1
|
Unal S, Mi R, Musicki B, Hoke A, Burnett AL. Mapping of functional erectogenic nerves on the rat prostate. J Sex Med 2025; 22:217-224. [PMID: 39657061 DOI: 10.1093/jsxmed/qdae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Preservation of erectogenic nerves during radical prostatectomy (RP) is hampered by limited understanding of their precise localization, due to their complex, intertwined paths, and the inherent individual variations across patients. Because erection utilizes a subset of cavernous nerves (CNs) that in response to sexual stimuli reveal phosphorylation of neuronal nitric oxide synthase (nNOS) on its stimulatory site Ser-1412, we hypothesized that delineation of nerves containing phosphorylated (P)-nNOS on Ser-1412 would establish the location of functional erectogenic nerves within the periprostatic region. AIM To identify the distribution and quantity of functional erection-relevant ([P-nNOS]-containing) nerves in the periprostatic area and discriminate them among the CNs distribution. We further evaluated whether functional communication exists between contralateral CNs. METHODS Young adult male Sprague-Dawley rats underwent electrical stimulation of the CNs to induce penile erection via phosphorylation of nNOS on Ser-1412 (6 V for 2 min, n = 6). No stimulation group served as control (n = 6). The prostate and adjacent structures were collected and processed for whole-mount double-staining with TuJ1 antibody (a pan-axonal marker) and P-nNOS (n = 3 for stimulation, n = 3 for no stimulation), or total nNOS and P-nNOS (n = 3 for stimulation, n = 3 for no stimulation), followed by modified optical clearing and microscopic examination. Nerve quantification was done by systematic counting. OUTCOMES Location and quantification of functional erectogenic nerves. RESULTS In the male rat, we obtained a map of P-nNOS-containing nerves in the periprostatic area, which are relevant for penile erection. Only 17.5% of all nerves, and only 28.4% of the total nNOS-containing nerves in the periprostatic region are functionally erectogenic nerves. Furthermore, there is no functional innervation between contralateral (stimulated and non-stimulated) CNs. CLINICAL IMPLICATIONS This basic science study is expected to provide a foundation for subsequent studies at the human level. Understanding the erection-relevant nerve distribution in the periprostatic area is expected to advance nerve-sparing RP at the human level to improve sexual function outcomes. STRENGTHS AND LIMITATIONS This is the first study to describe and quantitate a subset of functional erection-relevant (P-nNOS-containing) nerves in the periprostatic area. Our study differs from previous studies where nerves containing total nNOS were localized without specifying which nerves produce erection. However, because this study comprised a relatively small number of rats, further studies with a bigger sample size or other model animals are warranted. CONCLUSION Only a subset of nerve fibers in the periprostatic region represent functional erectogenic nerves, characterized by the expression of P-nNOS (Ser-1412).
Collapse
Affiliation(s)
- Selman Unal
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- Department of Urology, Ankara Yildirim Beyazit University School of Medicine, Ankara, 06800, Turkey
| | - Ruifa Mi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ahmet Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
2
|
Yang S, Shi W, Liu Q, Song Y, Fang J. Nrf2 enhances the therapeutic efficiency of adipose-derived stem cells in the treatment of neurogenic erectile dysfunction in a rat model. Basic Clin Androl 2023; 33:39. [PMID: 38114903 PMCID: PMC10731878 DOI: 10.1186/s12610-023-00214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Erectile dysfunction (ED) caused by intraoperative nerve injury is a major complication of pelvic surgery. Adipose-derived stem cells (ADSCs) have presented therapeutic potential in a rat model of bilateral cavernous nerve injury (BCNI), while inadequate in vivo viability has largely limited their application. Nuclear factor-E2-related Factor (Nrf2) is a key transcription factor that regulates cellular anti-oxidative stress. In this work, we investigated the effect of Nrf2 expression regulation on the viability of ADSCs, and explore its repair potential in a BCNI rat model. RESULTS The survival time of tert-Butylhydroquinone (tBHQ)-ADSCs in BCNI model increased obviously. In addition, the tBHQ-ADSCs group presented better restoration of major pelvic ganglion (MPG) nerve contents and fibers, better improvement of erectile function, and less penile fibrosis than the other groups. Moreover, the expression of Nrf2 and superoxide dismutase 1 (SOD1) were higher than those of other groups. CONCLUSION Nrf2 could enhance the anti-oxidative stress ability of ADSCs, so as to improve the therapeutic effect of ADSCs on BCNI rat model.
Collapse
Affiliation(s)
- Shangbin Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Wancheng Shi
- Department of Gastrointestinal Surgery, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516621, China
| | - Qianhui Liu
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Yingqiu Song
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Ma X, Yang W, Nie P, Zhang Z, Chen Z, Wei H. Implantation of skin-derived precursor Schwann cells improves erectile function in a bilateral cavernous nerve injury rat model. Basic Clin Androl 2023; 33:11. [PMID: 37198550 DOI: 10.1186/s12610-023-00187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the therapeutic potential of the skin-derived precursor Schwann cells for the treatment of erectile dysfunction in a rat model of bilateral cavernous nerve injury. RESULTS The skin-derived precursor Schwann cells-treatment significantly restored erectile functions, accelerated the recovery of endothelial and smooth muscle tissues in the penis, and promoted nerve repair. The expression of p-Smad2/3 decreased after the treatment, which indicated significantly reduced fibrosis in the corpus cavernosum. CONCLUSIONS Implantation of skin-derived precursor Schwann cells is an effective therapeutic strategy for treating erectile dysfunction induced by bilateral cavernous nerve injury.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Pan Nie
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zhenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
4
|
Matz EL, Terlecki RP. Stem Cell and Gene-Based Therapy for Erectile Dysfunction: Current Status and Future Needs. Urol Clin North Am 2021; 48:611-619. [PMID: 34602180 DOI: 10.1016/j.ucl.2021.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Erectile dysfunction affects an increasing number of men. The mainstays of management include oral medications, local erectogenic agents, and surgical placement of prosthetic devices. Newer technologies such as stem cell and gene therapy have been investigated as a means to restore spontaneous erectile capacity. Mesenchymal stem cells are thought to produce a local immunomodulatory and pro-repair milieu at the area of injury or needed repair. Gene therapy involves targeting the erectogenic pathway to augment factors involved in producing a natural erection. Such therapies are considered experimental and should be used in the setting of a clinical trial with appropriate oversight.
Collapse
Affiliation(s)
- Ethan L Matz
- Department of Urology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Ryan P Terlecki
- Department of Urology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
5
|
Li H, Zhang Z, Fang D, Tang Y, Peng J. Local continuous glial cell derived neurotrophic factor release using osmotic pump promotes parasympathetic nerve rehabilitation in an animal model of cavernous nerve injury induced erectile dysfunction. Transl Androl Urol 2021; 10:258-271. [PMID: 33532315 PMCID: PMC7844500 DOI: 10.21037/tau-20-1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Nerve injury-related erectile dysfunction (ED) is one of the types that respond poorly to conventional ED treatments. Our previous experiments have demonstrated the paracrine of various neurotrophic factors (NTFs) by stem cells or other treatment modalities as a potential mechanism in the recovery of nerve injury-related ED. Glial cell derived neurotrophic factor (GDNF) is one of the essential NTFs for the regeneration of nerve fibers, especially for parasympathetic nerves. The aim of this study is to explore if local continuous GDNF administration is beneficial for the functional and histological recovery of nerve injury induced ED. Methods Eight-week-old male Sprague-Dawley rats were used for this study. Rats were randomly grouped into 5: Sham surgery (Sham), bilateral cavernous nerve injury (BCNI) and placebo treatment, BCNI and 0.1 µg/100 µL GDNF treatment (BCNI+GDNF 0.1), BCNI and 1 µg/100 µL GDNF treatment (BCNI+GDNF 1), BCNI and 10 µg/100 µL GDNF treatment (BCNI+GDNF 10). GDNF was administered using an osmotic pump technique which would deliver GDNF locally and continuously for 28 days without the need for external connections or frequent handling of animals. Recovery of sexual function, nerve fibers regeneration, and expression of neurotrophic receptors were examined and compared among groups after the treatment. Results Local continuous GDNF release treatment increased the average number of intromissions in the sexual behavior test and intracavernous pressure (ICP) in the erectile function test in a dose dependent manner. Osmotic pump implantation induced increased local GDNF concentration and mild inflammatory response. Gene expression of GDNF receptors in major pelvic ganglion (MPG) and nerve regeneration along the urethra were partially promoted by GDNF. These changes were associated with increased nerve fibers especially the parasympathetic nerve fibers in dorsal nerve of penis (DNP) in GDNF treated groups. Conclusions In conclusion, our project illustrated the promising effects of local continuous GDNF administration for the functional and histological recovery of nerve injury-induced ED.
Collapse
Affiliation(s)
- Huixi Li
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Zhichao Zhang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Dong Fang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Yuan Tang
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Peng
- Andrology Center, Department of Urology, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
6
|
Ex Vivo Radiation Leads to Opposing Neurite Growth in Whole Ganglia vs Dissociated Cultured Pelvic Neurons. J Sex Med 2020; 17:1423-1433. [DOI: 10.1016/j.jsxm.2020.04.385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/19/2022]
|
7
|
Yang W, Chen Z, Ma X, Ouyang X, Fang J, Wei H. Co-overexpression of VEGF and GDNF in adipose-derived stem cells optimizes therapeutic effect in neurogenic erectile dysfunction model. Cell Prolif 2020; 53:e12756. [PMID: 31943490 PMCID: PMC7046481 DOI: 10.1111/cpr.12756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives To evaluate the rapid repair potential of adipose‐derived stem cells (ADSCs) co‐overexpressing VEGF and GDNF on bilateral cavernous nerve injury (BCNI) in rat models. Progressive fibrosis of the penis that occurs shortly after BCNI is a key cause of clinical treatment difficulty of erectile dysfunction (ED). Traditional medications are ineffective for ED caused by BCNI. ADSCs have shown therapeutic effects in animal models, but disappointing in clinical treatment suggests that we should explore optimal treatment of it. Materials and methods We extracted ADSCs from rat epididymis. Lentiviral transfection was verified by western blot and immunofluorescence. Thirty‐six SD rats (10 weeks old) were randomly divided into six groups (n = 6 per group): sham surgery, and remaining five BCNI groups transplanted PBS or ADSCs which were genetically modified by vehicle, VEGF (ADSC‐V), GDNF (ADSC‐G), or VEGF&GDNF (ADSC‐G&V) around major pelvic ganglion (MPG). We investigated the therapeutic effects of BCNI rat model which is characterized by ED, penile tissue fibrosis and hypoxia, and lack of nitrogen nerves or vascular atrophy. Results Erectile function was almost recovered after 2 weeks of transplantation of ADSC‐G&V, promoted cavernous nerve repair, prevented penile fibrosis and preserving the vascular endothelium, which was significant differences amongst ADSC‐V or ADSC‐G. Moreover, GM‐ADSCs were detected in MPG and penis, indicating that their participation in repair of target organs and transverse nerves. Conclusions These promising data indicate that ADSCs co‐overexpressed VEGF and GDNF‐induced synergistic effects, make it a potential tool for recovering of erectile function speedily after BCNI.
Collapse
Affiliation(s)
- Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiafeng Fang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
Hu L, Qi S, Zhang K, Fu Q. Essential role of brain-derived neurotrophic factor (bdnf) in diabetic erectile dysfunction. Andrologia 2017; 50. [PMID: 29159909 DOI: 10.1111/and.12924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 01/09/2023] Open
Affiliation(s)
- L. Hu
- Department of Urology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan China
- Department of Urology; Shandong Zaozhuang Municipal Hospital; Zaozhuang China
| | - S. Qi
- Department of Neurology; Shandong Zaozhuang Municipal Hospital; Zaozhuang China
| | - K. Zhang
- Department of Urology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan China
| | - Q. Fu
- Department of Urology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan China
| |
Collapse
|
10
|
May F, Buchner A, Matiasek K, Schlenker B, Stief C, Weidner N. Recovery of erectile function comparing autologous nerve grafts, unseeded conduits, Schwann-cell-seeded guidance tubes and GDNF-overexpressing Schwann cell grafts. Dis Model Mech 2016; 9:1507-1511. [PMID: 27874834 PMCID: PMC5200895 DOI: 10.1242/dmm.026518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
Dissection of the cavernous nerves during radical prostatectomy for prostate cancer eliminates spontaneous erections. Using the rat as an experimental model, we compared the regenerative capacity of autologous nerve grafts and Schwann-cell-seeded nerve guides. After bilateral excision of cavernous nerve segments, cavernous nerves were reconstructed using unseeded silicon tubes, nerve autografts and silicon tubes seeded with either Glial-cell-line-derived (GDNF)-overexpressing or green fluorescent protein (GFP)-expressing Schwann cells (SCs) (16 study nerves per group). Control groups underwent either a sham operation or bilateral excision of cavernous nerve segments without repair. After 12 weeks erectile function was assessed by neurostimulation and intracavernous pressure (ICP) measurement. The reconstructed nerve segments were excised and histologically analyzed. We demonstrated an intact erectile response upon neurostimulation in 25% (4/16) of autologous nerve grafts, in 50% (8/16) of unseeded tubes, in 75% (12/16) of the Schwann-cell-GFP group and in 93.75% (15/16) of the GDNF group. ICP was significantly increased when comparing the Schwann-cell-GFP group with nerve autografts, unseeded conduits and negative controls (P<0.005). In conclusion, Schwann-cell-seeded scaffolds combined with neurotrophic factors are superior to unseeded tubes and autologous nerve grafts. They present a promising therapeutic approach for the repair of erectile nerve gaps.
Collapse
Affiliation(s)
- Florian May
- Department of Urology, Ludwig Maximilians University, Munich 81377, Germany
| | - Alexander Buchner
- Department of Urology, Ludwig Maximilians University, Munich 81377, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Center for Clinical Veterinary Medicine, Ludwig Maximilians University, Munich 80539, Germany
| | - Boris Schlenker
- Department of Urology, Ludwig Maximilians University, Munich 81377, Germany
| | - Christian Stief
- Department of Urology, Ludwig Maximilians University, Munich 81377, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Ruprecht Karls University, Heidelberg 69120, Germany
| |
Collapse
|
11
|
Choe S, Bond CW, Harrington DA, Stupp SI, McVary KT, Podlasek CA. Peptide amphiphile nanofiber hydrogel delivery of sonic hedgehog protein to the cavernous nerve to promote regeneration and prevent erectile dysfunction. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:95-101. [PMID: 27609775 DOI: 10.1016/j.nano.2016.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/22/2016] [Indexed: 11/15/2022]
Abstract
Erectile dysfunction (ED) has high impact on quality of life in prostatectomy, diabetic and aging patients. An underlying mechanism is cavernous nerve (CN) injury, which causes ED in up to 80% of prostatectomy patients. We examine how sonic hedgehog (SHH) treatment with innovative peptide amphiphile nanofiber hydrogels (PA), promotes CN regeneration after injury. SHH and its receptors patched (PTCH1) and smoothened (SMO) are localized in PG neurons and glia. SMO undergoes anterograde transport to signal to downstream targets. With crush injury, PG neurons degenerate and undergo apoptosis. SHH protein decreases, SMO localization changes to the neuronal cell surface, and anterograde transport stops. With SHH treatment SHH is taken up at the injury site and undergoes retrograde transport to PG neurons, allowing SMO transport to occur, and neurons remain intact. SHH treatment prevents neuronal degeneration, maintains neuronal, glial and downstream target signaling, and is significant as a regenerative therapy.
Collapse
Affiliation(s)
- Shawn Choe
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher W Bond
- Department of Allergy/Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | - Samuel I Stupp
- Simpson-Querrey Institute for BioNanotechnology, Department of Chemistry, Department of Materials Science and Engineering, and Biomedical Engineering, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Kevin T McVary
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Carol A Podlasek
- Departments of Urology, Physiology and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Katz EG, Moustafa AA, Heidenberg D, Haney N, Peak T, Lasker GF, Knoedler M, Rittenberg D, Rezk BM, Abd Elmageed ZY, Yafi FA, Sikka S, Abdel-Mageed AB, Hellstrom WJG. Pioglitazone Enhances Survival and Regeneration of Pelvic Ganglion Neurons After Cavernosal Nerve Injury. Urology 2016; 89:76-82. [PMID: 26772642 DOI: 10.1016/j.urology.2015.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/16/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To investigate the effects of pioglitazone on pelvic ganglion neurons in a rat model of bilateral cavernosal nerve crush injury (BCNI), thereby elucidating the actions of pioglitazone in preventing post-prostatectomy neurogenic erectile dysfunction. METHODS Sprague-Dawley rats aged 12 weeks were divided into four groups: (a) sham procedure, (b) BCNI, (c) BCNI + postsurgical pioglitazone, and (d) BCNI + pre and postsurgical pioglitazone (preventive therapy). Preoperative injection of Fluoro-Gold (FG) fluorescent tracer into the cavernosal tissue was performed for retrograde labeling of pelvic ganglion cells. Pelvic ganglia were resected at 2 weeks in all rats and processed for real-time polymerase chain reaction, immunohistochemistry, and Western blot to examine the expression of FG, neuronal nitric oxide synthase, β-III tubulin, neurturin, and glial cell line-derived neurotrophic factor family receptor alpha-2 (GFRα2). RESULTS Animals treated with pre- and postsurgical pioglitazone demonstrated increased staining for FG similar to sham levels. Gene expression of neuronal nitric oxide synthase, neurturin, GFRα2, and β-III tubulin was also upregulated in the group receiving preventive therapy. CONCLUSION Pioglitazone provides a protective effect on pelvic ganglion neurons after BCNI.
Collapse
Affiliation(s)
- Eric G Katz
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Ahmed A Moustafa
- Department of Urology, Tulane University School of Medicine, New Orleans, LA; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Daniel Heidenberg
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Nora Haney
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Taylor Peak
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - George F Lasker
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Margaret Knoedler
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Daniel Rittenberg
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Bashir M Rezk
- Department of Biology, Southern University of New Orleans, New Orleans, LA
| | | | - Faysal A Yafi
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Suresh Sikka
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, LA
| | - Wayne J G Hellstrom
- Department of Urology, Tulane University School of Medicine, New Orleans, LA.
| |
Collapse
|
13
|
Keast JR, Smith-Anttila CJA, Osborne PB. Developing a functional urinary bladder: a neuronal context. Front Cell Dev Biol 2015; 3:53. [PMID: 26389118 PMCID: PMC4555086 DOI: 10.3389/fcell.2015.00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/14/2015] [Indexed: 01/23/2023] Open
Abstract
The development of organs occurs in parallel with the formation of their nerve supply. The innervation of pelvic organs (lower urinary tract, hindgut, and sexual organs) is complex and we know remarkably little about the mechanisms that form these neural pathways. The goal of this short review is to use the urinary bladder as an example to stimulate interest in this question. The bladder requires a healthy mature nervous system to store urine and release it at behaviorally appropriate times. Understanding the mechanisms underlying the construction of these neural circuits is not only relevant to defining the basis of developmental problems but may also suggest strategies to restore connectivity and function following injury or disease in adults. The bladder nerve supply comprises multiple classes of sensory, and parasympathetic or sympathetic autonomic effector (motor) neurons. First, we define the developmental endpoint by describing this circuitry in adult rodents. Next we discuss the innervation of the developing bladder, identifying challenges posed by this area of research. Last we provide examples of genetically modified mice with bladder dysfunction and suggest potential neural contributors to this state.
Collapse
Affiliation(s)
- Janet R Keast
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| | | | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, University of Melbourne Melbourne, VIC, Australia
| |
Collapse
|
14
|
Animal models of erectile dysfunction. J Pharmacol Toxicol Methods 2015; 76:43-54. [PMID: 26279495 DOI: 10.1016/j.vascn.2015.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/02/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022]
Abstract
Erectile dysfunction (ED) is a prevalent male sexual dysfunction with profound adverse effects on the physical and the psychosocial health of men and, subsequently, on their partners. The expanded use of various types of rodent models has produced some advances in the study of ED, and neurophysiological studies using various animal models have provided important insights into human sexual dysfunction. At present, animal models play a key role in exploring and screening novel drugs designed to treat ED.
Collapse
|
15
|
Regeneration of sensory but not motor axons following visceral nerve injury. Exp Neurol 2015; 266:127-42. [DOI: 10.1016/j.expneurol.2015.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/18/2022]
|
16
|
Martínez‐Salamanca JI, La Fuente JM, Fernández A, Martínez‐Salamanca E, Pepe‐Cardoso AJ, Carballido J, Angulo J. Nitrergic Function Is Lost but Endothelial Function Is Preserved in the Corpus Cavernosum and Penile Resistance Arteries of Men after Radical Prostatectomy. J Sex Med 2015; 12:590-9. [DOI: 10.1111/jsm.12801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Hannan JL, Albersen M, Stopak BL, Liu X, Burnett AL, Hoke A, Bivalacqua TJ. Temporal changes in neurotrophic factors and neurite outgrowth in the major pelvic ganglion following cavernous nerve injury. J Neurosci Res 2015; 93:954-63. [PMID: 25644064 DOI: 10.1002/jnr.23553] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/25/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022]
Abstract
Despite nerve-sparing radical prostatectomy, nerve damage and erectile dysfunction (ED) prevail, and preventing neurodegeneration is of great importance. Neurotrophic factors and neurite outgrowth were characterized in major pelvic ganglia (MPG) following bilateral cavernous nerve injury (BCNI). Young male Sprague-Dawley rats underwent sham or BCNI surgery, and the intracavernosal pressure to mean arterial pressure ratio was measured 2, 7, 14, 21, 30, and 60 days following injury (n = 8/group). MPG gene expression (qPCR) and Western blot were performed for glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), neurturin, neurotrophin (NT)-3, NT4, brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor, and activating transcription factor 3 (ATF3). Additional rats were injured, and MPGs were removed 24 hr, 48 hr, 3 days, and 7 days following BCNI (n = 3/group). MPGs were cultured in Matrigel, and neurite outgrowth was measured. Erections were impaired early and improved by 60 days in BCNI rats. GDNF, NGF, BDNF, and ATF3 gene expression was significantly increased and NT3 was decreased in MPGs following BCNI (48 hr to 21 days, P < 0.05). GDNF and NGF protein levels were elevated in 48-hr BCNI rats. MPG neurite outgrowth from 24-hr and 48-hr BCNI was higher than sham (658 ± 19 μm, 607 ± 24 μm, 393 ± 23 μm, respectively, P < 0.05). Further studies examining the roles of neurotrophic factors in modulating signaling pathways may provide therapeutic avenues for neurogenically mediated ED.
Collapse
Affiliation(s)
- Johanna L Hannan
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
18
|
Girard BM, Merriam LA, Tompkins JD, Vizzard MA, Parsons RL. Decrease in neuronal nicotinic acetylcholine receptor subunit and PSD-93 transcript levels in the male mouse MPG after cavernous nerve injury or explant culture. Am J Physiol Renal Physiol 2013; 305:F1504-12. [PMID: 24049141 DOI: 10.1152/ajprenal.00343.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quantitative real-time PCR was used to test whether cavernous nerve injury leads to a decrease in major pelvic ganglia (MPG) neuronal nicotinic ACh receptor (nAChR) subunit and postsynaptic density (PSD)-93 transcript levels. Subunits α3, β4, and α7, commonly expressed in the MPG, were selected for analysis. After 72 h in explant culture, MPG transcript levels for α3, β4, α7, and PSD-93 were significantly depressed. Three days after cavernous nerve axotomy or crush in vivo, transcript levels for α3, β4, and PSD-93, but not for α7, were significantly depressed. Three days after dissection of the cavernous nerve free of underlying tissue and application of a 5-mm lateral stretch (manipulation), transcript levels for α3 and PSD-93 were also significantly decreased. Seven days after all three surgical procedures, α3 transcript levels remained depressed, but PSD-93 transcript levels were still decreased only after axotomy or nerve crush. At 30 days postsurgery, transcript levels for the nAChR subunits and PSD-93 had recovered. ACh-induced currents were significantly smaller in MPG neurons dissociated from 3-day explant cultured ganglia than from those recorded in neurons dissociated from acutely isolated ganglia; this observation provides direct evidence showing that a decrease in nAChR function was coincident with a decrease in nAChR subunit transcript levels. We conclude that a downregulation of nAChR subunit and PSD-93 expression after cavernous nerve injury, or even manipulation, could interrupt synaptic transmission within the MPG and thus contribute to the loss of neural control of urogenital organs after pelvic surgeries.
Collapse
Affiliation(s)
- Beatrice M Girard
- Dept. of Neurological Sciences, College of Medicine, Univ. of Vermont, Burlington, VT 05405.
| | | | | | | | | |
Collapse
|
19
|
Kim SJ, Park SH, Sung YC, Kim SW. Effect of mesenchymal stem cells associated to matrixen on the erectile function in the rat model with bilateral cavernous nerve crushing injury. Int Braz J Urol 2013; 38:833-41. [PMID: 23302404 DOI: 10.1590/1677-553820133806833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2012] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES To evaluate the effect of mesenchymal stem cells (MSCs) and MSCs mixed with Matrixen as a cell carrier on the erectile dysfunction caused by bilateral cavernous nerve crushing injury. MATERIALS AND METHODS White male Sprague-Dawley rats were divided into 4 groups: sham-operated control group (n = 5), bilateral cavernous nerve crushing group (BCNC group, n = 10), BCNC administered with MSCs group (n = 10,1x106 in 20 µL), BCNC administered with Matrixen group (n = 10.1x106 in 20 µL), BCNC administered with MSCs/Matrixen group (n = 10.1x106 in 20 µL). After functional assessment at 4 weeks, major pelvic ganglion (MPG) and penile tissue were collected. Immunofluorescent staining of MPG was performed with PKH26 and Tuj1. Western blot analysis of endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) were done in corpus cavernosum. RESULTS ICP/MAP ratios of BCNC with MSCs and MSCs/Matrixen groups were significantly increased compared with BCNC and BCNC with Matrixen group. Moreover, ICP/MAP ratios of MSCs/Matrixen group were significantly increased compared with BCNC with MSCs group. In MPG, the more implantation of MSCs and increased expression of nerve cells were observed in MSCs/Matrixen group compared with BCNC with MSCs group. Significant increase expression of eNOS and nNOS was also noted in BCNC with MSCs/Matrixen group. CONCLUSION The erectile function was more preserved in MSCs/Matrixen group compared with the administration of MSCs alone in the rats with bilateral cavernous nerve crushing injury. Therefore, we consider that the use of transplant cell carrier such as Matrixen may help the implantation of MSCs and improve the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Su Jin Kim
- Department of Urology, Catholic University of Korea, College of Medicine, Pohang, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Hlaing SM, Garcia LA, Kovanecz I, Martinez RA, Shah S, Artaza JN, Ferrini MG. Sildenafil promotes neuroprotection of the pelvic ganglia neurones after bilateral cavernosal nerve resection in the rat. BJU Int 2012; 111:159-70. [PMID: 22672418 DOI: 10.1111/j.1464-410x.2012.11278.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine the gene expression profile of pelvic ganglia neurones after bilateral cavernosal nerve resection (BCNR) and subsequent treatment with sildenafil in relation to neurotrophic-related pathways. MATERIALS AND METHODS Fisher rats aged 5 months were subjected to BCNR or sham operation and treated with or without sildenafil (20 mg/kg body-weight in drinking water) for 7 days. Total RNA isolated from pelvic ganglia was subjected to reverse transcription and then to quantitative reverse transcriptase-polymerase chain reaction (PCR) with the RAT-neurotrophic array. Results were corroborated by real-time PCR and western blotting. Another set of animals were injected with a fluorescent tracer at the base of the penis, 7 days before BCNR or sham operation, and were sacrificed 7 days after surgery. Sections of pelvic ganglia were used for immunohistochemistry with antibodies against neurturin, neuronal nitric oxide synthase, tyrosine hydroxylase and glial cell line-derived neurotrophic factor receptor α2. RESULTS A down-regulation of the expression of neuronal nitric oxide synthase accompanied by changes in the level of cholinergic neurotrophic factors, such as neurturin and its receptor glial cell line-derived neurotrophic factor receptor α2, artemin, neurotrophin-4 and cilliary neurotrophic factor, was observed 7 days after BCNR in pelvic ganglia neurones. Treatment with sildenafil, starting immediately after surgery, reversed all these changes at a level similar to that in sham-operated animals. CONCLUSIONS Sildenafil treatment promotes changes in the neurotrophic phenotype, leading to a regenerative state of pelvic ganglia neurones. The present study provides a justification for the use of phosphodiesterase 5 inhibitors as a neuroprotective agent after BCNR.
Collapse
Affiliation(s)
- Su M Hlaing
- Department of Internal Medicine, Charles R. Drew University of Medicine & Science, Los Angeles, CA 90059, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Galanin Expression in the Mouse Major Pelvic Ganglia During Explant Culture and Following Cavernous Nerve Transection. J Mol Neurosci 2012; 48:713-20. [DOI: 10.1007/s12031-012-9810-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 11/25/2022]
|
22
|
Nangle MR, Keast JR. Semaphorin 3A inhibits growth of adult sympathetic and parasympathetic neurones via distinct cyclic nucleotide signalling pathways. Br J Pharmacol 2011; 162:1083-95. [PMID: 21054346 DOI: 10.1111/j.1476-5381.2010.01108.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Semaphorin 3A (Sema3A) is an important secreted repulsive guidance factor for many developing neurones. Sema3A continues to be expressed in adulthood, and expression of its receptor, neuropilin-1 (Nrp-1), can be altered by nerve injury. Autonomic neurones innervating the pelvic viscera are particularly susceptible to damage during pelvic surgical procedures, and failure to regenerate or aberrant growth of sympathetic and parasympathetic nerves lead to organ dysfunction. However, it is not known if adult pelvic neurones are potential targets for Sema3A. EXPERIMENTAL APPROACH The effects of Sema3A and activation or inhibition of cyclic nucleotide signalling were assessed in adult rat pelvic ganglion neurones in culture using a growth cone collapse assay. KEY RESULTS Sema3A caused growth cone collapse in both parasympathetic and sympathetic neurones expressing Nrp-1. However, the effect of Sema3A was mediated by distinct cyclic nucleotide signalling pathways in each neurone type. In parasympathetic neurones, cAMP and downstream activation of protein kinase A were required for growth cone collapse. In sympathetic neurones, cGMP was required for Sema3A-induced collapse; cAMP can also cause collapse but was not required. Sema3A-mediated, cGMP-dependent collapse in sympathetic neurones may require activation of cyclic nucleotide-gated ion channels (CNGCs). CONCLUSIONS AND IMPLICATIONS We propose that Sema3A is an important guidance factor for adult pelvic autonomic neurones, and that manipulation of their distinct signalling mechanisms could potentially promote functional selective regeneration or attenuate aberrant growth. To our knowledge, this is also the first study to implicate CNGCs in regulating growth cone dynamics of adult neurones.
Collapse
Affiliation(s)
- M R Nangle
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW, Australia.
| | | |
Collapse
|
23
|
Yoshimura N, Kato R, Chancellor MB, Nelson JB, Glorioso JC. Gene therapy as future treatment of erectile dysfunction. Expert Opin Biol Ther 2010; 10:1305-14. [PMID: 20662742 DOI: 10.1517/14712598.2010.510510] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Erectile dysfunction (ED) is a major men's health problem. Although the high success rate of treating ED by phosphodiesterase 5 (PDE5) inhibitors has been reported, there are a significant number of ED patients who do not respond to currently available treatment modalities. AREAS COVERED IN THIS REVIEW To elucidate the current status of gene therapy applications for ED, gene therapy approaches for ED treatment are reviewed. WHAT THE READER WILL GAIN Gene therapy strategies that can enhance nitric oxide (NO) production or NO-mediated signaling pathways, growth factor-mediated nerve regeneration or K(+) channel activity in the smooth muscle could be promising approaches for the treatment of ED. Although the majority of gene therapy studies are still in the preclinical phase, the first clinical trial using non-viral gene transfer of Ca(2+)-activated, large-conductance K(+) channels into the corpus cavernosum of ED patients showed positive results. TAKE HOME MESSAGE Gene therapy represents an exciting future treatment option for ED, especially for people with severe ED unresponsive to current first-line therapies such as PDE5 inhibitors although the long-term safety of both viral and non-viral gene therapies should be established.
Collapse
Affiliation(s)
- Naoki Yoshimura
- University of Pittsburgh School of Medicine, Department of Urology, Suite 700 Kaufmann Medical Building, 3471 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
24
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
25
|
Harraz A, Shindel AW, Lue TF. Emerging gene and stem cell therapies for the treatment of erectile dysfunction. Nat Rev Urol 2010; 7:143-52. [PMID: 20157303 DOI: 10.1038/nrurol.2010.8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Erectile dysfunction is a prevalent condition that leads to significant morbidity and distress, not just for affected men but also for their partners. Very few currently available treatments ameliorate the underlying causes of the disorder and 'cure' the disease state. Much recent effort has been focused on the development of gene and cell-based approaches to rectify the molecular and tissue defects responsible for ED. Gene therapy has been investigated in animal models as a means to restore normal function to the penis; at this time, however, only one human trial has been published in the peer-reviewed literature. Recent gene therapy studies have focused on the modulation of enzymes associated with the NOS/cGMP pathway, and supplementation of trophic factors, peptides and potassium channels. Stem cell therapy has been a topic of interest in more recent years but there are currently very few published reports in animal models and none in human men. Although stem cell therapy offers the potential for restoration of functional tissues, legitimate concerns remain regarding the long-term fate of stem cells. The long-term safety of both gene and stem cell therapy must be thoroughly investigated before large-scale human studies can be considered.
Collapse
Affiliation(s)
- Ahmed Harraz
- Department of Urology, University of California, San Francisco, CA 94143-0738, USA
| | | | | |
Collapse
|
26
|
Uvelius B, Kanje M. Glial Cell Activation in Pelvic Ganglia After Preganglionic But Not Postganglionic Lesions. ACTA ACUST UNITED AC 2010. [DOI: 10.3834/uij.1944-5784.2010.06.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Nangle MR, Proietto J, Keast JR. Impaired Cavernous Reinnervation after Penile Nerve Injury in Rats with Features of the Metabolic Syndrome. J Sex Med 2009; 6:3032-44. [DOI: 10.1111/j.1743-6109.2009.01415.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
KATO R, BENNETT NE, KIM JH, WOLFE D, COYLE CH, HUANG S, WECHUCK JB, GOINS WF, DE MIGUEL F, TSUKAMOTO T, NELSON JB, GLORIOSO JC, CHANCELLOR MB, YOSHIMURA N. Gene Therapy for Neurogenic Erectile Dysfunction. Low Urin Tract Symptoms 2009. [DOI: 10.1111/j.1757-5672.2009.00045.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Bella AJ, Lin G, Lin CS, Hickling DR, Morash C, Lue TF. Nerve growth factor modulation of the cavernous nerve response to injury. J Sex Med 2009; 6 Suppl 3:347-52. [PMID: 19267859 DOI: 10.1111/j.1743-6109.2008.01194.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Surgical therapies for prostate cancer and other pelvic malignancies often result in neuronal damage and debilitating loss of sexual function due to cavernous nerve (CN) trauma. Advances in the neurobiology of growth factors have heightened clinical interest in the development of protective and regenerative neuromodulatory strategies targeting CN recovery following injury. AIM The aim of this review was to offer an examination of current and future nerve growth factor (NGF) modulation of the CN response to injury with a focus on brain-derived nerve growth factor (BDNF), growth differentiation factor-5 (GDF-5), and neurturin (NTN). METHODS Information for this presentation was derived from a current literature search using the National Library of Medicine PubMed Services producing publications relevant to this topic. Search terms included neuroprotection, nerve regeneration, NGFs, neurotrophic factors, BDNF, GDF-5, NTN, and CNs. MAIN OUTCOME MEASURES Basic science studies satisfying the search inclusion criteria were reviewed. RESULTS In this session, BDNF, atypical growth factors GDF-5 and NTN, and their potential influence upon CN recovery after injury are reviewed, as are the molecular pathways by which their influence is exerted. CONCLUSIONS Compromised CN function is a significant cause of erectile dysfunction development following prostatectomy and serves as the primary target for potential neuroprotective or regenerative strategies utilizing NGFs such as BDNF, GDF-5, and NTN, and/or targeted novel therapeutics modulating signaling pathways.
Collapse
Affiliation(s)
- Anthony J Bella
- Division of Urology, Department of Surgery, University of Ottawa, Ottawa, Canada.
| | | | | | | | | | | |
Collapse
|
30
|
Nangle MR, Keast JR. Deafferentation and axotomy each cause neurturin-independent upregulation of c-Jun in rodent pelvic ganglia. Exp Neurol 2009; 215:271-80. [DOI: 10.1016/j.expneurol.2008.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/20/2008] [Accepted: 10/20/2008] [Indexed: 11/25/2022]
|
31
|
|
32
|
Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury. Gene Ther 2008; 16:26-33. [PMID: 18668142 DOI: 10.1038/gt.2008.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurturin (NTN), a member of glial cell line-derived neurotrophic factor (GDNF) family, is known as an important neurotrophic factor for penis-projecting neurons. We recently demonstrated significant protection from erectile dysfunction (ED) following a replication-defective herpes simplex virus (HSV) vector-mediated GDNF delivery to the injured cavernous nerve. Herein, we applied HSV vector-mediated delivery of NTN to this ED model. Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20 microl of vector stock was administered directly to the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before being killed to assess neuronal survival. Four weeks after nerve injury, rats treated with HSV-NTN exhibited significantly higher ICP/AP compared with untreated or control vector-treated groups. The HSV-NTN group had more FG-positive major pelvic ganglion neurons than the control group following injury. HSV vector-mediated delivery of NTN could be a viable approach for the improvement of ED following cavernous nerve injury.
Collapse
|
33
|
Hisasue SI, Kato R, Kobayashi K, Suetomi T, Kiyama H, Tsukamoto T. Alteration of glial cell line-derived neurotrophic factor family receptor alpha-2 mRNA expression and its co-expression with neuronal nitric oxide synthase in pelvic ganglia following unilateral cavernous nerve injury. Int J Urol 2008; 15:82-6. [PMID: 18184180 DOI: 10.1111/j.1442-2042.2007.01917.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The goal of this study was to determine the alterations of glial cell line-derived neurotrophic factor family receptor alpha-2 (GFRalpha2) mRNA expression in the major pelvic ganglia (MPG) and their relationship to the marker for the neural plasticity (growth-associated protein 43: GAP-43) and neuronal nitric oxide synthase (nNOS)-positive neurons following cavernous nerve injury. METHODS Cavernous nerves were transected unilaterally in 24 Sprague-Dawley rats aged 8 weeks. We used nine sham operated same animals as controls. Bilateral MPGs were harvested at 1, 3, and 6 months following nerve injury. The GFRalpha2 and GAP-43 mRNA expressions of the sham group and the injury group (3 months after surgery) were investigated by reverse transcription-polymerase chain reaction. We also investigated the expression profile of GFRalpha2 mRNA by in situ hybridization combined with nNOS immunostaining. RESULTS It was revealed semi-quantitatively that the GAP43 mRNA expression moderately increased in the intact MPG, and GFRalpha2 mRNA was maintained in the intact MPG but not in the injured one. A histological double-labeling study showed that the number of GFRalpha2 mRNA- and nNOS-positive neurons increased in the intact MPG and most GFRalpha2 mRNA expressions were colocalized with nNOS immunostaining. CONCLUSIONS The current study suggested that the GFRalpha2 mRNA alteration closely related to the nNOS expression following the cavernous nerve injury, which would be involved in the maintenance and recovery of erectile function.
Collapse
Affiliation(s)
- Shin-Ichi Hisasue
- Department of Urology, School of Medicine, Sapporo Medical University, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Bella AJ, Lin G, Cagiannos I, Lue TF. Emerging neuromodulatory molecules for the treatment of neurogenic erectile dysfunction caused by cavernous nerve injury. Asian J Androl 2008; 10:54-9. [PMID: 18087644 DOI: 10.1111/j.1745-7262.2008.00368.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Advances in the neurobiology of growth factors, neural development, and prevention of cell death have resulted in a heightened clinical interest for the development of protective and regenerative neuromodulatory strategies for the cavernous nerves (CNs), as therapies for prostate cancer and other pelvic malignancies often result in neuronal damage and debilitating loss of sexual function. Nitric oxide released from the axonal end plates of these nerves within the corpora cavernosa causes relaxation of smooth muscle, initiating the haemodynamic changes of penile erection as well as contributing to maintained tumescence; the loss of CN function is primarily responsible for the development of erectile dysfunction (ED) after pelvic surgery and serves as the primary target for potential neuroprotective or regenerative strategies. Evidence from pre-clinical studies for select neuromodulatory approaches is reviewed, including neurotrophins, glial cell line-derived neurotrophic factors (GDNF), bone morphogenic proteins, immunophilin ligands, erythropoetin (EPO), and stem cells.
Collapse
Affiliation(s)
- Anthony J Bella
- The Ottawa Hospital, Civic Campus, B3-Division of Urology, Ottawa K1Y 4E9, Canada.
| | | | | | | |
Collapse
|
35
|
Yan H, Keast JR. Neurturin regulates postnatal differentiation of parasympathetic pelvic ganglion neurons, initial axonal projections, and maintenance of terminal fields in male urogenital organs. J Comp Neurol 2008; 507:1169-83. [PMID: 18175352 DOI: 10.1002/cne.21593] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have investigated the development of autonomic nerves in the urogenital tract of male mice and the effect of neurturin gene deletion on this process. At birth, autonomic innervation of the reproductive organs was sparse, but urinary bladder smooth muscle was well innervated. Further innervation of reproductive tissues occurred until P21, but noradrenergic axons established their complete terminal field later than nitrergic cholinergic axons: in adults the former are more prevalent, yet this became apparent only at P7 (vas deferens, seminal vesicles), P14 (prostate) or after P14 (penis). Neurturin was essential for initial projection of axons (mucosa of vas deferens), maintenance of terminal fields (prostate and seminal vesicles), or both functions (cavernosum of penis). In contrast, some targets (e.g., bladder muscle and suburothelium, vas deferens smooth muscle) were unaffected by neurturin gene deletion. Pelvic ganglion neurons more than doubled between birth and adulthood, probably as aresult of continued maturation of p75-positive undifferentiated neuronal precursors rather than cell division. The adult number of neurons was achieved by P7 (sympathetic) or P21 (parasympathetic). In adult neurturin knockout mice, there were approximately 25% fewer parasympathetic neurons compared with wild types, because of failure of differentiation after P14. This study revealed the complexity of postnatal maturation of urogenital innervation, with each organ showing a distinct chronology of innervation and different requirement for neurturin. Our results also indicate that in adults there will be distinct differences in neurturin dependence between organs, such that proregenerative therapies may have to be tailored specifically for the nerve pathway of interest.
Collapse
Affiliation(s)
- Hui Yan
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | |
Collapse
|
36
|
Kato R, Wolfe D, Coyle CH, Huang S, Wechuck JB, Goins WF, Krisky DM, Tsukamoto T, Nelson JB, Glorioso JC, Chancellor MB, Yoshimura N. Herpes simplex virus vector-mediated delivery of glial cell line-derived neurotrophic factor rescues erectile dysfunction following cavernous nerve injury. Gene Ther 2007; 14:1344-52. [PMID: 17611585 DOI: 10.1038/sj.gt.3302990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Erectile dysfunction (ED) is frequently associated with injury to the cavernous nerve sustained during pelvic surgery. Functional recovery from cavernous nerve injury is generally incomplete and occurs over an extended time frame. We employed a therapeutic gene transfer approach with herpes simplex virus (HSV) vector expressing glial cell line-derived neurotrophic factor (GDNF). Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20 microl of purified vector stock was administered directly to and around the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein (GFP) and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before killing to assess nerve survival. Approximately 60% of major pelvic ganglion (MPG) cells were GFP positive after viral administration. At 4 weeks after nerve injury, rats treated with HSV-GDNF exhibited significant recovery of ICP/AP compared with control vector or untreated groups. The HSV-GDNF group also yielded more FG-positive MPG cells than the control vector group. HSV vector-mediated delivery of GDNF presents a viable approach for the treatment of ED following cavernous nerve injury.
Collapse
Affiliation(s)
- R Kato
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bella AJ, Fandel TM, Tantiwongse K, Brant WO, Klein RD, Garcia CA, Lue TF. Neurturin enhances the recovery of erectile function following bilateral cavernous nerve crush injury in the rat. J Brachial Plex Peripher Nerve Inj 2007; 2:5. [PMID: 17341313 PMCID: PMC1820781 DOI: 10.1186/1749-7221-2-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 03/06/2007] [Indexed: 11/11/2022] Open
Abstract
Background The molecular mechanisms responsible for the survival and preservation of function for adult parasympathetic ganglion neurons following injury remain incompletely understood. However, advances in the neurobiology of growth factors, neural development, and prevention of cell death have led to a surge of clinical interest for protective and regenerative neuromodulatory strategies, as surgical therapies for prostate, bladder, and colorectal cancers often result in neuronal axotomy and debilitating loss of sexual function or continence. In vitro studies have identified neurturin, a glial cell line-derived neurotrophic factor, as a neuromodulator for pelvic cholinergic neurons. We present the first in vivo report of the effects of neurturin upon the recovery of erectile function following bilateral cavernous nerve crush injury in the rat. Methods In these experiments, groups (n = 8 each) consisted of uninjured controls and animals treated with injection of albumin (blinded crush control group), extended release neurotrophin-4 or neurturin to the site of cavernous nerve crush injury (100 μg per animal). After 5 weeks, recovery of erectile function (treatment effect) was assessed by cavernous nerve electrostimulation and peak aortic pressures were measured. Investigators were unblinded to specific treatments after statistical analyses were completed. Results Erectile dysfunction was not observed in the sham group (mean maximal intracavernous pressure [ICP] increase of 117.5 ± 7.3 cmH2O), whereas nerve injury and albumin treatment (control) produced a significant reduction in ICP elevation of 40.0 ± 6.3 cmH2O. Neurturin facilitated the preservation of erectile function, with an ICP increase of 55% at 62.0 ± 9.2 cmH2O (p < 0.05 vs control). Extended release neurotrophin-4 did not significantly enhance recovery of erectile function with an ICP change of 46.9 ± 9.6. Peak aortic blood pressures did not differ between groups. No significant pre- and post-treatment weight differences were observed between control, neurotrophin-4 and neurturin cohorts. All animals tolerated the five-week treatment course. Conclusion Treatment with neurturin at the site of cavernous nerve crush injury facilitates recovery of erectile function. Results support further investigation of neurturin as a neuroprotective and/or neuroregenerative agent facilitating functional recovery after cavernous or other pelvic autonomic nerve injuries.
Collapse
Affiliation(s)
- Anthony J Bella
- Knuppe Molecular Urology Laboratory and Department of Urology, University of California, San Francisco, USA
| | - Thomas M Fandel
- Knuppe Molecular Urology Laboratory and Department of Urology, University of California, San Francisco, USA
| | - Kavirach Tantiwongse
- Knuppe Molecular Urology Laboratory and Department of Urology, University of California, San Francisco, USA
| | - William O Brant
- Knuppe Molecular Urology Laboratory and Department of Urology, University of California, San Francisco, USA
| | | | | | - Tom F Lue
- Knuppe Molecular Urology Laboratory and Department of Urology, University of California, San Francisco, USA
| |
Collapse
|
38
|
Bella AJ, Hayashi N, Carrion RE, Price R, Lue TF. FK1706 Enhances the Recovery of Erectile Function Following Bilateral Cavernous Nerve Crush Injury in the Rat. J Sex Med 2007; 4:341-6; discussion 346-7. [PMID: 17367429 DOI: 10.1111/j.1743-6109.2007.00438.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Advances in neurobiology have led to a surge of clinical interest in the development of protective and regenerative neuromodulatory strategies, as surgical therapies for prostate cancer often result in neuronal damage and debilitating loss of sexual function. AIM To investigate the dose-dependent efficacy of FK1706, a nonimmunosuppressant immunophilin ligand, for the recovery of erectile function following bilateral cavernous nerve crush injury in the rat. MAIN OUTCOME MEASURES Recovery of erectile function was assessed by cavernous nerve electrostimulation and reported as maximal increase of intracavernous pressure (ICP) and area under the curve (AUC). Changes in animal weights, percentage completion of treatment course, and survival were compared between groups. METHODS; Thirty-five Sprague-Dawley male rats were randomly divided into five equal groups: seven animals received a sham operation, whereas 28 animals underwent bilateral cavernous nerve crush injury, followed by subcutaneous injection of vehicle alone (1.0 mL/kg), or low (0.1 mg/kg), medium (0.32 mg/kg), or high dose (1.0 mg/kg) FK1706 5 days per week for 8 weeks. RESULTS Erectile dysfunction did not occur in the sham group (mean maximal ICP increase of 100.8 +/- 6.3 cmH(2)O), whereas nerve injury and vehicle treatment produced a significant reduction in ICP response to 34.4 +/- 12.8 cmH(2)O. The mean ICP increase for high-dose FK106 treatment was 73.9 +/- 6.3 cmH(2)O (P < 0.01 vs. vehicle) compared with 58.3 +/- 7.4 cmH(2)O and 56.9 +/- 8.3 for low and medium doses (P > 0.05). Similar stepwise findings were observed using AUC data. No significant maximal aortic blood pressure or weight differences occurred between groups and all animals completed treatment. CONCLUSION High-dose subcutaneous FK1706 therapy promoted recovery of erectile function following bilateral cavernous nerve crush injury in the rat. No significant differences between groups were observed for changes in weight, and the 8-week treatment course was completed for all animals.
Collapse
Affiliation(s)
- Anthony J Bella
- Division of Urology, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | |
Collapse
|