1
|
Apelin-13 attenuates injury following ischemic stroke by targeting matrix metalloproteinases (MMP), endothelin- B receptor, occludin/claudin-5 and oxidative stress. J Chem Neuroanat 2021; 118:102015. [PMID: 34454018 DOI: 10.1016/j.jchemneu.2021.102015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Oxidative stress, an adverse consequence of brain ischemia-reperfusion injury (IRI), activates matrix metalloproteinase enzymes which cause to destruction of extracellular matrix and tight junction proteins. Oxidative stress during stroke increases serum endothelin-1 and endothelin B receptor (ETBR) expression. Apelin-13, an endogenous peptide, is expressed in numerous tissues that regulate diverse physiological and pathological processes. This study aimed to investigate the effect of intravenous (IV) injection of apelin-13 on cerebral vasogenic edema due to brain IRI. Animals were divided into sham, ischemia, and treat groups. IRI model was induced by middle cerebral artery occlusion (MCAO) for 60 min followed by 23 h reperfusion. Apelin-13 was injected into the tail vein 5 min before reperfusion. Neurological defects were evaluated with longa test. Brain water content and BBB permeability were assessed according to cerebral dry-wet weight and brain Evans blue extraction. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were measured using the colorimetric method. Expression of occludin and claudin-5, matrix metalloproteinase- 2 and 9 (MMP-2 & 9) and, ETBR were evaluated using Western blot. Brain IRI was associated with BBB breakdowns and vasogenic edema. Apelin-13 significantly reduced BBB permeability and vasogenic edema. Apelin-13 significantly attenuated IRI-related oxidative stress. Apelin-13 decreased expression of mmp-2, 9 and ETBR, prevented from decrement of occludin and claudin-5 expersion, which protected BBB integrity and reduced vasogenic edema. In conclusion, our results have suggested that an IV injection of apelin-13 could somehow reduce vasogenic edema via targeting oxidative stress and ETBR expression.
Collapse
|
2
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
3
|
Christensen ST, Grell AS, Johansson SE, Andersson CM, Edvinsson L, Haanes KA. Synergistic effects of a cremophor EL drug delivery system and its U0126 cargo in an ex vivo model. Drug Deliv 2019; 26:680-688. [PMID: 31274009 PMCID: PMC6691891 DOI: 10.1080/10717544.2019.1636421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroprotection has proven clinically unsuccessful in subarachnoid hemorrhage. We believe that this is because the major component in the early damage pathway, the vascular wall, has not been given the necessary focus. U0126 is a potent inhibitor of vascular phenotypical changes, exemplified by functional endothelin B (ETB) receptor upregulation. The current study aimed to determine the optimal dose of U0126 ex vivo and test the toxicology of this dose in vivo. To find the optimal dose and test a suitable in vivo delivery system, we applied an ex vivo model of blood flow cessation and investigated functional ETB receptor upregulation (using a specific agonist) as the primary endpoint. The secondary endpoint was depolarization-induced contractility assessed by 60 mM K+ stimuli. Furthermore, an in vivo toxicology study was performed on the optimal selected doses. U0126 (10 µM) had a strong effect on the prevention of functional ETB receptor contractility, combined with minimal effect on the depolarization-induced contractility. When cremophor EL was chosen for drug delivery, it had an inhibitory and additive effect (combined with U0126) on the ETB receptor contractility. Hence, 10 µM U0126 in 0.5% cremophor EL seems to be a dose that will be close to the maximal inhibition observed ex vivo on basilar arteries, without exhibiting side effects in the toxicology studies. U0126 and cremophor EL are well tolerated at doses that have effect on ETB receptor upregulation. Cremophor EL has an additional positive effect, preventing functional ETB receptor upregulation, making it suitable as a drug delivery system.
Collapse
Affiliation(s)
- S T Christensen
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - A S Grell
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - S E Johansson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | | | - L Edvinsson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark.,c Department of Clinical Sciences, Division of Experimental Vascular Research , Lund University , Lund , Sweden
| | - K A Haanes
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| |
Collapse
|
4
|
Christensen ST, Johansson SE, Radziwon-Balicka A, Warfvinge K, Haanes KA, Edvinsson L. MEK1/2 inhibitor U0126, but not nimodipine, reduces upregulation of cerebrovascular contractile receptors after subarachnoid haemorrhage in rats. PLoS One 2019; 14:e0215398. [PMID: 30978262 PMCID: PMC6461292 DOI: 10.1371/journal.pone.0215398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Vascular pathophysiological changes after haemorrhagic stroke, such as phenotypic modulation of the cerebral arteries and cerebral vasospasms, are associated with delayed cerebral ischemia (DCI) and poor outcome. The only currently approved drug treatment shown to reduce the risk of DCI and improve neurologic outcome after aneurysmal subarachnoid haemorrhage (SAH) is nimodipine, a dihydropyridine L-type voltage-gated Ca2+ channel blocker. MEK1/2 mediated transcriptional upregulation of contractile receptors, including endothelin-1 (ET-1) receptors, has previously been shown to be a factor in the pathology of SAH. The aim of the study was to compare intrathecal and subcutaneous treatment regimens of nimodipine and intrathecal treatment regimens of U0126, a MEK1/2 inhibitor, in a single injection experimental rat SAH model with post 48 h endpoints consisting of wire myography of cerebral arteries, flow cytometry of cerebral arterial tissue and behavioural evaluation. Following ET-1 concentration-response curves, U0126 exposed arteries had a significantly lower ET-1max than vehicle arteries. Arteries from both the intrathecal- and subcutaneous nimodipine treated animals had significantly higher ET-1max contractions than the U0126 arteries. Furthermore, Ca2+ concentration response curves (precontracted with ET-1 and in the presence of nimodipine) showed that nimodipine treatment could result in larger nimodipine insensitive contractions compared to U0126. Flow cytometry showed decreased protein expression of the ETB receptor in U0126 treated cerebral vascular smooth muscle cells compared to vehicle. Only U0126 treatment lowered ET-1max contractions and ETB receptor levels, as well as decreased the contractions involving nimodipine-insensitive Ca2+ channels, when compared to both intrathecal and subcutaneous nimodipine treatment. This indicate that targeting gene expression might be a better strategy than blocking specific receptors or ion channels in future treatments of SAH.
Collapse
Affiliation(s)
- Simon T. Christensen
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Sara E. Johansson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Aneta Radziwon-Balicka
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Kristian A. Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- * E-mail:
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Zhong C, Wu Y, Chang H, Liu C, Zhou L, Zou J, Qi Z. Effect of PKC inhibitor on experimental autoimmune myocarditis in Lewis rats. Oncotarget 2017; 8:54187-54198. [PMID: 28903333 PMCID: PMC5589572 DOI: 10.18632/oncotarget.17018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
Myocarditis is a major cause of sudden, unexpected death in young people. However, it is still one of the most challenging diseases to treat in cardiology. In the present study, we showed that both expression level and activity of PKC-α were up-regulated in the rat heart of experimental autoimmune myocarditis (EAM). Intraperitoneal administration of PKC inhibitor (Ro-32-0432) at the end of the most severe inflammation period of EAM still significantly reduced the EAM induced expression of failure biomarkers. Furthermore, Ro-32-0432 reduced the ratio of Bax/Bcl-2 and suppressed the expression of cleaved caspase-3, both of which were increased in the heart of the EAM rats, suggesting an anti-apoptotic role of Ro-32-0432. Besides, Ro-32-0432 suppressed EAM-induced cardiac fibrosis and release of pro-inflammatory cytokines IL-1β and IL-17. These results suggest that inhibition of PKC may serve as a potential therapeutic strategy for the treatment of myocarditis.
Collapse
Affiliation(s)
- Chunlian Zhong
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| | - Yang Wu
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - He Chang
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Chunxiao Liu
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China.,Xiamen Cardiovascular Hospital, Medical College of Xiamen University, Xiamen, China
| | - Li Zhou
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| | - Jun Zou
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| | - Zhi Qi
- Department of Basic Medical Sciences, Medical College of Xiamen University, Xiang'an Nan Lu, Xiamen, China
| |
Collapse
|
6
|
Li Y, Gao X, Wang Q, Yang Y, Liu H, Zhang B, Li L. Retinoic acid protects from experimental cerebral infarction by upregulating GAP-43 expression. ACTA ACUST UNITED AC 2017; 50:e5561. [PMID: 28380213 PMCID: PMC5423748 DOI: 10.1590/1414-431x20175561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate whether exogenous retinoic acid (RA) can upregulate the mRNA and protein expression of growth-associated protein 43 (GAP-43), thereby promoting brain functional recovery in a rat distal middle cerebral artery occlusion (MCAO) model of ischemia. A total of 216 male Sprague Dawley rats weighing 300–320 g were divided into 3 groups: sham-operated group, MCAO+vehicle group and MCAO+RA group. Focal cortical infarction was induced with a distal MCAO model. The expression of GAP-43 mRNA and protein in the ipsilateral perifocal region was assessed using qPCR and immunocytochemistry at 1, 3, 7, 14, 21, and 28 days after distal MCAO. In addition, an intraperitoneal injection of RA was given 12 h before MCAO and continued every day until the animal was sacrificed. Following ischemia, the expression of GAP-43 first increased considerably and then decreased. Administration of RA reduced infarction volume, promoted neurological functional recovery and upregulated expression of GAP-43. Administration of RA can ameliorate neuronal damage and promote nerve regeneration by upregulating the expression of GAP-43 in the perifocal region after distal MCAO.
Collapse
Affiliation(s)
- Y Li
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - X Gao
- Department of Neurology, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - Q Wang
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Y Yang
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - H Liu
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - B Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - L Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
7
|
Carbone F, Teixeira PC, Braunersreuther V, Mach F, Vuilleumier N, Montecucco F. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2. Antioxid Redox Signal 2015; 23:460-89. [PMID: 24635113 PMCID: PMC4545676 DOI: 10.1089/ars.2013.5778] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. RECENT ADVANCES Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. CRITICAL ISSUES NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. FUTURE DIRECTIONS Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke.
Collapse
Affiliation(s)
- Federico Carbone
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland .,2 Department of Internal Medicine, University of Genoa School of Medicine , IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Priscila Camillo Teixeira
- 3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| | - Vincent Braunersreuther
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland
| | - François Mach
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland
| | - Nicolas Vuilleumier
- 3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| | - Fabrizio Montecucco
- 1 Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva , Geneva, Switzerland .,2 Department of Internal Medicine, University of Genoa School of Medicine , IRCCS Azienda Ospedaliera Universitaria San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy .,3 Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals , Geneva, Switzerland
| |
Collapse
|
8
|
Ahnstedt H, Mostajeran M, Blixt FW, Warfvinge K, Ansar S, Krause DN, Edvinsson L. U0126 attenuates cerebral vasoconstriction and improves long-term neurologic outcome after stroke in female rats. J Cereb Blood Flow Metab 2015; 35:454-60. [PMID: 25492115 PMCID: PMC4348385 DOI: 10.1038/jcbfm.2014.217] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/28/2014] [Accepted: 10/31/2014] [Indexed: 11/09/2022]
Abstract
Sex differences are well known in cerebral ischemia and may impact the effect of stroke treatments. In male rats, the MEK1/2 inhibitor U0126 reduces ischemia-induced endothelin type B (ETB) receptor upregulation, infarct size and improves acute neurologic function after experimental stroke. However, responses to this treatment in females and long-term effects on outcome are not known. Initial experiments used in vitro organ culture of cerebral arteries, confirming ERK1/2 activation and increased ETB receptor-mediated vasoconstriction in female cerebral arteries. Transient middle cerebral artery occlusion (tMCAO, 120 minutes) was induced in female Wistar rats, with U0126 (30 mg/kg intraperitoneally) or vehicle administered at 0 and 24 hours of reperfusion, or with no treatment. Infarct volumes were determined and neurologic function was assessed by 6-point and 28-point neuroscores. ETB receptor-mediated contraction was studied with myograph and protein expression with immunohistochemistry. In vitro organ culture and tMCAO resulted in vascular ETB receptor upregulation and activation of ERK1/2 that was prevented by U0126. Although no effect on infarct size, U0126 improved the long-term neurologic function after experimental stroke in female rats. In conclusion, early prevention of the ERK1/2 activation and ETB receptor-mediated vasoconstriction in the cerebral vasculature after ischemic stroke in female rats improves the long-term neurologic outcome.
Collapse
Affiliation(s)
- Hilda Ahnstedt
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Maryam Mostajeran
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Frank W Blixt
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Karin Warfvinge
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Saema Ansar
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Diana N Krause
- Department of Pharmacology, School of Medicine, University of California, Irvine, California, USA
| | - Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Poittevin M, Lozeron P, Hilal R, Levy BI, Merkulova-Rainon T, Kubis N. Smooth muscle cell phenotypic switching in stroke. Transl Stroke Res 2013; 5:377-84. [PMID: 24323725 DOI: 10.1007/s12975-013-0306-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
Abstract
Disruption of cerebral blood flow after stroke induces cerebral tissue injury through multiple mechanisms that are not yet fully understood. Smooth muscle cells (SMCs) in blood vessel walls play a key role in cerebral blood flow control. Cerebral ischemia triggers these cells to switch to a phenotype that will be either detrimental or beneficial to brain repair. Moreover, SMC can be primarily affected genetically or by toxic metabolic molecules. After stroke, this pathological phenotype has an impact on the incidence, pattern, severity, and outcome of the cerebral ischemic disease. Although little research has been conducted on the pathological role and molecular mechanisms of SMC in cerebrovascular ischemic diseases, some therapeutic targets have already been identified and could be considered for further pharmacological development. We examine these different aspects in this review.
Collapse
Affiliation(s)
- Marine Poittevin
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, 75475, Paris, France
| | | | | | | | | | | |
Collapse
|
10
|
Zheng JP, Zhang X, Wang H, Wang Y, Cheng Z, Yin P, Peng W. Vasomotor Dysfunction in the Mesenteric Artery after Organ Culture with Cyclosporin A. Basic Clin Pharmacol Toxicol 2013; 113:370-6. [PMID: 23809336 DOI: 10.1111/bcpt.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Jian-Pu Zheng
- Experimental Research Center; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Xuemei Zhang
- Department of Pharmacology; School of Pharmacy; Fudan University; Shanghai China
| | - Hao Wang
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yunman Wang
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Zhuoan Cheng
- Experimental Research Center; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Peihao Yin
- Department of General Surgery; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Wen Peng
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
11
|
Liao SL, Ou YC, Chang CY, Chen WY, Kuan YH, Wang WY, Pan HC, Chen CJ. Diethylmaleate and iodoacetate in combination caused profound cell death in astrocytes. J Neurochem 2013; 127:271-82. [PMID: 23647195 DOI: 10.1111/jnc.12291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A₂ (cPLA₂) activation and energy failure/oxidative stress-induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C-α (PKC-α), Src, Raf, and extracellular signal-regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time- and concentration-dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC-α membrane translocation, Src, Raf, ERK, and cPLA₂ phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate-induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate-treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC-α, Src/Raf/ERK signaling and cPLA₂ are active participants in diethylmaleate/iodoacetate-induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.
Collapse
Affiliation(s)
- Su-Lan Liao
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Expressional changes in cerebrovascular receptors after experimental transient forebrain ischemia. PLoS One 2012; 7:e41852. [PMID: 22848635 PMCID: PMC3407123 DOI: 10.1371/journal.pone.0041852] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Global ischemic stroke is one of the most prominent consequences of cardiac arrest, since the diminished blood flow to the brain results in cell damage and sometimes permanently impaired neurological function. The post-arrest period is often characterised by cerebral hypoperfusion due to subacute hemodynamic disturbances, the pathophysiology of which are poorly understood. In two other types of stroke, focal ischemic stroke and subarachnoid hemorrhage, it has earlier been demonstrated that the expression of certain vasoconstrictor receptors is increased in cerebral arteries several days after the insult, a phenomenon that leads to increased contraction of cerebral arteries, reduced perfusion of the affected area and worsened ischemic damage. Based on these findings, the aim of the present study was to investigate if transient global cerebral ischemia is associated with upregulation of vasoconstrictive endothelin and 5-hydroxytryptamine receptors in cerebral arteries. Experimental transient forebrain ischemia of varying durations was induced in male wistar rats, followed by reperfusion for 48 hours. Neurological function was assessed daily by three different tests and cerebrovascular expression and contractile function of endothelin and 5-hydroxytryptamine receptors were evaluated by wire myography, immunohistochemistry and western blotting. RESULTS Transient forebrain ischemia induced neurological deficits as well as functional upregulation of vasoconstrictive ET(B) and 5-HT(1B) receptors in cerebral arteries supplying mid- and forebrain regions. No receptor upregulation was seen in arteries supplying the hindbrain. Immunohistochemical stainings and western blotting demonstrated expressional upregulation of these receptor subtypes in the mid- and forebrain arteries and confirmed that the receptors were located in the smooth muscle layer of the cerebral arteries. CONCLUSIONS This study reveals a new pathophysiological aspect of global ischemic stroke, namely expressional upregulation of vasoconstrictor receptors in cerebral arteries two days after the insult, which might contribute to cerebral hypoperfusion and delayed neuronal damage after cardiac arrest.
Collapse
|
13
|
Povlsen GK, Waldsee R, Ahnstedt H, Kristiansen KA, Johansen FF, Edvinsson L. In vivo experimental stroke and in vitro organ culture induce similar changes in vasoconstrictor receptors and intracellular calcium handling in rat cerebral arteries. Exp Brain Res 2012; 219:507-20. [PMID: 22585122 DOI: 10.1007/s00221-012-3108-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/25/2012] [Indexed: 12/11/2022]
Abstract
Cerebral arteries subjected to different types of experimental stroke upregulate their expression of certain G-protein-coupled vasoconstrictor receptors, a phenomenon that worsens the ischemic brain damage. Upregulation of contractile endothelin B (ET(B)) and 5-hydroxytryptamine 1B (5-HT(1B)) receptors has been demonstrated after subarachnoid hemorrhage and global ischemic stroke, but the situation is less clear after focal ischemic stroke. Changes in smooth muscle calcium handling have been implicated in different vascular diseases but have not hitherto been investigated in cerebral arteries after stroke. Here, we evaluate changes of ET(B) and 5-HT(1B) receptors, intracellular calcium levels, and calcium channel expression in rat middle cerebral artery (MCA) after focal cerebral ischemia and in vitro organ culture, a proposed model of vasoconstrictor receptor changes after stroke. Rats were subjected to 2 h MCA occlusion followed by reperfusion for 1 or 24 h. Alternatively, MCAs from naïve rats were cultured for 1 or 24 h. ET(B) and 5-HT(1B) receptor-mediated contractions were evaluated by wire myography. Receptor and channel expressions were measured by real-time PCR and immunohistochemistry. Intracellular calcium was measured by FURA-2. Expression and contractile functions of ET(B) and 5-HT(1B) receptors were strongly upregulated and slightly downregulated, respectively, 24 h after experimental stroke or organ culture. ET(B) receptor-mediated contraction was mediated by calcium from intracellular and extracellular sources, whereas 5-HT(1B) receptor-mediated contraction was solely dependent on extracellular calcium. Organ culture and stroke increased basal intracellular calcium levels in MCA smooth muscle cells and decreased the expression of inositol triphosphate receptor and transient receptor potential canonical calcium channels, but not voltage-operated calcium channels.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cerebral Arteries/drug effects
- Cerebral Arteries/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Organ Culture Techniques
- Rats
- Rats, Wistar
- Receptor, Endothelin B/biosynthesis
- Receptor, Serotonin, 5-HT1B/biosynthesis
- Stroke/metabolism
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Viper Venoms/pharmacology
Collapse
Affiliation(s)
- Gro Klitgaard Povlsen
- Department of Clinical Experimental Research, Glostrup Research Institute, Ndr. Ringvej 69, 2600, Glostrup, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Liao SL, Ou YC, Lin SY, Kao TK, Pan HC, Chang CY, Lai CY, Lu HC, Wang WY, Chen CJ. Signaling cascades mediate astrocyte death induced by zinc. Toxicol Lett 2011; 204:108-17. [DOI: 10.1016/j.toxlet.2011.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/11/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
|
15
|
Edvinsson LIH, Povlsen GK. Vascular plasticity in cerebrovascular disorders. J Cereb Blood Flow Metab 2011; 31:1554-71. [PMID: 21559027 PMCID: PMC3137480 DOI: 10.1038/jcbfm.2011.70] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Cerebral ischemia remains a major cause of morbidity and mortality with little advancement in subacute treatment options. This review aims to cover and discuss novel insight obtained during the last decade into plastic changes in the vasoconstrictor receptor profiles of cerebral arteries and microvessels that takes place after different types of stroke. Receptors like the endothelin type B, angiotensin type 1, and 5-hydroxytryptamine type 1B/1D receptors are upregulated in the smooth muscle layer of cerebral arteries after different types of ischemic stroke as well as after subarachnoid hemorrhage, yielding rather dramatic changes in the contractility of the vessels. Some of the signal transduction processes mediating this receptor upregulation have been elucidated. In particular the extracellular regulated kinase 1/2 pathway, which is activated early in the process, has proven to be a promising therapeutic target for prevention of vasoconstrictor receptor upregulation after stroke. Together, those findings provide new perspectives on the pathophysiology of ischemic stroke and point toward a novel way of reducing vasoconstriction, neuronal cell death, and thus neurologic deficits after stroke.
Collapse
Affiliation(s)
- Lars I H Edvinsson
- Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital Research Park, Copenhagen, Denmark.
| | | |
Collapse
|
16
|
Xu CB, Sun Y, Edvinsson L. Cardiovascular risk factors regulate the expression of vascular endothelin receptors. Pharmacol Ther 2010; 127:148-55. [DOI: 10.1016/j.pharmthera.2010.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
|
17
|
Gesslein B, Gustafsson L, Wackenfors A, Ghosh F, Malmsjö M. Protein kinase C in porcine retinal arteries and neuroretina following retinal ischemia-reperfusion. Mol Vis 2009; 15:737-46. [PMID: 19367344 PMCID: PMC2668768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 04/07/2009] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Identification of the intracellular signal-transduction pathways activated in retinal ischemia may be important in revealing novel pharmacological targets. To date, most studies have focused on identifying neuroprotective agents. The retinal blood vessels are key organs in circulatory failure, and this study was therefore designed to examine the retinal vasculature separately from the neuroretina. METHODS Retinal ischemia was induced by elevating the intraocular pressure in porcine eyes, followed by 5, 12, or 20 h of reperfusion. Protein kinase C (PKC)alpha, PKCbeta1, and PKCbeta2 mRNA levels, and protein expression were determined using real-time PCR, western blot, and immunofluorescence staining techniques. RESULTS The retinal arteries could easily be dissected free and studied separately from the neuroretina in this porcine model. The PKCalpha, PKCbeta1, and PKCbeta2 mRNA levels tended to be lower in ischemia-reperfused than in sham-operated eyes in both the retinal arteries and the neuroretina. This was most prominent after 5 h, and less pronounced after 12 h and 20 h of reperfusion. Likewise, the protein levels of PKCalpha, PKCbeta1, and PKCbeta2 were slightly lower following ischemia-reperfusion when compared to sham-operated eyes. PKCalpha, PKCbeta1, and PKCbeta2 immunostaining were observed in bipolar cells of the neuroretina and in endothelial cells, and to a low extent in the smooth muscle layer, of the retinal arteries. CONCLUSIONS Retinal ischemia followed by reperfusion results in lower levels of PKC in both the neuroretina and retinal arteries. New targets for pharmacological treatment may be found by studying the retinal vasculature so as to identify the intracellular signal-transduction pathways involved in the development of injury following retinal circulatory failure.
Collapse
Affiliation(s)
| | | | | | - Fredrik Ghosh
- Department of Ophthalmology, Lund University, Sweden
| | - Malin Malmsjö
- Department of Ophthalmology, Lund University, Sweden
| |
Collapse
|
18
|
Macdonald RL. Clazosentan: a review of subarachnoid hemorrhage data. FUTURE NEUROLOGY 2009. [DOI: 10.2217/14796708.4.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clazosentan (Ro 61–1790, VML-588 or AXV-034) is a synthetic endothelin (ET)-receptor antagonist that was derived from one of the first nonselective synthetic ET-receptor antagonists, bosentan. The structural modifications were designed to increase selectivity for the ETA receptor and optimize aqueous solubility, both of which were fulfilled. Selectivity is approximately 1000-fold greater for the ETA receptor with a pA2 in the nanomolar range. The half-life in humans is less than 2 h and the main side effects are headache, nausea and vomiting in clinically important doses, although they are not reported to be a problem in target disease populations. Clazosentan reverses established vasospasm in dogs with subarachnoid hemorrhage (SAH) and in preliminary studies in humans. It also prevents vasospasm in the double hemorrhage model of vasospasm in dogs and significantly decreases angiographic vasospasm after aneurysmal SAH in humans. The doses required are in the range of 5 to 15 mg/h in humans and correspond to effective doses in animal studies. These doses are also associated with relevant plasma and cerebrospinal fluid concentrations of the drug. A dose-finding study of clazosentan for prevention of vasospasm after SAH in humans showed a significant dose-dependent decrease in vasospasm and was favorable enough to lead to a Phase III trial.
Collapse
Affiliation(s)
- R Loch Macdonald
- Division of Neurosurgery, St Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada
| |
Collapse
|
19
|
Nilsson D, Wackenfors A, Gustafsson L, Ugander M, Ingemansson R, Edvinsson L, Malmsjö M. PKC and MAPK signalling pathways regulate vascular endothelin receptor expression. Eur J Pharmacol 2008; 580:190-200. [DOI: 10.1016/j.ejphar.2007.10.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 01/24/2023]
|