1
|
Sundararaj R, Mathimaran A, Prabhu D, Ramachandran B, Jeyaraman J, Muthupandian S, Asmelash T. In silico approaches for the identification of potential allergens among hypothetical proteins from Alternaria alternata and its functional annotation. Sci Rep 2024; 14:6696. [PMID: 38509156 PMCID: PMC10954717 DOI: 10.1038/s41598-024-55463-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Direct exposure to the fungal species Alternaria alternata is a major risk factor for the development of asthma, allergic rhinitis, and inflammation. As of November 23rd 2020, the NCBI protein database showed 11,227 proteins from A. alternata genome as hypothetical proteins (HPs). Allergens are the main causative of several life-threatening diseases, especially in fungal infections. Therefore, the main aim of the study is to identify the potentially allergenic inducible proteins from the HPs in A. alternata and their associated functional assignment for the complete understanding of the complex biological systems at the molecular level. AlgPred and Structural Database of Allergenic Proteins (SDAP) were used for the prediction of potential allergens from the HPs of A. alternata. While analyzing the proteome data, 29 potential allergens were predicted by AlgPred and further screening in SDAP confirmed the allergic response of 10 proteins. Extensive bioinformatics tools including protein family classification, sequence-function relationship, protein motif discovery, pathway interactions, and intrinsic features from the amino acid sequence were used to successfully predict the probable functions of the 10 HPs. The functions of the HPs are characterized as chitin-binding, ribosomal protein P1, thaumatin, glycosyl hydrolase, and NOB1 proteins. The subcellular localization and signal peptide prediction of these 10 proteins has further provided additional information on localization and function. The allergens prediction and functional annotation of the 10 proteins may facilitate a better understanding of the allergenic mechanism of A. alternata in asthma and other diseases. The functional domain level insights and predicted structural features of the allergenic proteins help to understand the pathogenesis and host immune tolerance. The outcomes of the study would aid in the development of specific drugs to combat A. alternata infections.
Collapse
Affiliation(s)
- Rajamanikandan Sundararaj
- Department of Biochemistry, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Amala Mathimaran
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630 004, India
| | - Dhamodharan Prabhu
- Department of Biotechnology, Centre for Drug Discovery, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Balajee Ramachandran
- Department of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, 700 Albany Street, Boston, MA, 02118, USA
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, 630 004, India
| | - Saravanan Muthupandian
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Tsehaye Asmelash
- Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia.
| |
Collapse
|
2
|
Genome-wide comprehensive characterization and expression analysis of TLP gene family revealed its responses to hormonal and abiotic stresses in watermelon (Citrullus lanatus). Gene X 2022; 844:146818. [PMID: 35985412 DOI: 10.1016/j.gene.2022.146818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2021] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.
Collapse
|
3
|
Zuhar LM, Madihah AZ, Ahmad SA, Zainal Z, Idris AS, Shaharuddin NA. Identification of Oil Palm's Consistently Upregulated Genes during Early Infections of Ganoderma boninense via RNA-Seq Technology and Real-Time Quantitative PCR. PLANTS 2021; 10:plants10102026. [PMID: 34685835 PMCID: PMC8537556 DOI: 10.3390/plants10102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Basal stem rot (BSR) disease caused by pathogenic fungus Ganoderma boninense is a significant concern in the oil palm industry. G. boninense infection in oil palm induces defense-related genes. To understand oil palm defense mechanisms in response to fungal invasion, we analyzed differentially expressed genes (DEGs) derived from RNA-sequencing (RNA-seq) transcriptomic libraries of oil palm roots infected with G. boninense. A total of 126 DEGs were detected from the transcriptomic libraries of G. boninense-infected root tissues at different infection stages. Functional annotation via pathway enrichment analyses revealed that the DEGs were involved in the defense response against the pathogen. The expression of the selected DEGs was further confirmed using real-time quantitative PCR (qPCR) on independent oil palm seedlings and mature palm samples. Seven putative defense-related DEGs consistently showed upregulation in seedlings and mature plants during G. boninense infection. These seven genes might potentially be developed as biomarkers for the early detection of BSR in oil palm.
Collapse
Affiliation(s)
- Liyana Mohd Zuhar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
| | - Ahmad Zairun Madihah
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (A.Z.M.); (A.S.I.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
| | - Zamri Zainal
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, Bangi 43600, Selangor, Malaysia;
| | - Abu Seman Idris
- Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia; (A.Z.M.); (A.S.I.)
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia; (L.M.Z.); (S.A.A.)
- Institute of Plantation Studies, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
4
|
Li S, Zhang Y, Xin X, Ding C, Lv F, Mo W, Xia Y, Wang S, Cai J, Sun L, Du M, Dong C, Gao X, Dai X, Zhang J, Sun J. The Osmotin-Like Protein Gene PdOLP1 Is Involved in Secondary Cell Wall Biosynthesis during Wood Formation in Poplar. Int J Mol Sci 2020; 21:E3993. [PMID: 32498411 PMCID: PMC7312728 DOI: 10.3390/ijms21113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2019] [Revised: 05/13/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Osmotin-like proteins (OLPs) mediate defenses against abiotic and biotic stresses and fungal pathogens in plants. However, no OLPs have been functionally elucidated in poplar. Here, we report an osmotin-like protein designated PdOLP1 from Populus deltoides (Marsh.). Expression analysis showed that PdOLP1 transcripts were mainly present in immature xylem and immature phloem during vascular tissue development in P. deltoides. We conducted phenotypic, anatomical, and molecular analyses of PdOLP1-overexpressing lines and the PdOLP1-downregulated hybrid poplar 84K (Populus alba × Populus glandulosa) (Hybrid poplar 84K PagOLP1, PagOLP2, PagOLP3 and PagOLP4 are highly homologous to PdOLP1, and are downregulated in PdOLP1-downregulated hybrid poplar 84K). The overexpression of PdOLP1 led to a reduction in the radial width and cell layer number in the xylem and phloem zones, in expression of genes involved in lignin biosynthesis, and in the fibers and vessels of xylem cell walls in the overexpressing lines. Additionally, the xylem vessels and fibers of PdOLP1-downregulated poplar exhibited increased secondary cell wall thickness. Elevated expression of secondary wall biosynthetic genes was accompanied by increases in lignin content, dry weight biomass, and carbon storage in PdOLP1-downregulated lines. A PdOLP1 coexpression network was constructed and showed that PdOLP1 was coexpressed with a large number of genes involved in secondary cell wall biosynthesis and wood development in poplar. Moreover, based on transcriptional activation assays, PtobZIP5 and PtobHLH7 activated the PdOLP1 promoter, whereas PtoBLH8 and PtoWRKY40 repressed it. A yeast one-hybrid (Y1H) assay confirmed interaction of PtoBLH8, PtoMYB3, and PtoWRKY40 with the PdOLP1 promoter in vivo. Together, our results suggest that PdOLP1 is a negative regulator of secondary wall biosynthesis and may be valuable for manipulating secondary cell wall deposition to improve carbon fixation efficiency in tree species.
Collapse
Affiliation(s)
- Shaofeng Li
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Yaoxiang Zhang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Xuebing Xin
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091, China;
| | - Fuling Lv
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Wenjuan Mo
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Yongxiu Xia
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Shaoli Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Jingyan Cai
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Lifang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Manyi Du
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Chenxi Dong
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Xu Gao
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Xinlu Dai
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| | - Jianhui Zhang
- Department of Pharmaceutical Science, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Jinshuang Sun
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing 100023, China; (S.L.); (Y.Z.); (X.X.); (F.L.); (W.M.); (Y.X.); (S.W.); (J.C.); (L.S.); (M.D.); (C.D.); (X.G.); (X.D.)
| |
Collapse
|
5
|
Tsvetkov VO, Yarullina LG. Structural and Functional Characteristics of Hydrolytic Enzymes of Phytophagon Insects and Plant Protein Inhibitors (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
6
|
Kaur A, Pati PK, Pati AM, Nagpal AK. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One 2017; 12:e0184523. [PMID: 28910327 PMCID: PMC5598985 DOI: 10.1371/journal.pone.0184523] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Pathogenesis related (PR) proteins are low molecular weight family of proteins induced in plants under various biotic and abiotic stresses. They play an important role in plant-defense mechanism. PRs have wide range of functions, acting as hydrolases, peroxidases, chitinases, anti-fungal, protease inhibitors etc. In the present study, an attempt has been made to analyze promoter regions of PR1, PR2, PR5, PR9, PR10 and PR12 of Arabidopsis thaliana and Oryza sativa. Analysis of cis-element distribution revealed the functional multiplicity of PRs and provides insight into the gene regulation. CpG islands are observed only in rice PRs, which indicates that monocot genome contains more GC rich motifs than dicots. Tandem repeats were also observed in 5' UTR of PR genes. Thus, the present study provides an understanding of regulation of PR genes and their versatile roles in plants.
Collapse
Affiliation(s)
- Amritpreet Kaur
- Department of Botanical and Environmental sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Planning Project Monitoring and Evaluation Cell, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
7
|
Rather IA, Awasthi P, Mahajan V, Bedi YS, Vishwakarma RA, Gandhi SG. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 2014; 558:143-51. [PMID: 25550044 DOI: 10.1016/j.gene.2014.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2014] [Revised: 11/28/2014] [Accepted: 12/25/2014] [Indexed: 10/24/2022]
Abstract
Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum.
Collapse
Affiliation(s)
- Irshad Ahmad Rather
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Praveen Awasthi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
| | - Vidushi Mahajan
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Yashbir S Bedi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India
| | - Sumit G Gandhi
- CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research, Council of Scientific & Industrial Research, Canal Road, Jammu 180001, India.
| |
Collapse
|
8
|
Kour A, Boone AM, Vodkin LO. RNA-Seq profiling of a defective seed coat mutation in Glycine max reveals differential expression of proline-rich and other cell wall protein transcripts. PLoS One 2014; 9:e96342. [PMID: 24828743 PMCID: PMC4020777 DOI: 10.1371/journal.pone.0096342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2014] [Accepted: 04/04/2014] [Indexed: 01/19/2023] Open
Abstract
The plant cell wall performs a number of essential functions including providing shape to many different cell types and serving as a defense against potential pathogens. The net pattern mutation creates breaks in the seed coat of soybean (Glycine max) because of ruptured cell walls. Using RNA-Seq, we examined the seed coat transcriptome from three stages of immature seed development in two pairs of isolines with normal or defective seed coat phenotypes due to the net pattern. The genome-wide comparative study of the transcript profiles of these isolines revealed 364 differentially expressed genes in common between the two varieties that were further divided into different broad functional categories. Genes related to cell wall processes accounted for 19% of the differentially expressed genes in the middle developmental stage of 100-200 mg seed weight. Within this class, the cell wall proline-rich and glycine-rich protein genes were highly differentially expressed in both genetic backgrounds. Other genes that showed significant expression changes in each of the isoline pairs at the 100-200 mg seed weight stage were xylem serine proteinase, fasciclin-related genes, auxin and stress response related genes, TRANSPARENT TESTA 1 (TT1) and other transcription factors. The mutant appears to shift the timing of either the increase or decrease in the levels of some of the transcripts. The analysis of these data sets reveals the physiological changes that the seed coat undergoes during the formation of the breaks in the cell wall.
Collapse
Affiliation(s)
- Anupreet Kour
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Anne M. Boone
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Lila O. Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
9
|
Tetyuk O, Benning UF, Hoffmann-Benning S. Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated Method. J Vis Exp 2013:e51111. [PMID: 24192764 PMCID: PMC3960974 DOI: 10.3791/51111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
The plant phloem is essential for the long-distance transport of (photo-) assimilates as well as of signals conveying biotic or abiotic stress. It contains sugars, amino acids, proteins, RNA, lipids and other metabolites. While there is a large interest in understanding the composition and function of the phloem, the role of many of these molecules and thus, their importance in plant development and stress response has yet to be determined. One barrier to phloem analysis lies in the fact that the phloem seals itself upon wounding. As a result, the number of plants from which phloem sap can be obtained is limited. One method that allows collection of phloem exudates from several plant species without added equipment is the EDTA-facilitated phloem exudate collection described here. While it is easy to use, it does lead to the wounding of cells and care has to be taken to remove contents of damaged cells. In addition, several controls to prove purity of the exudate are necessary. Because it is an exudation rather than a direct collection of the phloem sap (not possible in many species) only relative quantification of its contents can occur. The advantage of this method over others is that it can be used in many herbaceous or woody plant species (Perilla, Arabidopsis, poplar, etc.) and requires minimal equipment and training. It leads to reasonably large amounts of exudates that can be used for subsequent analysis of proteins, sugars, lipids, RNA, viruses and metabolites. It is simple enough that it can be used in both a research as well as in a teaching laboratory.
Collapse
Affiliation(s)
- Olena Tetyuk
- Biochemistry and Molecular Biology, Michigan State Universtiy
| | | | | |
Collapse
|
10
|
von Schalburg KR, Gowen BE, Rondeau EB, Johnson NW, Minkley DR, Leong JS, Davidson WS, Koop BF. Sex-specific expression, synthesis and localization of aromatase regulators in one-year-old Atlantic salmon ovaries and testes. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:236-46. [DOI: 10.1016/j.cbpb.2013.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|
11
|
Petriccione M, Di Cecco I, Arena S, Scaloni A, Scortichini M. Proteomic changes in Actinidia chinensis shoot during systemic infection with a pandemic Pseudomonas syringae pv. actinidiae strain. J Proteomics 2013; 78:461-76. [DOI: 10.1016/j.jprot.2012.10.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 10/27/2022]
|
12
|
Cilia M, Peter KA, Bereman MS, Howe K, Fish T, Smith D, Gildow F, MacCoss MJ, Thannhauser TW, Gray SM. Discovery and targeted LC-MS/MS of purified polerovirus reveals differences in the virus-host interactome associated with altered aphid transmission. PLoS One 2012; 7:e48177. [PMID: 23118947 PMCID: PMC3484124 DOI: 10.1371/journal.pone.0048177] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022] Open
Abstract
Circulative transmission of viruses in the Luteoviridae, such as cereal yellow dwarf virus (CYDV), requires a series of precisely orchestrated interactions between virus, plant, and aphid proteins. Natural selection has favored these viruses to be retained in the phloem to facilitate acquisition and transmission by aphids. We show that treatment of infected oat tissue homogenate with sodium sulfite reduces transmission of the purified virus by aphids. Transmission electron microscopy data indicated no gross change in virion morphology due to treatments. However, treated virions were not acquired by aphids through the hindgut epithelial cells and were not transmitted when injected directly into the hemocoel. Analysis of virus preparations using nanoflow liquid chromatography coupled to tandem mass spectrometry revealed a number of host plant proteins co-purifying with viruses, some of which were lost following sodium sulfite treatment. Using targeted mass spectrometry, we show data suggesting that several of the virus-associated host plant proteins accumulated to higher levels in aphids that were fed on CYDV-infected plants compared to healthy plants. We propose two hypotheses to explain these observations, and these are not mutually exclusive: (a) that sodium sulfite treatment disrupts critical virion-host protein interactions required for aphid transmission, or (b) that host infection with CYDV modulates phloem protein expression in a way that is favorable for virus uptake by aphids. Importantly, the genes coding for the plant proteins associated with virus may be examined as targets in breeding cereal crops for new modes of virus resistance that disrupt phloem-virus or aphid-virus interactions.
Collapse
Affiliation(s)
- Michelle Cilia
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (SMG)
| | - Kari A. Peter
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael S. Bereman
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kevin Howe
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Dawn Smith
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Fredrick Gildow
- Department of Plant Pathology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theodore W. Thannhauser
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
| | - Stewart M. Gray
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
- * E-mail: (MC); (SMG)
| |
Collapse
|
13
|
Colas S, Afoufa-Bastien D, Jacquens L, Clément C, Baillieul F, Mazeyrat-Gourbeyre F, Monti-Dedieu L. Expression and in situ localization of two major PR proteins of grapevine berries during development and after UV-C exposition. PLoS One 2012; 7:e43681. [PMID: 22937077 PMCID: PMC3427166 DOI: 10.1371/journal.pone.0043681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022] Open
Abstract
In grapevine Vitis vinifera L. cv Pinot noir, the Pathogenesis-Related (PR) proteins CHI4D and TL3 are among the most abundant extractable PR proteins of ripe berries and accumulate during berry ripening from véraison until full maturation. Evidence was supplied in favor of the involvement of these two protein families in plant defense mechanisms and plant development. In order to better understand CHI4D and TL3 function in grapevine, we analyzed their temporal and spatial pattern of expression during maturation and after an abiotic stress (UV-C) by in situ hybridization (ISH) and immunohistolocalization. In ripening berries, CHI4D and TL3 genes were mainly expressed in the exocarp and around vascular bundles of the mesocarp. In UV-C exposed berries, CHI4D and TL3 gene expression was strongly induced before véraison. Corresponding proteins localized in the exocarp and, to a lesser extent, around vascular bundles of the mesocarp. The spatial and temporal accumulation of the two PR proteins during berry maturation and after an abiotic stress is discussed in relation to their putative roles in plant defense.
Collapse
Affiliation(s)
- Steven Colas
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| | - Damien Afoufa-Bastien
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| | - Lucile Jacquens
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| | - Christophe Clément
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| | - Fabienne Baillieul
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| | - Florence Mazeyrat-Gourbeyre
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| | - Laurence Monti-Dedieu
- Laboratoire de Stress, Défenses et Reproduction des Plantes, Unité de Recherche Vignes et Vins de Champagne - EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, BP 1039, Reims, France
| |
Collapse
|
14
|
Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O, Wei YR, Hu CH, Dong T, Yi GJ. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 2012; 13:374. [PMID: 22863187 PMCID: PMC3473311 DOI: 10.1186/1471-2164-13-374] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2012] [Accepted: 07/25/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is considered the most lethal disease of Cavendish bananas in the world. The disease can be managed in the field by planting resistant Cavendish plants generated by somaclonal variation. However, little information is available on the genetic basis of plant resistance to Foc TR4. To a better understand the defense response of resistant banana plants to the Fusarium wilt pathogen, the transcriptome profiles in roots of resistant and susceptible Cavendish banana challenged with Foc TR4 were compared. RESULTS RNA-seq analysis generated more than 103 million 90-bp clean pair end (PE) reads, which were assembled into 88,161 unigenes (mean size = 554 bp). Based on sequence similarity searches, 61,706 (69.99%) genes were identified, among which 21,273 and 50,410 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 33,243 (37.71%) unigenes to 119 KEGG pathways. A total of 5,008 genes were assigned to plant-pathogen interactions, including disease defense and signal transduction. Digital gene expression (DGE) analysis revealed large differences in the transcriptome profiles of the Foc TR4-resistant somaclonal variant and its susceptible wild-type. Expression patterns of genes involved in pathogen-associated molecular pattern (PAMP) recognition, activation of effector-triggered immunity (ETI), ion influx, and biosynthesis of hormones as well as pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, cell wall modification genes and genes with other functions were analyzed and compared. The results indicated that basal defense mechanisms are involved in the recognition of PAMPs, and that high levels of defense-related transcripts may contribute to Foc TR4 resistance in banana. CONCLUSIONS This study generated a substantial amount of banana transcript sequences and compared the defense responses against Foc TR4 between resistant and susceptible Cavendish bananas. The results contribute to the identification of candidate genes related to plant resistance in a non-model organism, banana, and help to improve the current understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Chun-yu Li
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Gui-ming Deng
- The college of Life Science, South China Agricultural University, Guangzhou, 510640, China
| | - Jing Yang
- The college of Life Science, South China Agricultural University, Guangzhou, 510640, China
| | - Altus Viljoen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Yan Jin
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Rui-bin Kuang
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Cun-wu Zuo
- The college of Life Science, South China Agricultural University, Guangzhou, 510640, China
| | - Zhi-cheng Lv
- The college of Life Science, South China Agricultural University, Guangzhou, 510640, China
| | - Qiao-song Yang
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Ou Sheng
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Yue-rong Wei
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Chun-hua Hu
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Tao Dong
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| | - Gan-jun Yi
- Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China
| |
Collapse
|
15
|
Guelette BS, Benning UF, Hoffmann-Benning S. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3603-16. [PMID: 22442409 PMCID: PMC3388829 DOI: 10.1093/jxb/ers028] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/07/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 05/19/2023]
Abstract
The phloem plays a crucial role in assimilate and nutrient transport, pathogen response, and plant growth and development. Yet, few species have yielded pure phloem exudate and, if proteins need to be analysed, those species may not have sequenced genomes, making identification difficult. The enrichment of Arabidopsis thaliana phloem exudate in amounts large enough to allow for metabolite and protein analysis is described. Using this method, it was possible to identify 65 proteins present in the Arabidopsis phloem exudate. The majority of these proteins could be grouped by response to pathogens, stress, or hormones, carbon metabolism, protein interaction, modification, and turnover, and transcription factors. It was also possible to detect 11 proteins that play a role in lipid/fatty acid metabolism (aspartic protease, putative 3-β-hydroxysteroid dehydrogenase, UDP-sulphoquinovose synthase/SQD1, lipase, PIG-P-like protein: phosphatidylinositol-N-acetylglucosaminyltransferase), storage (glycine-rich protein), binding (annexin, lipid-associated family protein, GRP17/oleosin), and/or signalling (annexin, putative lipase, PIG-P-like protein). Along with putative lipid-binding proteins, several lipids and fatty acids could be identified. Only a few examples exist of lipids (jasmonic acid, oxylipins) or lipid-binding proteins (DIR1, acyl-CoA-binding protein) in the phloem. Finding hydrophobic compounds in an aqueous environment is not without precedence in biological systems: human blood contains a variety of lipids, many of which play a significant role in human health. In blood, lipids are transported while bound to proteins. The present findings of lipids and lipid-binding proteins in phloem exudates suggest that a similar long-distance lipid signalling exists in plants and may play an important role in plant growth and development.
Collapse
|
16
|
Mayhew TM. Quantifying immunogold localization on electron microscopic thin sections: a compendium of new approaches for plant cell biologists. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4101-13. [PMID: 21633081 DOI: 10.1093/jxb/err176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/28/2023]
Abstract
A review is presented of recently developed methods for quantifying electron microscopical thin sections on which colloidal gold-labelled markers are used to identify and localize interesting molecules. These efficient methods rely on sound principles of random sampling, event counting, and statistical evaluation. Distributions of immunogold particles across cellular compartments can be compared within and between experimental groups. They can also be used to test for co-localization in multilabelling studies involving two or more sizes of gold particle. To test for preferential labelling of compartments, observed and expected gold particle distributions are compared by χ(2) analysis. Efficient estimators of gold labelling intensity [labelling density (LD) and/or relative labelling index (RLI)] are used to analyse volume-occupying compartments (e.g. Golgi vesicles) and/or surface-occupying compartments (e.g. cell membranes). Compartment size is estimated by counting chance events after randomly superimposing test lattices of points and/or line probes. RLI=1 when there is random labelling and RLI >1 when there is preferential labelling. Between-group comparisons do not require information about compartment size but, instead, raw gold particle counts in different groups are compared by combining χ(2) and contingency table analyses. These tests may also be used to assess co-distribution of different sized gold particles in compartments. Testing for co-labelling involves identifying sets of compartmental profiles that are unlabelled and labelled for one or both of two gold marker sizes. Numbers of profiles in each labelling set are compared by contingency table analysis and χ(2) analysis or Fisher's exact probability test. The various methods are illustrated with worked examples based on empirical and synthetic data and will be of practical benefit to those applying single or multiple immunogold labelling in their research.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
17
|
Petre B, Major I, Rouhier N, Duplessis S. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs) with an emphasis on poplar. BMC PLANT BIOLOGY 2011; 11:33. [PMID: 21324123 PMCID: PMC3048497 DOI: 10.1186/1471-2229-11-33] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/03/2010] [Accepted: 02/15/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR) proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs), which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. RESULTS Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling). CONCLUSION Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem to be universal among eukaryotes, with some exceptions likely attributable to atypical protein structures. In the perennial plant model Populus, we unravelled the TLPs likely involved in leaf rust resistance, which will provide the foundation for further functional investigations.
Collapse
Affiliation(s)
- Benjamin Petre
- INRA†/Nancy Université, Unité Mixte de Recherche 1136 'Interactions Arbres/Micro-organismes', Centre INRA de Nancy, F-54280 Champenoux, France
| | - Ian Major
- Plant Research Laboratory, 122 Plant Biology Laboratory, Michigan State University, East Lansing, Michigan, 48864, USA
| | - Nicolas Rouhier
- INRA†/Nancy Université, Unité Mixte de Recherche 1136 'Interactions Arbres/Micro-organismes', Centre INRA de Nancy, F-54280 Champenoux, France
| | - Sébastien Duplessis
- INRA†/Nancy Université, Unité Mixte de Recherche 1136 'Interactions Arbres/Micro-organismes', Centre INRA de Nancy, F-54280 Champenoux, France
| |
Collapse
|