1
|
Kawa H, Ahmed Z, Majid A, Chen R. Inhibition of matrix metalloproteinases to reduce blood brain barrier disruption and haemorrhagic transformation in ischaemic stroke: Go broad or go narrow? Neuropharmacology 2025; 262:110192. [PMID: 39419277 DOI: 10.1016/j.neuropharm.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Ischaemic stroke characterises impulsive cerebral-region hypoxia due to deep intracerebral arteriole blockage, often accompanied by permanent cerebral infarction and cognitive impairment. Thrombolysis with recombinant tissue plasminogen activator (rtPA) and thrombectomy remain the only guidance-approved therapies. However, emerging data draws clear links between such therapies and haemorrhage transformation, which occur when cerebral vasculature is damaged during ischaemia/reperfusion. Studies have shown that matrix metalloproteinases (MMPs) play a significant role in haemorrhage transformation, by depleting the extracellular matrix (ECM) and disrupting the blood brain barrier (BBB). Inhibitors of MMPs may be used to prevent ischaemic stroke patients from BBB disruption and haemorrhage transformation, particularly for those receiving rtPA treatment. Preclinical studies found that inhibition of MMPs with agents or in knock out mice, effectively reduced BBB disruption and infarct volume, leading to improved ischaemic stroke outcomes. At present, MMP inhibition is not an approved therapy for stroke patients. There remain concerns about timing, dosing, duration of MMP inhibition and selection of either broad spectrum or specific MMP inhibitors for stroke patients. This review aims to summarize current knowledge on MMP inhibition in ischaemic stroke and explore whether a broad spectrum or a specific MMP inhibitor should be used for ischaemic stroke patient treatment. It is crucial to inhibit MMP activities early and sufficiently to ensure BBB intact during ischaemia and reperfusion, but also to reduce side effects of MMP inhibitors to minimum. Recent advance in stroke therapy by thrombectomy could aid in such treatment with intra-arterially delivery of MMP inhibitors (and/or antioxidants).
Collapse
Affiliation(s)
- Hala Kawa
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK
| | - Zubair Ahmed
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Arshad Majid
- Division of Neurosciences, School of Medicine and Population Health, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
2
|
Huang M, Zhang J, Li M, Cao H, Zhu Q, Yang D. PAK1 contributes to cerebral ischemia/reperfusion injury by regulating the blood-brain barrier integrity. iScience 2023; 26:107333. [PMID: 37529106 PMCID: PMC10387573 DOI: 10.1016/j.isci.2023.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023] Open
Abstract
Globally, stroke is one of the leading causes of death and significant contributors to disability. Gaining a thorough comprehension of the underlying pathogenic processes is essential for stroke treatment and prevention. In this study, we investigated the role of p21-activated kinase 1 (PAK1) in stroke by using oxygen-glucose deprivation (OGD) and transient middle cerebral artery occlusion and reperfusion (tMCAO/R) models. We reported that focal ischemia and reperfusion affect the PAK1 expression and activity levels. We further demonstrated that PAK1 is responsible for the endothelial hyperpermeability that occurs in the early stages of ischemia and reperfusion. Additionally, inhibition of PAK1 was discovered to alleviate blood-brain barrier disruption and protect against brain injury induced by tMCAO/R. Mechanistically, we provide the evidence that PAK1 regulates the formation of stress fibers and expression of surface junctional proteins. Together, our findings reveal a pathogenic function of PAK1 in stroke.
Collapse
Affiliation(s)
- Ming Huang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jinshun Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Mengwei Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Dejun Yang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
3
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Van Breedam E, Ponsaerts P. Promising Strategies for the Development of Advanced In Vitro Models with High Predictive Power in Ischaemic Stroke Research. Int J Mol Sci 2022; 23:ijms23137140. [PMID: 35806146 PMCID: PMC9266337 DOI: 10.3390/ijms23137140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Although stroke is one of the world’s leading causes of death and disability, and more than a thousand candidate neuroprotective drugs have been proposed based on extensive in vitro and animal-based research, an effective neuroprotective/restorative therapy for ischaemic stroke patients is still missing. In particular, the high attrition rate of neuroprotective compounds in clinical studies should make us question the ability of in vitro models currently used for ischaemic stroke research to recapitulate human ischaemic responses with sufficient fidelity. The ischaemic stroke field would greatly benefit from the implementation of more complex in vitro models with improved physiological relevance, next to traditional in vitro and in vivo models in preclinical studies, to more accurately predict clinical outcomes. In this review, we discuss current in vitro models used in ischaemic stroke research and describe the main factors determining the predictive value of in vitro models for modelling human ischaemic stroke. In light of this, human-based 3D models consisting of multiple cell types, either with or without the use of microfluidics technology, may better recapitulate human ischaemic responses and possess the potential to bridge the translational gap between animal-based in vitro and in vivo models, and human patients in clinical trials.
Collapse
|
5
|
Mai Le N, Li J. Ras-related C3 botulinum toxin substrate 1 role in Pathophysiology of Neurological diseases. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
6
|
MicroRNA Analysis of Human Stroke Brain Tissue Resected during Decompressive Craniectomy/Stroke-Ectomy Surgery. Genes (Basel) 2021; 12:genes12121860. [PMID: 34946809 PMCID: PMC8702168 DOI: 10.3390/genes12121860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Signaling pathways mediated by microRNAs (miRNAs) have been identified as one of the mechanisms that regulate stroke progression and recovery. Recent investigations using stroke patient blood and cerebrospinal fluid (CSF) demonstrated disease-specific alterations in miRNA expression. In this study, for the first time, we investigated miRNA expression signatures in freshly removed human stroke brain tissue. METHODS Human brain samples were obtained during craniectomy and brain tissue resection in severe stroke patients with life-threatening brain swelling. The tissue samples were subjected to histopathological and immunofluorescence microscopy evaluation, next generation miRNA sequencing (NGS), and bioinformatic analysis. RESULTS miRNA NGS analysis detected 34 miRNAs with significantly aberrant expression in stroke tissue, as compared to non-stroke samples. Of these miRNAs, 19 were previously identified in stroke patient blood and CSF, while dysregulation of 15 miRNAs was newly detected in this study. miRNA direct target gene analysis and bioinformatics approach demonstrated a strong association of the identified miRNAs with stroke-related biological processes and signaling pathways. CONCLUSIONS Dysregulated miRNAs detected in our study could be regarded as potential candidates for biomarkers and/or targets for therapeutic intervention. The results described herein further our understanding of the molecular basis of stroke and provide valuable information for the future functional studies in the experimental models of stroke.
Collapse
|
7
|
Decoding the Transcriptional Response to Ischemic Stroke in Young and Aged Mouse Brain. Cell Rep 2021; 31:107777. [PMID: 32553170 DOI: 10.1016/j.celrep.2020.107777] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke is a well-recognized disease of aging, yet it is unclear how the age-dependent vulnerability occurs and what are the underlying mechanisms. To address these issues, we perform a comprehensive RNA-seq analysis of aging, ischemic stroke, and their interaction in 3- and 18-month-old mice. We assess differential gene expression across injury status and age, estimate cell type proportion changes, assay the results against a range of transcriptional signatures from the literature, and perform unsupervised co-expression analysis, identifying modules of genes with varying response to injury. We uncover downregulation of axonal and synaptic maintenance genetic program, and increased activation of type I interferon (IFN-I) signaling following stroke in aged mice. Together, these results paint a picture of ischemic stroke as a complex age-related disease and provide insights into interaction of aging and stroke on cellular and molecular level.
Collapse
|
8
|
Bu F, Munshi Y, Furr JW, Min JW, Qi L, Patrizz A, Spahr ZR, Urayama A, Kofler JK, McCullough LD, Li J. Activation of neuronal Ras-related C3 botulinum toxin substrate 1 (Rac1) improves post-stroke recovery and axonal plasticity in mice. J Neurochem 2020; 157:1366-1376. [PMID: 32964455 DOI: 10.1111/jnc.15195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
Long-term disability after stroke is common but the mechanisms of post-stroke recovery remain unclear. Cerebral Ras-related C3 botulinum toxin substrate (Rac) 1 contributes to functional recovery after ischemic stroke in mice. As Rac1 plays divergent roles in individual cell types after central neural system injury, we herein examined the specific role of neuronal Rac1 in post-stroke recovery and axonal regeneration. Young male mice were subjected to 60-min of middle cerebral artery occlusion (MCAO). Inducible deletion of neuronal Rac1 by daily intraperitoneal injection of tamoxifen (2 mg/40 g) into Thy1-creER/Rac1-floxed mice day 7-11 after MCAO worsened cognitive (assayed by novel object recognition test) and sensorimotor (assayed by adhesive removal and pellet reaching tests) recovery day 14-28 accompanied with the reduction of neurofilament-L (NFL) and myelin basic protein (MBP) and the elevation of glial fibrillary acidic protein (GFAP) in the peri-infarct zone assessed by immunostaining. Whereas the brain tissue loss was not altered assayed by cresyl violet staining. In another approach, delayed overexpression of neuronal Rac1 by injection of lentivirus encoding Rac1 with neuronal promotor into both the cortex and striatum (total 4 μl at 1 × 109 transducing units/mL) of stroke side in C57BL/6J mice day 7 promoted stroke outcome, NFL and MBP regrowth and alleviated GFAP invasion. Furthermore, neuronal Rac1 over-expression led to the activation of p21 activating kinases (PAK) 1, mitogen-activated protein kinase kinase (MEK) 1/2 and extracellular signal-regulated kinase (ERK) 1/2, and the elevation of brain-derived neurotrophic factor (BDNF) day 14 after stroke. Finally, we observed higher counts of neuronal Rac1 in the peri-infarct zone of subacute/old ischemic stroke subjects. This work identified a neuronal Rac1 signaling in improving functional recovery and axonal regeneration after stroke, suggesting a potential therapeutic target in the recovery stage of stroke.
Collapse
Affiliation(s)
- Fan Bu
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Yashasvee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - J Weldon Furr
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jia-Wei Min
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Li Qi
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Anthony Patrizz
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Zachary R Spahr
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Akihiko Urayama
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Julia K Kofler
- Division of Neuropathology, University of Pittsburg, PA, USA
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| | - Jun Li
- Department of Neurology, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
9
|
Li Z, Cui Y, Feng J, Guo Y. Identifying the pattern of immune related cells and genes in the peripheral blood of ischemic stroke. J Transl Med 2020; 18:296. [PMID: 32746852 PMCID: PMC7398186 DOI: 10.1186/s12967-020-02463-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Ischemic stroke (IS) is the second leading cause of death worldwide which is a serious hazard to human health. Evidence suggests that the immune system plays a key role in the pathophysiology of IS. However, the precisely immune related mechanisms were still not been systematically understood. Methods In this study, we aim to identify the immune related modules and genes that might play vital role in the occurrence and development of IS by using the weighted gene co-expression network analysis (WGCNA). Meanwhile, we applied a kind of deconvolution algorithm to reveal the proportions of 22 subsets of immune cells in the blood samples. Results There were total 128 IS patients and 67 healthy control samples in the three Gene Expression Omnibus (GEO) datasets. Under the screening criteria, 1082 DEGs (894 up-regulated and 188 down-regulated) were chosen for further analysis. A total of 11 clinically significant modules were identified, from which immune-related hub modules and hub genes were further explored. Finally, 16 genes were selected as real hub genes for further validation analysis. Furthermore, these CIBERSORT results suggest that detailed analysis of the immune subtype distribution pattern has the potential to enhance clinical prediction and to identify candidates for immunotherapy. More specifically, we identified that neutrophil emerge as a promising target for IS therapies. Conclusions In the present study, we investigated the immune related gene expression modules, in which the SLAMF1, IL7R and NCF4 may be novel therapeutic targets to promote functional and histological recovery after ischemic stroke. Furthermore, these hub genes and neutrophils may become important biological targets in the drug screening and drug designing.
Collapse
Affiliation(s)
- Zijian Li
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Yanxia Guo
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Chopra S, Overall CM, Dufour A. Matrix metalloproteinases in the CNS: interferons get nervous. Cell Mol Life Sci 2019; 76:3083-3095. [PMID: 31165203 PMCID: PMC11105576 DOI: 10.1007/s00018-019-03171-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) have been investigated in context of chronic inflammatory diseases and demonstrated to degrade multiple components of the extracellular matrix (ECM). However, following several disappointing MMP clinical trials, recent studies have demonstrated unexpected novel functions of MMPs in viral infections and autoimmune inflammatory diseases in unanticipated locations. Thus, MMPs play additional functions in inflammation than just ECM degradation. They can regulate the activity of chemokines and cytokines of the immune response by precise proteolytic processing resulting in activation or inactivation of signaling pathways. MMPs have been demonstrated to cleave multiple substrates of the central nervous systems (CNS) and contribute to promoting and dampening diseases of the CNS. Initially, believed to be solely promoting pathologies, more than 10 MMPs to date have been shown to have protective functions. Here, we present some of the beneficial and destructive roles of MMPs in CNS pathologies and discuss strategies for the use of MMP inhibitors.
Collapse
Affiliation(s)
- Sameeksha Chopra
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Christopher M Overall
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
11
|
Aleithe S, Blietz A, Mages B, Hobusch C, Härtig W, Michalski D. Transcriptional Response and Morphological Features of the Neurovascular Unit and Associated Extracellular Matrix After Experimental Stroke in Mice. Mol Neurobiol 2019; 56:7631-7650. [PMID: 31089963 PMCID: PMC6815284 DOI: 10.1007/s12035-019-1604-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/10/2019] [Indexed: 12/18/2022]
Abstract
Experimental stroke studies yielded insights into single reactions of the neurovascular unit (NVU) and associated extracellular matrix (ECM). However, the extent of simultaneous processes caused by ischemia and their underlying transcriptional changes are still poorly understood. Strictly following the NVU and ECM concept, this study explored transcriptional responses of cellular and non-cellular components as well as their morphological characteristics following ischemia. Mice were subjected to 4 or 24 h of unilateral middle cerebral artery occlusion. In the neocortex and the striatum, cytoskeletal and glial elements as well as blood-brain barrier and ECM components were analyzed using real-time PCR. Western blot analyses allowed characterization of protein levels and multiple immunofluorescence labeling enabled morphological assessment. Out of 37 genes analyzed, the majority exhibited decreased mRNA levels in ischemic areas, while changes occurred as early as 4 h after ischemia. Down-regulated mRNA levels were predominantly localized in the neocortex, such as the structural elements α-catenin 2, N-cadherin, β-catenin 1, and βIII-tubulin, consistently decreasing 4 and 24 h after ischemia. However, a few genes, e.g., claudin-5 and Pcam1, exhibited increased mRNA levels after ischemia. For several components such as βIII-tubulin, N-cadherin, and β-catenin 1, matching transcriptional and immunofluorescence signals were obtained, whereas a few markers including neurofilaments exhibited opposite directions. In conclusion, the variety in gene regulation emphasizes the complexity of interactions within the ischemia-affected NVU and ECM. These data might help to focus future research on a set of highly sensitive elements, which might prospectively facilitate neuroprotective strategies beyond the traditional single target perspective.
Collapse
Affiliation(s)
- Susanne Aleithe
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany.
| | - Alexandra Blietz
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Bianca Mages
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Constance Hobusch
- Institute of Anatomy, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|
12
|
Hao XD, Le CS, Zhang HM, Shang DS, Tong LS, Gao F. Thrombin disrupts vascular endothelial-cadherin and leads to hydrocephalus via protease-activated receptors-1 pathway. CNS Neurosci Ther 2019; 25:1142-1150. [PMID: 30955248 DOI: 10.1111/cns.13129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Previous studies indicated that intraventricular injection of thrombin would induce hydrocephalus. But how thrombin works in this process remains unclear. Since cadherin plays a critical role in hydrocephalus, we aimed to explore the mechanisms of how thrombin acted on choroid plexus vascular endothelium and how thrombin interacted with vascular endothelial-cadherin (VE-cadherin) during hydrocephalus. METHODS There were two parts in this study. Firstly, rats received an injection of saline or thrombin into the right lateral ventricle. Magnetic resonance imaging was applied to measure the lateral ventricle volumes. Albumin leakage and Evans blue content were assessed to test the blood-brain barrier function. Immunofluorescence and Western blot were applied to detect the location and the expression of VE-cadherin. Secondly, we observed the roles of protease-activated receptors-1 (PAR1) inhibitor (SCH79797), Src inhibitor (PP2), p21-activated kinase-1 (PAK1) inhibitor (IPA3) in the thrombin-induced hydrocephalus, and their effects on the regulation of VE-cadherin. RESULTS Our study demonstrated that intraventricular injection of thrombin caused significant downregulation of VE-cadherin in choroid plexus and dilation of ventricles. In addition, the inhibition of PAR1/p-Src/p-PAK1 pathway reversed the decrease of VE-cadherin and attenuated thrombin-induced hydrocephalus. CONCLUSIONS Our results suggested that the thrombin-induced hydrocephalus was associated with the inhibition of VE-cadherin via the PAR1/p-Src/p-PAK1 pathway.
Collapse
Affiliation(s)
- Xiao-Di Hao
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chen-Sheng Le
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hong-Mei Zhang
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - De-Sheng Shang
- School of Medicine, Department of Radiology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lu-Sha Tong
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Feng Gao
- School of Medicine, Department of Neurology, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, Jackson WS, Petzold GC. Stroke target identification guided by astrocyte transcriptome analysis. Glia 2018; 67:619-633. [DOI: 10.1002/glia.23544] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Melvin Schleif
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Nelli Blank
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Hana Matušková
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| | - Thomas Ulas
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | - Kristian Händler
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Toni Schumacher
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Khalid Tai
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Joachim L. Schultze
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Gabor C. Petzold
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| |
Collapse
|
14
|
Vijayan M, Reddy PH. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis 2018; 54:427-43. [PMID: 27567871 DOI: 10.3233/jad-160527] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stroke is a brain disease that occurs when blood flow stops, resulting in reduced oxygen supply to neurons. Stroke occurs at any time and at any age, but increases after the age of 55. It is the second leading cause of death and the third leading cause of disability-adjusted, life-years. The pathophysiology of ischemic stroke is complex and recent molecular, cellular, and animal models and postmortem brain studies have revealed that multiple cellular changes have been implicated, including oxidative stress/mitochondrial dysfunction, inflammatory responses, micro RNA alterations, and marked changes in brain proteins. These cellular changes provide new information for developing therapeutic strategies for ischemic stroke treatment. Research also revealed that stroke increases with a number of modifiable factors and most strokes can be prevented and/or controlled through pharmacological or surgical interventions and lifestyle changes. Ischemic stroke is the major risk factor for vascular dementia and Alzheimer's disease. This review summarizes the latest research findings on stroke, including causal factors and molecular links between stroke and vascular disease/Alzheimer's disease.
Collapse
Affiliation(s)
- Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
15
|
Systematic Analysis of RNA Regulatory Network in Rat Brain after Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2018. [PMID: 29516010 PMCID: PMC5817225 DOI: 10.1155/2018/8354350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although extensive studies have identified large number of microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in ischemic stroke, the RNA regulation network response to focal ischemia remains poorly understood. In this study, we simultaneously interrogate the expression profiles of lncRNAs, miRNAs, and mRNAs changes during focal ischemia induced by transient middle cerebral artery occlusion. A set of 1924 novel lncRNAs were identified and may involve brain injury and DNA repair as revealed by coexpression network analysis. Furthermore, many short interspersed elements (SINE) mediated lncRNA:mRNA duplexes were identified, implying that lncRNAs mediate Staufen1-mediated mRNA decay (SMD) which may play a role during focal ischemia. Moreover, based on the competitive endogenous RNA (ceRNA) hypothesis, a stroke regulatory ceRNA network which reveals functional lncRNA:miRNA:mRNA interactions was revealed in ischemic stroke. In brief, this work reports a large number of novel lncRNAs responding to focal ischemia and constructs a systematic RNA regulation network which highlighted the role of ncRNAs in ischemic stroke.
Collapse
|
16
|
García-Pupo L, Sánchez JR, Ratman D, Pérez-Novo C, Declerck K, De Bosscher K, Markakis MN, Beemster G, Zaldo A, Nuñez Figueredo Y, Delgado-Hernández R, Vanden Berghe W. Semi-synthetic sapogenin exerts neuroprotective effects by skewing the brain ischemia reperfusion transcriptome towards inflammatory resolution. Brain Behav Immun 2017; 64:103-115. [PMID: 28390980 DOI: 10.1016/j.bbi.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022] Open
Abstract
Stroke represents one of the first causes of mortality and morbidity worldwide. We evaluated the therapeutic potential of a novel semi-synthetic spirosteroid sapogenin derivative "S15" in a transient middle cerebral artery occlusion (tMCAO) focal ischemia model in rat. S15-treated rats had significantly reduced infarct volumes and improved neurological functions at 24h post-reperfusion, compared with ischemia. Corresponding gene expression changes in brain were characterized by mRNA sequencing and qPCR approaches. Next, we applied geneset, pathway and transcription factor motif enrichment analysis to identify relevant signaling networks responsible for neuronal damage upon ischemia-reperfusion or neuroprotection upon pretreatment with S15. As expected, ischemia-reperfusion brain damage strongly modulates transcriptional programs associated with immune responses, increased differentiation of immune cells as well as reduced (cat)ion transport and synaptic activity. Interestingly, S15-dependent neuroprotection regulates inflammation-associated genes involved in phagosome specific resolution of tissue damage, chemotaxis and anti-inflammatory alternative activation of microglia. Altogether our transcriptome wide RNA sequencing and integrated pathway analysis provides new clues in the neuroprotective properties of a novel spirosteroid S15 or neuronal damage in rat brains subjected to ischemia, which opens new perspectives for successful treatment of stroke.
Collapse
Affiliation(s)
- Laura García-Pupo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Jeney Ramírez Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Claudina Pérez-Novo
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ken Declerck
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Marios Nektarios Markakis
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171 G.U.613, 2020 Antwerp, Belgium
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171 G.U.613, 2020 Antwerp, Belgium
| | - Armando Zaldo
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de la Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado, Plaza de la Revolución, CP 10400 La Habana, Cuba.
| | - Yanier Nuñez Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - René Delgado-Hernández
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Wim Vanden Berghe
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
17
|
Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A. Protein Profile and Morphological Alterations in Penumbra after Focal Photothrombotic Infarction in the Rat Cerebral Cortex. Mol Neurobiol 2016; 54:4172-4188. [PMID: 27324898 DOI: 10.1007/s12035-016-9964-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 06/08/2016] [Indexed: 11/28/2022]
Abstract
After ischemic stroke, cell damage propagates from infarct core to surrounding tissues (penumbra). To reveal proteins involved in neurodegeneration and neuroprotection in penumbra, we studied protein expression changes in 2-mm ring around the core of photothrombotic infarct induced in the rat brain cortex by local laser irradiation after administration of Bengal Rose. The ultrastructural study showed edema and degeneration of neurons, glia, and capillaries. Morphological changes gradually decreased across the penumbra. Using the antibody microarrays, we studied changes in expression of >200 neuronal proteins in penumbra 4 or 24 h after focal photothrombotic infarct. Diverse cellular subsystems were involved in the penumbra tissue response: signal transduction pathways such as protein kinase Bα/GSK-3, protein kinase C and its β1 and β2 isoforms, Wnt/β-catenin (axin1, GSK-3, FRAT1), Notch/NUMB, DYRK1A, TDP43; mitochondria quality control (Pink1, parkin, HtrA2); ubiquitin-mediated proteolysis (ubiquilin-1, UCHL1); axon outgrowth and guidance (NAV-3, CRMP2, PKCβ2); vesicular trafficking (syntaxin-8, TMP21, Munc-18-3, synip, ALS2, VILIP1, syntaxin, synaptophysin, synaptotagmin); biosynthesis of neuromediators (tryptophan hydroxylase, monoamine oxidase B, glutamate decarboxylase, tyrosine hydroxylase, DOPA decarboxylase, dopamine transporter); intercellular interactions (N-cadherin, PMP22); cytoskeleton (neurofilament 68, neurofilament-M, doublecortin); and other proteins (LRP1, prion protein, β-amyloid). These proteins are involved in neurodegeneration or neuroprotection. Such changes were most expressed 4 h after photothrombotic impact. Immunohistochemical and Western blot studies of expression of monoamine oxidase B, UCHL1, DYRK1A, and Munc-18-3 confirmed the proteomic data. These data provide the integral view on the penumbra response to photothrombotic infarct. Some of these proteins can be potential targets for ischemic stroke therapy.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia.
| | - Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia
| | - Grigory Fedorenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia.,Institute of Arid Zones, Southern Scientific Center of Russian Academy of Sciences, 41 Chekhov prosp., Rostov-on-Don, 344006, Russia
| | - Tayana Lapteva
- Regional Consulting and Diagnostic Center, 127 Pushkinskaya st., Rostov-on-Don, 344010, Russia
| | - Alexej Fedorenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky pr., Rostov-on-Don, 344090, Russia
| |
Collapse
|
18
|
Inhibition of p21-Activated Kinase 1 by IPA-3 Promotes Locomotor Recovery After Spinal Cord Injury in Mice. Spine (Phila Pa 1976) 2016; 41:919-925. [PMID: 26863260 DOI: 10.1097/brs.0000000000001491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Ninety-six male adult CD-1 mice were randomly divided into sham, spinal cord injury (SCI) + vehicle, and SCI + IPA-3 groups. Expression of matrix metalloproteinase (MMP)-2 and MMP-9, production of tumor necrosis factors (TNF)-α and interleukin (IL)-1β, tissue edema, blood-spinal cord barrier penetrability, neural cell apoptosis, and neurological function recovery were measured. OBJECTIVE The aim of the study was to evaluate the effect of specific inhibition of p21-activated kinase 1 (PAK1) by IPA-3 on SCI and the underlying mechanisms thereof. SUMMARY OF BACKGROUND DATA SCI is a devastating clinical condition that may result in long-lasting and deteriorating functional deficits. The major goal of SCI treatment is to limit the development of secondary injury. IPA-3, a PAK1 inhibitor, exhibited neuroprotection against secondary damage after traumatic brain injury and subarachnoid hemorrhage (SAH). METHODS MMP-2, MMP-9, and cleaved caspase-3 expression were assessed by Western blot. Inflammatory cytokines TNF-α and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA). The blood-spinal cord barrier disruption was measured by water content and Evans blue extravasation of the spinal cord. Neuronal apoptosis was evaluated by Nissl staining and Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) assay. The locomotor behavior of hind limb was evaluated by Basso Mouse Scale (BMS) at 1, 3, 7, 14, and 28 days post-injury. RESULTS Compared with SCI + vehicle mice, IPA-3 treatment showed decreased p-PAK1, MMP-2, MMP-9, cleaved caspase-3, TNF-α, and IL-1β expression. Moreover, inhibition of PAK1 by IPA-3 reduced spinal cord water content and Evans blue extravasation, increased neuronal survival, and reduced TUNEL-positive cells at 24 hours after SCI. Furthermore, IPA-3 improved spinal cord functional recovery 7 days after SCI. CONCLUSION Inhibition of PAK1 by IPA-3 promoted recovery of neurological function, possibly by downregulating the expression of MMP-2, MMP-9, TNF-α, and IL-1β. Our data suggest that PAK1 may be a potential therapeutic target in patients with SCI. LEVEL OF EVIDENCE 1.
Collapse
|
19
|
Meissner A, Visanji NP, Momen MA, Feng R, Francis BM, Bolz SS, Hazrati LN. Tumor Necrosis Factor-α Underlies Loss of Cortical Dendritic Spine Density in a Mouse Model of Congestive Heart Failure. J Am Heart Assoc 2015; 4:JAHA.115.001920. [PMID: 25948533 PMCID: PMC4599420 DOI: 10.1161/jaha.115.001920] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Heart failure (HF) is a progressive disorder characterized by reduced cardiac output and increased peripheral resistance, ultimately leading to tissue perfusion deficits and devastating consequences for several organs including the brain. We previously described a tumor necrosis factor-α (TNF-α)–dependent enhancement of posterior cerebral artery tone and concomitant reduced cerebral blood flow in a mouse model of early HF in which blood pressure remains minimally affected. HF is often associated with cognitive impairments such as memory deficits, even before any overt changes in brain structure and function occur. The pathophysiology underlying the development of cognitive impairments in HF is unknown, and appropriate treatment strategies are lacking. Methods and Results We used a well-established mouse model in which HF was induced by experimental myocardial infarction produced by permanent surgical ligation of the left anterior descending coronary artery (infarct size ≈25% of the left ventricular wall). Ligated mice developed enlarged hearts, congested lungs, and reduced cardiac output and blood pressure, with elevated peripheral resistance within 6 to 8 weeks after ligation. In this study, we demonstrated the significance of the proinflammatory cytokine TNF-α during HF-mediated neuroinflammation and associated impaired hippocampus-independent nonspatial episodic memory function. Augmented cerebral TNF-α expression and microglial activation in HF mice, indicative of brain inflammation, were accompanied by morphological changes and significant reduction of cortical dendritic spines (61.39±8.61% for basal and 61.04±9.18% for apical spines [P<0.001]). The significance of TNF-α signaling during the observed HF-mediated neurodegenerative processes is supported by evidence showing that sequestration or genetic deletion of TNF-α ameliorates the observed reduction of cortical dendritic spines (33.51±7.63% for basal and 30.13±6.98% for apical spines in wild-type mice treated with etanercept; 17.09±6.81% for basal and 17.21±7.29% for apical spines in TNF-α−/−). Moreover, our data suggest that alterations in cerebral serum and glucocorticoid-inducible kinase 1 (SgK1) expression and phosphorylation during HF may be TNF-α dependent and that an increase of SgK1 phosphorylation potentially plays a role in the HF-associated reduction of dendritic spine density. Conclusions Our findings demonstrate that TNF-α plays a pivotal role in HF-mediated neuroinflammation and associated alterations of cortical dendritic spine density and has the potential to reveal novel treatment strategies for HF-associated memory deficits.
Collapse
Affiliation(s)
- Anja Meissner
- Department of Physiology, University of Toronto, Ontario, Canada (A.M., S.S.B.) Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.M.)
| | - Naomi P Visanji
- Morten and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, Toronto, Ontario, Canada (N.P.V.)
| | - M Abdul Momen
- Division of Cell and Molecular Biology, Toronto General Hospital Research Institute, Toronto, Ontario, Canada (A.M.)
| | - Rui Feng
- Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada (R.F., B.M.F., L.N.H.)
| | - Beverly M Francis
- Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada (R.F., B.M.F., L.N.H.)
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Ontario, Canada (A.M., S.S.B.) Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada (S.S.B.) Toronto Centre for Microvascular Medicine, University of Toronto, and Li Ka Shing Knowledge Institute at St Michael's Hospital, Toronto, Ontario, Canada (S.S.B.)
| | - Lili-Naz Hazrati
- Tanz Center for Research in Neurodegenerative Diseases, Toronto, Ontario, Canada (R.F., B.M.F., L.N.H.)
| |
Collapse
|
20
|
Sakamoto M, Miyazaki Y, Kitajo K, Yamaguchi A. VGF, Which Is Induced Transcriptionally in Stroke Brain, Enhances Neurite Extension and Confers Protection Against Ischemia In Vitro. Transl Stroke Res 2015; 6:301-8. [PMID: 25921200 DOI: 10.1007/s12975-015-0401-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Ischemic stroke is a devastating neural event as currently no therapies other than physical rehabilitation are available to enhance recovery after stroke. To identify endogenous mediators to repair stroke brain, we performed the expression profiling analysis of transcripts in the mouse photothrombotic stroke brain. Based on real-time PCR analysis, we found VGF, identified as a nerve growth factor (NGF)-regulated transcript, was induced transcriptionally in stroke brain at 1-7 days after insult. The immunoreactivites of VGF were observed in the neurons around the ischemic core of stroke brain. Experiments with various inhibitors and plasmid transfections indicated that cAMP response element binding protein-mediated complex signaling pathways are possibly implicated in the NGF-mediated VGF expressions in vitro. Furthermore, the over-expression of VGF promoted neurite extensions and conferred protections from ischemic stress in vitro. These findings raise the possibility the application of VGF could be one of the promising therapeutic strategies to enhance recovery after stroke.
Collapse
Affiliation(s)
- Muneki Sakamoto
- Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | | | | | | |
Collapse
|
21
|
A microarray study of middle cerebral occlusion rat brain with acupuncture intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:496932. [PMID: 25861363 PMCID: PMC4377484 DOI: 10.1155/2015/496932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 11/22/2022]
Abstract
Microarray analysis was used to investigate the changes of gene expression of ischemic stroke and acupuncture intervention in middle cerebral artery occlusion (MCAo) rat brain. Results showed that acupuncture intervention had a remarkable improvement in neural deficit score, cerebral blood flow, and cerebral infarction volume of MCAo rats. Microarray analysis showed that a total of 627 different expression genes were regulated in ischemic stroke. 417 genes were upregulated and 210 genes were downregulated. A total of 361 different expression genes were regulated after acupuncture intervention. Three genes were upregulated and 358 genes were downregulated. The expression of novel genes after acupuncture intervention, including Tph1 and Olr883, was further analyzed by Real-Time Quantitative Polymerase Chain Reaction (RT-PCR). Upregulation of Tph1 and downregulation of Olr883 indicated that the therapeutic effect of acupuncture for ischemic stroke may be closely related to the suppression of poststroke depression and regulation of olfactory transduction. In conclusion, the present study may enrich our understanding of the multiple pathological process of ischemic brain injury and indicate possible mechanisms of acupuncture on ischemic stroke.
Collapse
|
22
|
Quan Z, Quan Y, Wei B, Fang D, Yu W, Jia H, Quan W, Liu Y, Wang Q. Protein-protein interaction network and mechanism analysis in ischemic stroke. Mol Med Rep 2014; 11:29-36. [PMID: 25333814 PMCID: PMC4237100 DOI: 10.3892/mmr.2014.2696] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 05/13/2014] [Indexed: 12/23/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and permanent disability, with enormous financial repercussions on health systems worldwide. Ischemic brain injury results from a complex sequence of pathophysiological events that evolve over time. In order to examine the molecular mechanisms underlying middle cerebral artery occlusion (MCAO)-induced ischemic stroke, the GSE35338 affymetrix microarray data was obtained from the Gene Expression Omnibus database and the differentially expressed genes (DEGs) between samples from patients with MCAO-induced ischemic stroke and sham controls at various time points were identified. Furthermore, protein-protein interaction (PPI) networks were constructed by mapping the DEGs into PPI data to identify the pathways that these DEGS are involved in. The results revealed that the expression of 438 DEGs, which are mainly involved in cell death, oxidant reduction, cell cycle and cell-cell signaling, were altered in MCAO samples. The nodes of CXC motif chemokine 10 (CXCL10) and interleukin-6 (IL-6) were large, with degrees of >20. In conclusion, the results suggest that CXCL10 and IL-6 have important roles in the occurrence and progression of MCAO-induced ischemic stroke.
Collapse
Affiliation(s)
- Zhe Quan
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Yuan Quan
- Norman Bethune Medical School of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Bo Wei
- Department of Neurosurgery, The Third Affiliated Hospital (China‑Japan Union Hospital) of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Dening Fang
- Department of Gastroenterology, Shanghai No. 8 Hospital, Shanghai 200235, P.R. China
| | - Weidong Yu
- Department of Neurosurgery, The Third Affiliated Hospital (China‑Japan Union Hospital) of Jilin University, Changchun, Jilin 130031, P.R. China
| | - Hao Jia
- Department of Emergency Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Wei Quan
- Department of Infection, HuiNanXian Hospital, Huinan, Jilin 135100, P.R. China
| | - Yuguang Liu
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Qihong Wang
- Department of Neurosurgery, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
23
|
Rong C, Xing Y, Jiang X, Wang J, Gao B, Zhao J, Liu K. Angiotensin-converting enzyme gene polymorphism and middle cerebral artery stenosis in a Chinese Han population. Neural Regen Res 2014; 8:1410-7. [PMID: 25206436 PMCID: PMC4107760 DOI: 10.3969/j.issn.1673-5374.2013.15.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
The angiotensin-converting enzyme gene is a candidate gene of stroke. The present study involved 62 healthy volunteers and 148 patients with middle cerebral artery stenosis as confirmed by brain color ultrasound from a Han population in North China, and determined the peripheral blood angiotensin-converting enzyme genotype using PCR-restriction fragment length polymorphism analysis. The results showed that the frequencies of the DD genotype and D allele were increased in patients with middle cerebral artery stenosis, but the difference was not statistically significant compared with healthy controls. The findings of this study on the relationship between stroke genes and middle cerebral artery stenosis indicate no significant correlation between the frequencies of the DD genotype and D allele of angiotensin-converting enzyme and middle cerebral artery stenosis in this Han population from North China. In the future, studies will be carried out to investigate correlations between multiple stroke candidate gene synergy and middle cerebral artery stenosis to provide a foundation for the development of gene therapy.
Collapse
Affiliation(s)
- Chunshu Rong
- Department of Encephalopathy, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China ; Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Yingqi Xing
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xinmei Jiang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Juan Wang
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Baoshan Gao
- Department of Urinary Surgery, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jianjun Zhao
- Department of Encephalopathy, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, Jilin Province, China
| | - Kangding Liu
- Department of Neurology, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
24
|
Koth AP, Oliveira BR, Parfitt GM, Buonocore JDQ, Barros DM. Participation of group I p21-activated kinases in neuroplasticity. ACTA ACUST UNITED AC 2014; 108:270-7. [PMID: 25174326 DOI: 10.1016/j.jphysparis.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/25/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
PAKs are a family of serine/threonine protein kinases activated by small GTPases of the Rho family, including Rac and Cdc42, and are categorized into group I (isoforms 1, 2 and 3) and group II (isoforms 4, 5 and 6). PAK1 and PAK3 are critically involved in biological mechanisms associated with neurodevelopment, neuroplasticity and maturation of the nervous system, and changes in their activity have been detected in pathological disorders, such as Alzheimer's disease, Huntington's disease and mental retardation. The group I PAKs have been associated with neurological processes due to their involvement in intracellular mechanisms that result in molecular and cellular morphological alterations that promote cytoskeletal outgrowth, increasing the efficiency of synaptic transmission. Their substrates in these processes include other intracellular signaling molecules, such as Raf, Mek and LIMK, as well as other components of the cytoskeleton, such as MLC and FLNa. In this review, we describe the characteristics of group I PAKs, such as their molecular structure, mechanisms of activation and importance in the neurobiological processes involved in synaptic plasticity.
Collapse
Affiliation(s)
- André P Koth
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Bruno R Oliveira
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Biologia Molecular, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Gustavo M Parfitt
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Juliana de Quadros Buonocore
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| | - Daniela M Barros
- Instituto de Ciências Biológicas (ICB), Programa de Pós-graduação em Ciências Fisiológicas, Fisiologia Animal Comparada, Laboratório de Neurociências, Universidade Federal do Rio Grande (FURG), Av Itália, Km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|
25
|
Inhibition of p21-activated kinase 1 by IPA-3 attenuates secondary injury after traumatic brain injury in mice. Brain Res 2014; 1585:13-22. [PMID: 25148711 DOI: 10.1016/j.brainres.2014.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/26/2023]
Abstract
The p21-activated kinase 1 (PAK1) is up-regulated in the brain following traumatic brain injury (TBI). Inhibition of PAK1 has been found to alleviate brain edema in a rat model of subarachnoid hemorrhage. Suppressing PAK1 activity might represent a novel therapeutics of attenuating secondary injury following TBI. Here we confirmed that the mRNA and protein levels of PAK1 and the protein level of p-PAK1 were significantly increased after inducing TBI in mice via M.A. Flierl's weight-drop model. A single intraperitoneal administration of IPA-3, a specific PAK1 inhibitor, immediately after TBI significantly reduced the protein level of p-PAK1, cleaved caspase-3 level, the number of apoptotic cells at the lesion sites of TBI mice. It also reduced brain water content and the blood-brain barrier permeability in TBI mice. Furthermore, the administration of IPA-3 significantly reduced the neurological severity score and increased the grip test score in TBI mice. Taken together, we demonstrate that PAK1 inhibition by IPA-3 may attenuate the secondary injury following TBI, suggesting it might be a promising neuroprotective strategy for preventing the development of secondary injury after TBI.
Collapse
|
26
|
Sieber MW, Guenther M, Jaenisch N, Albrecht-Eckardt D, Kohl M, Witte OW, Frahm C. Age-specific transcriptional response to stroke. Neurobiol Aging 2014; 35:1744-54. [PMID: 24529500 DOI: 10.1016/j.neurobiolaging.2014.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
Increased age is a major risk factor for stroke incidence and post-ischemic mortality. To develop age-adjusted therapeutic interventions, a clear understanding of the complexity of age-related post-ischemic mechanisms is essential. Transient occlusion of the middle cerebral artery--a model that closely resembles human stroke--was used to induce cerebral infarction in mice of 4 different ages (2, 9, 15, 24 months). By using Illumina cDNA microarrays and quantitative PCR we detected a distinct age-dependent response to stroke involving 350 differentially expressed genes. Our analyses also identified 327 differentially expressed genes that responded to stroke in an age-independent manner. These genes are involved in different aspects of the inflammatory and immune response, oxidative stress, cell cycle activation and/or DNA repair, apoptosis, cytoskeleton reorganization and/or astrogliosis, synaptic plasticity and/or neurotransmission, and depressive disorders and/or dopamine-, serotonin-, GABA-signaling. In agreement with our earlier work, aged brains displayed an attenuated inflammatory and immune response (Sieber et al., 2011) and a reduced impairment of post-stroke synaptic plasticity. Our data also revealed a distinct age-related susceptibility for post-ischemic depression, the most common neuropsychiatric consequence of stroke, which has a major influence on functional outcome.
Collapse
Affiliation(s)
- Matthias W Sieber
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Madlen Guenther
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Nadine Jaenisch
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | | | - Matthias Kohl
- Department of Mechanical and Process Engineering, Furtwangen University, Villingen-Schwenningen, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany; CSCC, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
27
|
Van Elzen R, Moens L, Dewilde S. Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev Proteomics 2014; 5:263-82. [DOI: 10.1586/14789450.5.2.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Agrawal M, Kumar V, Singh AK, Kashyap MP, Khanna VK, Siddiqui MA, Pant AB. trans-Resveratrol protects ischemic PC12 Cells by inhibiting the hypoxia associated transcription factors and increasing the levels of antioxidant defense enzymes. ACS Chem Neurosci 2013; 4:285-94. [PMID: 23421680 DOI: 10.1021/cn300143m] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An in vitro model of ischemic cerebral stroke [oxygen-glucose deprivation (OGD) for 6 h followed by 24 h reoxygenation (R)] with PC12 cells increases Ca(2+) influx by upregulating native L-type Ca(2+) channels and reactive oxygen species (ROS) generation. This reactive oxygen species generation and increase in intracellular Ca(2+) triggers the expression of hypoxic homeostasis transcription factors such as hypoxia induced factor-1 alpha (HIF-1α), Cav-beta 3 (Cav β3), signal transducer and activator of transcription 3 (STAT3), heat shock protein 27 (hsp-27), and cationic channel transient receptor potential melastatin 7 (TRPM7). OGD insulted PC12 cells were subjected to biologically safe doses (5, 10, and 25 μM) of trans-resveratrol in three different treatment groups: 24 h prior to OGD (pre-treatment); 24 h post OGD (post-treatment); and from 24 h before OGD to end of reoxygenation period (whole-treatment). Here, we demonstrated that OGD-R-induced neuronal injury/death is by reactive oxygen species generation, increase in intracellular calcium levels, and decrease in antioxidant defense enzymes. trans-Resveratrol increases the viability of OGD-R insulted PC12 cells, which was assessed by using MTT, NRU, and LDH release assay. In addition, trans-resveratrol significantly decreases reactive oxygen species generation, intracellular Ca(2+) levels, and hypoxia associated transcription factors and also increases the level of antioxidant defense enzymes. Our data shows that the whole-treatment group of trans-resveratrol is most efficient in decreasing hypoxia induced cell death through its antioxidant properties.
Collapse
Affiliation(s)
- Megha Agrawal
- CSIR-Indian Institute of Toxicology Research, Lucknow,
India
| | - Vivek Kumar
- CSIR-Indian Institute of Toxicology Research, Lucknow,
India
| | | | | | - Vinay K. Khanna
- CSIR-Indian Institute of Toxicology Research, Lucknow,
India
| | | | - Aditya B. Pant
- CSIR-Indian Institute of Toxicology Research, Lucknow,
India
| |
Collapse
|
29
|
The transcriptome of cerebral ischemia. Brain Res Bull 2012; 88:313-9. [PMID: 22381515 DOI: 10.1016/j.brainresbull.2012.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 07/20/2011] [Accepted: 02/13/2012] [Indexed: 01/26/2023]
Abstract
The molecular causality and response to stroke is complex. Yet, much of the literature examining the molecular response to stroke has focused on targeted pathways that have been well-characterized. Consequently, our understanding of stroke pathophysiology has made little progress by way of clinical therapeutics since tissue plasminogen activator was approved for treatment nearly a decade ago. The lack of clinical translation is in part due to neuron-focused studies, preclinical models of cerebral ischemia and the paradoxical nature of neuro-inflammation. With the evolution of the Stroke Therapy Academic Industry Roundtable criteria streamlining research efforts and broad availability of genomic technologies, the ability to decipher the molecular fingerprint of ischemic stroke is on the horizon. This review highlights preclinical microarray findings of the ischemic brain, discusses the transcriptome of cerebral preconditioning and emphasizes the importance of further characterizing the role of the neurovascular unit and peripheral white blood cells in mediating stroke damage and repair within the penumbra.
Collapse
|
30
|
Nagel S, Papadakis M, Pfleger K, Grond-Ginsbach C, Buchan AM, Wagner S. Microarray analysis of the global gene expression profile following hypothermia and transient focal cerebral ischemia. Neuroscience 2012; 208:109-22. [PMID: 22366221 DOI: 10.1016/j.neuroscience.2012.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND Hypothermia is one of the most robust experimental neuroprotective interventions against cerebral ischemia. Identification of molecular pathways and gene networks together with single genes or gene families that are significantly associated with neuroprotection might help unravel the mechanisms of therapeutic hypothermia. MATERIAL AND METHODS We performed a microarray analysis of ischemic rat brains that underwent 90 min of middle cerebral artery occlusion (MCAO) and 48 h of reperfusion. Hypothermia was induced for 4 h, starting 1 h after MCAO in male Wistar rats. At 48 h, magnetic resonance imaging (MRI) was performed for infarct volumetry, and functional outcome was determined by a neuroscore. The brain gene expression profile of sham (S), ischemia (I), and ischemia plus hypothermia (HI) treatment were compared by analyzing changes of individual genes, pathways, and networks. Real-time reverse-transcribed polymerase chain reaction (RT-PCR) was performed on selected genes to validate the data. RESULTS Rats treated with HI had significantly reduced infarct volumes and improved neuroscores at 48 h compared with I. Of 4067 genes present on the array chip, HI compared with I upregulated 50 (1.23%) genes and downregulated 103 (3.20%) genes equal or greater than twofold. New genes potentially mediating neuroprotection by hypothermia were HNRNPAB, HIG-1, and JAK3. On the pathway level, HI globally suppressed the ischemia-driven gene response. Twelve gene networks were identified to be significantly altered by HI compared with I. The most significantly altered network contained genes participating in apoptosis suppression. CONCLUSIONS Our data suggest that although hypothermia at the pathway level restored gene expression to sham levels, it selectively regulated the expression of several genes implicated in protein synthesis and folding, calcium homeostasis, cellular and synaptic integrity, inflammation, cell death, and apoptosis.
Collapse
Affiliation(s)
- S Nagel
- Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Di Napoli M, Shah IM. Neuroinflammation and cerebrovascular disease in old age: a translational medicine perspective. J Aging Res 2011; 2011:857484. [PMID: 22132330 PMCID: PMC3205617 DOI: 10.4061/2011/857484] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/10/2011] [Indexed: 11/20/2022] Open
Abstract
The incidence of cerebrovascular disease is highest in the elderly population. However, the pathophysiological mechanisms of brain response to cerebral ischemia in old age are currently poorly understood. Ischemic changes in the commonly used young animal stroke models do not reflect the molecular changes associated with the aged brain. Neuroinflammation and oxidative stress are important pathogenic processes occurring during the acute phase of cerebral ischemia. Free radical generation is also implicated in the aging process, and the combination of these effects in elderly stroke patients could explain the higher risk of morbidity and mortality. A better understanding of stroke pathophysiology in the elderly patient would assist in the development of new therapeutic strategies for this vulnerable age group. With the increasing use of reperfusion therapies, inflammatory pathways and oxidative stress remain attractive therapeutic targets for the development of adjuvant neuroprotective agents. This paper will discuss these molecular aspects of acute stroke and senescence from a bench-to-bedside research perspective.
Collapse
Affiliation(s)
- Mario Di Napoli
- Neurological Service, San Camillo de'Lellis General Hospital, 02100 Rieti, Italy
| | | |
Collapse
|
32
|
Chung JY, Yi JW, Kim SM, Lim YJ, Chung JH, Jo DJ. Changes in gene expression in the rat hippocampus after focal cerebral ischemia. J Korean Neurosurg Soc 2011; 50:173-8. [PMID: 22102944 DOI: 10.3340/jkns.2011.50.3.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/19/2011] [Accepted: 09/14/2011] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The rat middle cerebral artery thread-occlusion model has been widely used to investigate the pathophysiological mechanisms of stroke and to develop therapeutic treatment. This study was conducted to analyze energy metabolism, apoptotic signal pathways, and genetic changes in the hippocampus of the ischemic rat brain. METHODS Focal transient cerebral ischemia was induced by obstructing the middle cerebral artery for two hours. After 24 hours, the induction of ischemia was confirmed by the measurement of infarct size using 2,3,5-triphenyltetrazolium chloride staining. A cDNA microarray assay was performed after isolating the hippocampus, and was used to examine changes in genetic expression patterns. RESULTS According to the cDNA microarray analysis, a total of 1,882 and 2,237 genes showed more than a 2-fold increase and more than a 2-fold decrease, respectively. When the genes were classified according to signal pathways, genes related with oxidative phosphorylation were found most frequently. There are several apoptotic genes that are known to be expressed during ischemic brain damage, including Akt2 and Tnfrsf1a. In this study, the expression of these genes was observed to increase by more than 2-fold. As energy metabolism related genes grew, ischemic brain damage was affected, and the expression of important genes related to apoptosis was increased/decreased. CONCLUSION Our analysis revealed a significant change in the expression of energy metabolism related genes (Atp6v0d1, Atp5g2, etc.) in the hippocampus of the ischemic rat brain. Based on this data, we feel these genes have the potential to be target genes used for the development of therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Jun Young Chung
- Department of Anesthesiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Rosell A, Vilalta A, García-Berrocoso T, Fernández-Cadenas I, Domingues-Montanari S, Cuadrado E, Delgado P, Ribó M, Martínez-Sáez E, Ortega-Aznar A, Montaner J. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One 2011; 6:e16750. [PMID: 21311749 PMCID: PMC3032742 DOI: 10.1371/journal.pone.0016750] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/10/2011] [Indexed: 01/09/2023] Open
Abstract
Background Spontaneous intracerebral hemorrhage (ICH) represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. Methodology/Principal Findings Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH) and the corresponding contralateral white (CW) and grey (CG) matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between −3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed). The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. Conclusions The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions.
Collapse
Affiliation(s)
- Anna Rosell
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Anna Vilalta
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Israel Fernández-Cadenas
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sophie Domingues-Montanari
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Eloy Cuadrado
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Pilar Delgado
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marc Ribó
- Stroke Unit and Department of Neurology, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | - Elena Martínez-Sáez
- Neuropathology Unit, Department of Pathology, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | - Arantxa Ortega-Aznar
- Neuropathology Unit, Department of Pathology, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Department of Neurology, Universitat Autònoma de Barcelona, Institut de Recerca, Hospital Vall d'Hebron, Barcelona, Spain
- Stroke Unit and Department of Neurology, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Kichina JV, Goc A, Al-Husein B, Somanath PR, Kandel ES. PAK1 as a therapeutic target. Expert Opin Ther Targets 2010; 14:703-25. [PMID: 20507214 DOI: 10.1517/14728222.2010.492779] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE OF THE FIELD P21-activated kinases (PAKs) are involved in multiple signal transduction pathways in mammalian cells. PAKs, and PAK1 in particular, play a role in such disorders as cancer, mental retardation and allergy. Cell motility, survival and proliferation, the organization and function of cytoskeleton and extracellular matrix, transcription and translation are among the processes affected by PAK1. AREAS COVERED IN THIS REVIEW We discuss the mechanisms that control PAK1 activity, its involvement in physiological and pathophysiological processes, the benefits and the drawbacks of the current tools to regulate PAK1 activity, the evidence that suggests PAK1 as a therapeutic target and the likely directions of future research. WHAT THE READER WILL GAIN The reader will gain a better knowledge and understanding of the areas described above. TAKE HOME MESSAGE PAK1 is a promising therapeutic target in cancer and allergen-induced disorders. Its suitability as a target in vascular, neurological and infectious diseases remains ambiguous. Further advancement of this field requires progress on such issues as the development of specific and clinically acceptable inhibitors, the choice between targeting one or multiple PAK isoforms, elucidation of the individual roles of PAK1 targets and the mechanisms that may circumvent inhibition of PAK1.
Collapse
Affiliation(s)
- Julia V Kichina
- Roswell Park Cancer Institute, Department of Cell Stress Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Prevention of epileptogenesis is an unmet need in medicine. During the last 3 years, however, several preclinical studies have demonstrated remarkable favorable effects of novel treatments on genetic and acquired epileptogenesis. These include the use of immunosuppressants and treatments that modify cellular adhesion, proliferation, and/or plasticity. In addition, the use of antiepileptic drugs in rats with genetic epilepsy or proconvulsants in acquired epilepsy models has provided somewhat unexpected favorable effects. This review summarizes these studies, and introduces some caveats when interpreting the data. In particular, the effect of genetic background, the severity of epileptogenic insult, the method and duration of seizure monitoring, and size of animal population are discussed. Furthermore, a novel scheme for defining epileptogenesis-related terms is presented.
Collapse
Affiliation(s)
- Asla Pitkänen
- Epilepsy Research Laboratory, AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
36
|
Tseveleki V, Rubio R, Vamvakas SS, White J, Taoufik E, Petit E, Quackenbush J, Probert L. Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer's disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics 2010; 96:82-91. [PMID: 20435134 DOI: 10.1016/j.ygeno.2010.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 12/17/2022]
Abstract
The brain responds to injury and infection by activating innate defense and tissue repair mechanisms. Working upon the hypothesis that the brain defense response involves common genes and pathways across diverse pathologies, we analysed global gene expression in brain from mouse models representing three major central nervous system disorders, cerebral stroke, multiple sclerosis and Alzheimer's disease compared to normal brain using DNA microarray expression profiling. A comparison of dysregulated genes across disease models revealed common genes and pathways including key components of estrogen and TGF-beta signaling pathways that have been associated with neuroprotection as well as a neurodegeneration mediator, TRPM7. Further, for each disease model, we discovered collections of differentially expressed genes that provide novel insight into the individual pathology and its associated mechanisms. Our data provide a resource for exploring the complex molecular mechanisms that underlie brain neurodegeneration and a new approach for identifying generic and disease-specific targets for therapy.
Collapse
|
37
|
Hammer S, Sommer A, Fichtner I, Becker M, Rolff J, Merk J, Klar U, Hoffmann J. Comparative profiling of the novel epothilone, sagopilone, in xenografts derived from primary non-small cell lung cancer. Clin Cancer Res 2010; 16:1452-65. [PMID: 20179216 DOI: 10.1158/1078-0432.ccr-09-2455] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Characterization of new anticancer drugs in a few xenograft models derived from established human cancer cell lines frequently results in the discrepancy between preclinical and clinical results. To take the heterogeneity of tumors into consideration more thoroughly, we describe here a preclinical approach that may allow a more rational clinical development of new anticancer drugs. EXPERIMENTAL DESIGN We tested Sagopilone, an optimized fully synthetic epothilone, in 22 well-characterized patient-derived non-small cell lung cancer models and correlated results with mutational and genome-wide gene expression analysis. RESULTS Response analysis according to clinical trial criteria revealed that Sagopilone induced overall responses in 64% of the xenograft models (14 of 22), with 3 models showing stable disease and 11 models showing partial response. A comparison with response rates for established drugs showed the strong efficacy of Sagopilone in non-small cell lung cancer. In gene expression analyses, Sagopilone induced tubulin isoforms in all tumor samples, but genes related to mitotic arrest only in responder models. Moreover, tumors with high expression of genes involved in cell adhesion/angiogenesis as well as of wild-type TP53 were more likely to be resistant to Sagopilone therapy. As suggested by these findings, Sagopilone was combined with Bevacizumab and Sorafenib, drugs targeting vascular endothelial growth factor signaling, in Sagopilone-resistant models and, indeed, antitumor activity could be restored. CONCLUSION Analyses provided here show how preclinical studies can provide hypotheses for the identification of patients who more likely will benefit from new drugs as well as a rationale for combination therapies to be tested in clinical trials.
Collapse
Affiliation(s)
- Stefanie Hammer
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
In this review, we discuss the genetic factors in both the aetiology and treatment of ischaemic stroke. We discuss candidate gene association studies, family linkage studies and the more recent whole genome association studies and whole genome expression studies. We also briefly discuss genetic testing for stroke risk and genetic analysis of treatment complications.
Collapse
Affiliation(s)
- M Matarin
- Laboratory of Neurogenetics, NIA/NIH, Bethesda, MD, USA
| | | | | | | |
Collapse
|
39
|
Slevin M, Matou-Nasri S, Turu M, Luque A, Rovira N, Badimon L, Boluda S, Potempa L, Sanfeliu C, de Vera N, Krupinski J. Modified C-reactive protein is expressed by stroke neovessels and is a potent activator of angiogenesis in vitro. Brain Pathol 2010; 20:151-65. [PMID: 19170684 PMCID: PMC8094831 DOI: 10.1111/j.1750-3639.2008.00256.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/17/2008] [Indexed: 11/30/2022] Open
Abstract
Native C-reactive protein (nCRP) is a pentameric oligo-protein and an acute phase reactant whose serum expression is increased in patients with inflammatory disease. We have identified by immunohistochemistry, significant expression of a tissue-binding insoluble modified version or monomeric form of CRP (mCRP) associated with angiogenic microvessels in peri-infarcted regions of patients studied with acute ischaemic stroke. mCRP, but not nCRP was expressed in the cytoplasm and nucleus of damaged neurons. mCRP co-localized with CD105, a marker of angiogenesis in regions of revascularisation. In vitro investigations demonstrated that mCRP was preferentially expressed in human brain microvessel endothelial cells following oxygen-glucose deprivation and mCRP (but not column purified nCRP) associated with the endothelial cell surface, and was angiogenic to vascular endothelial cells, stimulating migration and tube formation in matrigel more strongly than fibroblast growth factor-2. The mechanism of signal transduction was not through the CD16 receptor. Western blotting showed that mCRP stimulated phosphorylation of the key down-stream mitogenic signalling protein ERK1/2. Pharmacological inhibition of ERK1/2 phosphorylation blocked the angiogenic effects of mCRP. We propose that mCRP may contribute to the neovascularization process and because of its abundant presence, be important in modulating angiogenesis in both acute stroke and later during neuro-recovery.
Collapse
Affiliation(s)
- Mark Slevin
- School of Biology, Chemistry and Health Science, Manchester Metropolitan University, Manchester, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Multifaceted deaths orchestrated by mitochondria in neurones. Biochim Biophys Acta Mol Basis Dis 2010; 1802:167-85. [DOI: 10.1016/j.bbadis.2009.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 12/16/2022]
|
41
|
Van Elzen R, Ghesquière B, Timmerman E, Vandamme S, Moens L, Gevaert K, Dewilde S. Integrated Proteomic Analysis Reveals a Substantial Enrichment of Protein Trafficking Processes in Hippocampus Tissue after Hypoxic Stress. J Proteome Res 2009; 9:204-15. [DOI: 10.1021/pr900517m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Roos Van Elzen
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Bart Ghesquière
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Evy Timmerman
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Stefaan Vandamme
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Kris Gevaert
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| |
Collapse
|
42
|
Slevin M, Krupinski J, Rovira N, Turu M, Luque A, Baldellou M, Sanfeliu C, de Vera N, Badimon L. Identification of pro-angiogenic markers in blood vessels from stroked-affected brain tissue using laser-capture microdissection. BMC Genomics 2009; 10:113. [PMID: 19292924 PMCID: PMC2664824 DOI: 10.1186/1471-2164-10-113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 03/17/2009] [Indexed: 01/22/2023] Open
Abstract
Background Angiogenesis correlates with patient survival following acute ischaemic stroke, and survival of neurons is greatest in tissue undergoing angiogenesis. Angiogenesis is critical for the development of new microvessels and leads to re-formation of collateral circulation, reperfusion, enhanced neuronal survival and improved recovery. Results Here, we have isolated active (CD105/Flt-1 positive) and inactive (CD105/Flt-1 minus (n=5) micro-vessel rich-regions from stroke-affected and contralateral tissue of patients using laser-capture micro-dissection. Areas were compared for pro- and anti-angiogenic gene expression using targeted TaqMan microfluidity cards containing 46 genes and real-time PCR. Further analysis of key gene de-regulation was performed by immunohistochemistry to define localization and expression patterns of identified markers and de novo synthesis by human brain microvessel endothelial cells (HBMEC) was examined following oxygen-glucose deprivation (OGD). Our data revealed that seven pro-angiogenic genes were notably up-regulated in CD105 positive microvessel rich regions. These were, beta-catenin, neural cell adhesion molecule (NRCAM), matrix metalloproteinase-2 (MMP-2), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), hepatocyte growth factor-alpha (HGF-alpha), monocyte chemottractant protein-1 (MCP-1) and and Tie-2 as well as c-kit. Immunohistochemistry demonstrated strong staining of MMP-2, HGF-alpha, MCP-1 and Tie-2 in stroke-associated regions of active remodeling in association with CD105 positive staining. In vitro, OGD stimulated production of Tie-2, MCP-1 and MMP-2 in HBMEC, demonstrated a de novo response to hypoxia. Conclusion In this work we have identified concurrent activation of key angiogenic molecules associated with endothelial cell migration, differentiation and tube-formation, vessel stabilization and stem cell homing mechanisms in areas of revascularization. Therapeutic stimulation of these processes in all areas of damaged tissue might improve morbidity and mortality from stroke.
Collapse
Affiliation(s)
- Mark Slevin
- SBCHS, Manchester Metropolitan University, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kreis P, Barnier JV. PAK signalling in neuronal physiology. Cell Signal 2008; 21:384-93. [PMID: 19036346 DOI: 10.1016/j.cellsig.2008.11.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
Group I p21-activated kinases are a family of key effectors of Rac1 and Cdc42 and they regulate many aspects of cellular function, such as cytoskeleton dynamics, cell movement and cell migration, cell proliferation and differentiation, and gene expression. The three genes PAK1/2/3 are expressed in brain and recent evidence indicates their crucial roles in neuronal cell fate, in axonal guidance and neuronal polarisation, and in neuronal migration. Moreover they are implicated in neurodegenerative diseases and play an important role in synaptic plasticity, with PAK3 being specifically involved in mental retardation. The main goal of this review is to describe the molecular mechanisms that govern the different functions of group I PAK in neuronal signalling and to discuss the specific functions of each isoform.
Collapse
Affiliation(s)
- Patricia Kreis
- CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, Gif sur Yvette, France.
| | | |
Collapse
|
44
|
Endothelins stimulate the production of stromelysin-1 in cultured rat astrocytes. Biochem Biophys Res Commun 2008; 371:659-63. [PMID: 18439420 DOI: 10.1016/j.bbrc.2008.04.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/14/2008] [Indexed: 11/23/2022]
Abstract
The effects of endothelins (ETs) on the production of stromelysins, a sub-family of matrix metalloproteinases, were examined in cultured astrocytes. The treatment of cultured rat astrocytes with ET-1 increased stromelysin-1 mRNA levels, while stromelysin-2 and -3 mRNAs were not affected. Immunocytochemical observations showed that cultured astrocytes produced stromelysin-1 protein. ET-1 and Ala(1,3,11,15)-ET-1, an ET(B) receptor selective agonist, stimulated the release of stromelysin-1 from cultured astrocytes. Accompanying the increase in protein release, the peptidase activity of stromelysin-1 in the medium was also increased by ET-1. The effects of ET-1 on astrocytic stromelysin-1 expression were inhibited by PD98059, staurosporine, and Ca(2+) chelation, but not by SB203580 or pyrrolidine dithiocarbamate. These results show that activation of astrocytic ET receptors stimulates the production of stromelysin-1, suggesting a role for ETs in stromelysin production in brain pathologies.
Collapse
|