain, Cognition and Behaviour: Centre for Cognition, Radboud University, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands
| | | | | |
Collapse
|
20
|
Schutter DJLG. Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: A systematic review. Neuroimage 2015; 140:83-8. [PMID: 26453929 DOI: 10.1016/j.neuroimage.2015.09.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 01/21/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) applies exogenous oscillatory electric field potentials to entrain neural rhythms and is used to investigate brain-function relationships and its potential to enhance perceptual and cognitive performance. However, due to current spread tACS can cause cutaneous activation of the retina and phosphenes. Several lines of evidence suggest that retinal phosphenes are capable of inducing neural entrainment, making the contributions of central and peripheral stimulation to the effects in the brain difficult to disentangle. In this literature review, the importance of this issue is further illustrated by the fact that photic stimulation can have a direct impact on perceptual and cognitive performance. This leaves open the possibility that peripheral photic stimulation can at least in part explain the central effects that are attributed to tACS. The extent to which phosphene perception contributes to the effects of exogenous oscillatory electric fields in the brain and influence perception and cognitive performance needs to be examined to understand the working mechanisms of tACS in neurophysiology and behaviour.
Collapse
Affiliation(s)
- Dennis J L G Schutter
- Radboud University, Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
21
|
Ioannou CI, Pereda E, Lindsen JP, Bhattacharya J. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise. PLoS One 2015; 10:e0129486. [PMID: 26065708 PMCID: PMC4466486 DOI: 10.1371/journal.pone.0129486] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 05/08/2015] [Indexed: 12/30/2022] Open
Abstract
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.
Collapse
Affiliation(s)
- Christos I Ioannou
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom; Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hanover, Germany
| | - Ernesto Pereda
- Electrical Engineering and Bioengineering Group, Department of Industrial Engineering, University of La Laguna, Tenerife, Spain; Institute of Biomedical Technology (CIBICAN), University of La Laguna, Tenerife, Spain
| | - Job P Lindsen
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| |
Collapse
|
22
|
O'Rourke P, Haarmann HJ, George T, Smaliy A, Grunewald K, Dien J. Hemispheric alpha asymmetry and self-rated originality of ideas. Laterality 2015; 20:685-98. [PMID: 25960194 DOI: 10.1080/1357650x.2015.1037309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The generation of highly original ideas in divergent thinking tasks has been found to be associated with task-related changes in the alpha band. The goal of the current study was to determine if exposure to brainwave entrainment (BWE) at the alpha centre frequency before and during performance of a divergent thinking task would result in increases in task-related, event-related synchrony and the production of more highly original ideas. We found that alpha entrainment interfered with the oscillatory dynamics associated with divergent thinking such that only the control group showed greater right hemispheric engagement. Furthermore, the control group showed greater self-rated originality. These findings provide confirmation of the importance of hemispheric asymmetry in alpha power to successful divergent thinking and indicate that refinements are required in order for BWE to be used effectively to improve divergent thinking performance.
Collapse
Affiliation(s)
- Polly O'Rourke
- a Center for Advanced Study of Language, University of Maryland , College Park , MD , USA
| | | | | | | | | | | |
Collapse
|
23
|
Herrmann CS, Strüber D, Helfrich RF, Engel AK. EEG oscillations: From correlation to causality. Int J Psychophysiol 2015; 103:12-21. [PMID: 25659527 DOI: 10.1016/j.ijpsycho.2015.02.003] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Already in his first report on the discovery of the human EEG in 1929, Berger showed great interest in further elucidating the functional roles of the alpha and beta waves for normal mental activities. Meanwhile, most cognitive processes have been linked to at least one of the traditional frequency bands in the delta, theta, alpha, beta, and gamma range. Although the existing wealth of high-quality correlative EEG data led many researchers to the conviction that brain oscillations subserve various sensory and cognitive processes, a causal role can only be demonstrated by directly modulating such oscillatory signals. In this review, we highlight several methods to selectively modulate neuronal oscillations, including EEG-neurofeedback, rhythmic sensory stimulation, repetitive transcranial magnetic stimulation (rTMS), and transcranial alternating current stimulation (tACS). In particular, we discuss tACS as the most recent technique to directly modulate oscillatory brain activity. Such studies demonstrating the effectiveness of tACS comprise reports on purely behavioral or purely electrophysiological effects, on combination of behavioral effects with offline EEG measurements or on simultaneous (online) tACS-EEG recordings. Whereas most tACS studies are designed to modulate ongoing rhythmic brain activity at a specific frequency, recent evidence suggests that tACS may also modulate cross-frequency interactions. Taken together, the modulation of neuronal oscillations allows to demonstrate causal links between brain oscillations and cognitive processes and to obtain important insights into human brain function.
Collapse
Affiliation(s)
- Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky Universität, 26111 Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität, 26111 Oldenburg, Germany
| | - Daniel Strüber
- Experimental Psychology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky Universität, 26111 Oldenburg, Germany; Research Center Neurosensory Science, Carl von Ossietzky Universität, 26111 Oldenburg, Germany.
| | - Randolph F Helfrich
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
24
|
Abstract
The purpose of this review/opinion paper is to argue that human cognitive neuroscience has focused too little attention on how the brain may use time and time-based coding schemes to represent, process, and transfer information within and across brain regions. Instead, the majority of cognitive neuroscience studies rest on the assumption of functional localization. Although the functional localization approach has brought us a long way toward a basic characterization of brain functional organization, there are methodological and theoretical limitations of this approach. Further advances in our understanding of neurocognitive function may come from examining how the brain performs computations and forms transient functional neural networks using the rich multi-dimensional information available in time. This approach rests on the assumption that information is coded precisely in time but distributed in space; therefore, measures of rapid neuroelectrophysiological dynamics may provide insights into brain function that cannot be revealed using localization-based approaches and assumptions. Space is not an irrelevant dimension for brain organization; rather, a more complete understanding of how brain dynamics lead to behavior dynamics must incorporate how the brain uses time-based coding and processing schemes.
Collapse
Affiliation(s)
- Michael X Cohen
- Department of Psychology, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
25
|
Shigihara Y, Tanaka M, Tsuyuguchi N, Tanaka H, Watanabe Y. Hazardous nature of high-temporal-frequency strobe light stimulation: neural mechanisms revealed by magnetoencephalography. Neuroscience 2010; 166:482-90. [DOI: 10.1016/j.neuroscience.2009.12.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/10/2009] [Accepted: 12/31/2009] [Indexed: 10/20/2022]
|
26
|
Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 2009; 90:418-38. [PMID: 19963032 DOI: 10.1016/j.pneurobio.2009.11.005] [Citation(s) in RCA: 584] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/26/2022]
Abstract
After 40 years of investigation, steady-state visually evoked potentials (SSVEPs) have been shown to be useful for many paradigms in cognitive (visual attention, binocular rivalry, working memory, and brain rhythms) and clinical neuroscience (aging, neurodegenerative disorders, schizophrenia, ophthalmic pathologies, migraine, autism, depression, anxiety, stress, and epilepsy). Recently, in engineering, SSVEPs found a novel application for SSVEP-driven brain-computer interface (BCI) systems. Although some SSVEP properties are well documented, many questions are still hotly debated. We provide an overview of recent SSVEP studies in neuroscience (using implanted and scalp EEG, fMRI, or PET), with the perspective of modern theories about the visual pathway. We investigate the steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation. Next, we describe the SSVEP-BCI paradigm and review recently developed SSVEP-based BCI systems. Lastly, we outline future research directions related to basic and applied aspects of SSVEPs.
Collapse
Affiliation(s)
- François-Benoît Vialatte
- Riken BSI, Laboratory for Advanced Brain Signal Processing, 2-1 Hirosawa, Wako-Shi, Saitama-Ken 351-0128, Japan.
| | | | | | | |
Collapse
|
27
|
Serruya MD, Kahana MJ. Techniques and devices to restore cognition. Behav Brain Res 2008; 192:149-65. [PMID: 18539345 PMCID: PMC3051349 DOI: 10.1016/j.bbr.2008.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 03/03/2008] [Accepted: 04/09/2008] [Indexed: 12/18/2022]
Abstract
Executive planning, the ability to direct and sustain attention, language and several types of memory may be compromised by conditions such as stroke, traumatic brain injury, cancer, autism, cerebral palsy and Alzheimer's disease. No medical devices are currently available to help restore these cognitive functions. Recent findings about the neurophysiology of these conditions in humans coupled with progress in engineering devices to treat refractory neurological conditions imply that the time has arrived to consider the design and evaluation of a new class of devices. Like their neuromotor counterparts, neurocognitive prostheses might sense or modulate neural function in a non-invasive manner or by means of implanted electrodes. In order to paint a vision for future device development, it is essential to first review what can be achieved using behavioral and external modulatory techniques. While non-invasive approaches might strengthen a patient's remaining intact cognitive abilities, neurocognitive prosthetics comprised of direct brain-computer interfaces could in theory physically reconstitute and augment the substrate of cognition itself.
Collapse
Affiliation(s)
- Mijail Demian Serruya
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Gates 3 HUP, Philadelphia, PA 19104-4283, United States.
| | | |
Collapse
|
28
|
Babiloni C, Cassetta E, Binetti G, Tombini M, Del Percio C, Ferreri F, Ferri R, Frisoni G, Lanuzza B, Nobili F, Parisi L, Rodriguez G, Frigerio L, Gurzì M, Prestia A, Vernieri F, Eusebi F, Rossini PM. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer's disease. Eur J Neurosci 2007; 25:3742-57. [PMID: 17610594 DOI: 10.1111/j.1460-9568.2007.05601.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous evidence has shown that resting delta and alpha electroencephalographic (EEG) rhythms are abnormal in patients with Alzheimer's disease (AD) and its potential preclinical stage (mild cognitive impairment, MCI). Here, we tested the hypothesis that these EEG rhythms are correlated with memory and attention in the continuum across MCI and AD. Resting eyes-closed EEG data were recorded in 34 MCI and 53 AD subjects. EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). These sources were correlated with neuropsychological measures such as Rey list immediate recall (word short-term memory), Rey list delayed recall (word medium-term memory), Digit span forward (immediate memory for digits probing focused attention), and Corsi span forward (visuo-spatial immediate memory probing focused attention). A statistically significant negative correlation (Bonferroni corrected, P < 0.05) was observed between Corsi span forward score and amplitude of occipital or temporal delta sources across MCI and AD subjects. Furthermore, a positive correlation was shown between Digit span forward score and occipital alpha 1 sources (Bonferroni corrected, P < 0.05). These results suggest that cortical sources of resting delta and alpha rhythms correlate with neuropsychological measures of immediate memory based on focused attention in the continuum of MCI and AD subjects.
Collapse
Affiliation(s)
- Claudio Babiloni
- Dip. Fisiologia Umana e Farmacologia, Università degli Studi di Roma La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Del Percio C, Marzano N, Tilgher S, Fiore A, Di Ciolo E, Aschieri P, Lino A, Toràn G, Babiloni C, Eusebi F. Pre-stimulus alpha rhythms are correlated with post-stimulus sensorimotor performance in athletes and non-athletes: a high-resolution EEG study. Clin Neurophysiol 2007; 118:1711-20. [PMID: 17581775 DOI: 10.1016/j.clinph.2007.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/03/2007] [Accepted: 04/30/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In this study, we tested the hypothesis that a pre-stimulus brief (1 min) 10-Hz audio-visual flickering stimulation modulates alpha EEG rhythms and cognitive-motor performance in elite athletes and in non-athletes during visuo-spatial demands. METHODS Electroencephalographic (EEG) data were recorded (56 channels; EB-Neuro) in 14 elite fencing athletes and in 14 non-athletes during visuo-spatial-motor demands (i.e. subjects had to react to pictures of fencing and karate attacks). The task was performed after pre-stimulus 15- (placebo) or 10-Hz (experimental) flickering audio-visual stimulation lasting 1 min and after no stimulation (baseline). RESULTS With reference to the baseline condition, only the 10-Hz stimulation induced a negative correlation between pre-stimulus alpha power and reaction time in the fencing athletes and non-athletes as a single group. The higher the enhancement of alpha power before the pictures, the stronger the improvement of the reaction time. The maximum effects were observed in right posterior parietal area (P4 electrode) overlying sensorimotor integrative cortex. Similar results were obtained in a control experiment in which eight elite karate subjects had to react to pictures of karate and basket attacks. CONCLUSIONS The present results suggest that a preliminary 10-Hz sensory stimulation can modulate EEG alpha rhythms and sensorimotor performance in both elite athletes and non-athletes engaged in visuo-spatial-motor demands. SIGNIFICANCE Identification of the EEG state of sporting experts prior to their performance provides a plausible rationale for the modulation of alpha rhythms to enhance sporting performance in athletes and sensorimotor performance in patients to be rehabilitated.
Collapse
Affiliation(s)
- Claudio Del Percio
- Istituto di Medicina e Scienza dello Sport, CONI-Servizi, Via dei Campi Sportivi 46, 00197 Roma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|