1
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Vicient CM, Casacuberta JM. Impact of transposable elements on polyploid plant genomes. ANNALS OF BOTANY 2017; 120:195-207. [PMID: 28854566 PMCID: PMC5737689 DOI: 10.1093/aob/mcx078] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The growing wealth of knowledge on whole-plant genome sequences is highlighting the key role of transposable elements (TEs) in plant evolution, as a driver of drastic changes in genome size and as a source of an important number of new coding and regulatory sequences. Together with polyploidization events, TEs should thus be considered the major players in evolution of plants. SCOPE This review outlines the major mechanisms by which TEs impact plant genome evolution and how polyploidy events can affect these impacts, and vice versa. These include direct effects on genes, by providing them with new coding or regulatory sequences, an effect on the epigenetic status of the chromatin close to genes, and more subtle effects by imposing diverse evolutionary constraints to different chromosomal regions. These effects are particularly relevant after polyploidization events. Polyploidization often induces bursts of transposition probably due to a relaxation in their epigenetic control, and, in the short term, this can increase the rate of gene mutations and changes in gene regulation due to the insertion of TEs next to or into genes. Over longer times, TE bursts may induce global changes in genome structure due to inter-element recombination including losses of large genome regions and chromosomal rearrangements that reduce the genome size and the chromosome number as part of a process called diploidization. CONCLUSIONS TEs play an essential role in genome and gene evolution, in particular after polyploidization events. Polyploidization can induce TE activity that may explain part of the new phenotypes observed. TEs may also play a role in the diploidization that follows polyploidization events. However, the extent to which TEs contribute to diploidization and fractionation bias remains unclear. Investigating the multiple factors controlling TE dynamics and the nature of ancient and recent polyploid genomes may shed light on these processes.
Collapse
Affiliation(s)
- Carlos M. Vicient
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
- For correspondence. E-mail
| | - Josep M. Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
3
|
Zhu X, Zhong S, Chao S, Gu YQ, Kianian SF, Elias E, Cai X. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:31-43. [PMID: 26385373 DOI: 10.1007/s00122-015-2606-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/07/2015] [Indexed: 05/08/2023]
Abstract
New molecular markers were developed and mapped to the FHB resistance QTL region in high resolution. Micro-collinearity of the QTL region with rice and Brachypodium was revealed for a better understanding of the genomic region. The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better understanding of the genomic region harboring Qfhs.ndsu-3AS and to improve the utility of the QTL in wheat breeding. Micro-collinearity of the QTL region with rice chromosome 1 and Brachypodium chromosome 2 was identified and used for marker development in saturation mapping. A total of 42 new EST-derived sequence tagged site (STS) and simple sequence repeat (SSR) markers were developed and mapped to the QTL and nearby regions on 3AS. Further comparative analysis revealed a complex collinearity of the 3AS genomic region with their collinear counterparts of rice and Brachypodium. Fine mapping of the QTL region resolved five co-segregating markers (Xwgc1186/Xwgc716/Xwgc1143/Xwgc501/Xwgc1204) into three distinct loci proximal to Xgwm2, a marker previously reported to be closely linked to the QTL. Four other markers (Xwgc1226, Xwgc510, Xwgc1296, and Xwgc1301) mapped farther proximal to the above markers in the QTL region with a higher resolution. Five homozygous recombinants with shortened T. dicoccoides chromosomal segments in the QTL region were recovered by molecular marker analysis and evaluated for FHB resistance. Qfhs.ndsu-3AS was positioned to a 5.2 cM interval flanked by the marker Xwgc501 and Xwgc510. The recombinants containing Qfhs.ndsu-3AS and new markers defining the QTL will facilitate utilization of this resistance source in wheat breeding.
Collapse
Affiliation(s)
- Xianwen Zhu
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Shaobin Zhong
- Departments of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chao
- The Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102, USA
| | - Yong Qiang Gu
- The Western Regional Research Center, USDA-ARS, Albany, CA, 94710, USA
| | - Shahryar F Kianian
- The Cereal Disease Laboratory, USDA-ARS, 1551 Lindig Street, St. Paul, MN, 55108, USA
| | - Elias Elias
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Xiwen Cai
- Departments of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
4
|
Akpinar BA, Magni F, Yuce M, Lucas SJ, Šimková H, Šafář J, Vautrin S, Bergès H, Cattonaro F, Doležel J, Budak H. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements. BMC Genomics 2015; 16:453. [PMID: 26070810 PMCID: PMC4465308 DOI: 10.1186/s12864-015-1641-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution. RESULTS The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins. CONCLUSIONS Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Federica Magni
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Meral Yuce
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Stuart J Lucas
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Jan Šafář
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Sonia Vautrin
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Hélène Bergès
- Centre Nationales Ressources Génomiques Végétales, INRA UPR 1258, 24 Chemin de Borde Rouge - Auzeville 31326, Castanet-Tolosan, France.
| | - Federica Cattonaro
- Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, CZ-78371, Olomouc, Czech Republic.
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
| |
Collapse
|
5
|
Garbus I, Romero JR, Valarik M, Vanžurová H, Karafiátová M, Cáccamo M, Doležel J, Tranquilli G, Helguera M, Echenique V. Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics 2015; 16:375. [PMID: 25962417 PMCID: PMC4440537 DOI: 10.1186/s12864-015-1579-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Background The number and complexity of repetitive elements varies between species, being in general most represented in those with larger genomes. Combining the flow-sorted chromosome arms approach to genome analysis with second generation DNA sequencing technologies provides a unique opportunity to study the repetitive portion of each chromosome, enabling comparisons among them. Additionally, different sequencing approaches may produce different depth of insight to repeatome content and structure. In this work we analyze and characterize the repetitive sequences of Triticum aestivum cv. Chinese Spring homeologous group 4 chromosome arms, obtained through Roche 454 and Illumina sequencing technologies, hereinafter marked by subscripts 454 and I, respectively. Repetitive sequences were identified with the RepeatMasker software using the interspersed repeat database mips-REdat_v9.0p. The input sequences consisted of our 4DS454 and 4DL454 scaffolds and 4ASI, 4ALI, 4BSI, 4BLI, 4DSI and 4DLI contigs, downloaded from the International Wheat Genome Sequencing Consortium (IWGSC). Results Repetitive sequences content varied from 55% to 63% for all chromosome arm assemblies except for 4DLI, in which the repeat content was 38%. Transposable elements, small RNA, satellites, simple repeats and low complexity sequences were analyzed. SSR frequency was found one per 24 to 27 kb for all chromosome assemblies except 4DLI, where it was three times higher. Dinucleotides and trinucleotides were the most abundant SSR repeat units. (GA)n/(TC)n was the most abundant SSR except for 4DLI where the most frequently identified SSR was (CCG/CGG)n. Retrotransposons followed by DNA transposons were the most highly represented sequence repeats, mainly composed of CACTA/En-Spm and Gypsy superfamilies, respectively. This whole chromosome sequence analysis allowed identification of three new LTR retrotransposon families belonging to the Copia superfamily, one belonging to the Gypsy superfamily and two TRIM retrotransposon families. Their physical distribution in wheat genome was analyzed by fluorescent in situ hybridization (FISH) and one of them, the Carmen retrotransposon, was found specific for centromeric regions of all wheat chromosomes. Conclusion The presented work is the first deep report of wheat repetitive sequences analyzed at the chromosome arm level, revealing the first insight into the repeatome of T. aestivum chromosomes of homeologous group 4. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ingrid Garbus
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - José R Romero
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| | - Miroslav Valarik
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Hana Vanžurová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Mario Cáccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic.
| | - Gabriela Tranquilli
- Instituto Recursos Biológicos, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina.
| | - Marcelo Helguera
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina.
| | - Viviana Echenique
- CERZOS (CCT - CONICET Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
6
|
Helguera M, Rivarola M, Clavijo B, Martis MM, Vanzetti LS, González S, Garbus I, Leroy P, Šimková H, Valárik M, Caccamo M, Doležel J, Mayer KFX, Feuillet C, Tranquilli G, Paniego N, Echenique V. New insights into the wheat chromosome 4D structure and virtual gene order, revealed by survey pyrosequencing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:200-212. [PMID: 25711827 PMCID: PMC4352925 DOI: 10.1016/j.plantsci.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 05/20/2023]
Abstract
Survey sequencing of the bread wheat (Triticum aestivum L.) genome (AABBDD) has been approached through different strategies delivering important information. However, the current wheat sequence knowledge is not complete. The aim of our study is to provide different and complementary set of data for chromosome 4D. A survey sequence was obtained by pyrosequencing of flow-sorted 4DS (7.2×) and 4DL (4.1×) arms. Single ends (SE) and long mate pairs (LMP) reads were assembled into contigs (223Mb) and scaffolds (65Mb) that were aligned to Aegilops tauschii draft genome (DD), anchoring 34Mb to chromosome 4. Scaffolds annotation rendered 822 gene models. A virtual gene order comprising 1973 wheat orthologous gene loci and 381 wheat gene models was built. This order was largely consistent with the scaffold order determined based on a published high density map from the Ae. tauschii chromosome 4, using bin-mapped 4D ESTs as a common reference. The virtual order showed a higher collinearity with homeologous 4B compared to 4A. Additionally, a virtual map was constructed and ∼5700 genes (∼2200 on 4DS and ∼3500 on 4DL) predicted. The sequence and virtual order obtained here using the 454 platform were compared with the Illumina one used by the IWGSC, giving complementary information.
Collapse
Affiliation(s)
- Marcelo Helguera
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina.
| | - Máximo Rivarola
- Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA) INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Bernardo Clavijo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich NR4 7UH, UK.
| | - Mihaela M Martis
- MIPS/IBIS, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | - Leonardo S Vanzetti
- Estación Experimental Agropecuaria Marcos Juárez, Instituto Nacional de Tecnología Agropecuaria (INTA), Marcos Juárez, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Sergio González
- Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA) INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ingrid Garbus
- CERZOS (Centro de Recursos Naturales Renovables de la Zona Semiárida), (CCT-CONICET-Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.
| | - Phillippe Leroy
- INRA-UMR 1095, Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche Agronomique-Université Blaise Pascal, Clermont-Ferrand, France.
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic.
| | - Miroslav Valárik
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic.
| | - Mario Caccamo
- The Genome Analysis Centre (TGAC), Norwich Research Park, Norwich NR4 7UH, UK.
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovska 6, CZ-77200 Olomouc, Czech Republic.
| | - Klaus F X Mayer
- MIPS/IBIS, Helmholtz Zentrum München, 85764 Neuherberg, Germany.
| | | | - Gabriela Tranquilli
- Instituto de Recursos Biológicos, CIRN, INTA, Hurlingham, Buenos Aires, Argentina.
| | - Norma Paniego
- Instituto de Biotecnología, Centro Investigación en Ciencias Veterinarias y Agronómicas (CICVyA) INTA, Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Viviana Echenique
- CERZOS (Centro de Recursos Naturales Renovables de la Zona Semiárida), (CCT-CONICET-Bahía Blanca) and Universidad Nacional del Sur, Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Characterization of rubber tree microRNA in phytohormone response using large genomic DNA libraries, promoter sequence and gene expression analysis. Mol Genet Genomics 2014; 289:921-33. [PMID: 24859131 DOI: 10.1007/s00438-014-0862-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The para rubber tree is the most widely cultivated tree species for producing natural rubber (NR) latex. Unfortunately, rubber tree characteristics such as a long life cycle, heterozygous genetic backgrounds, and poorly understood genetic profiles are the obstacles to breeding new rubber tree varieties, such as those with improved NR yields. Recent evidence has revealed the potential importance of controlling microRNA (miRNA) decay in some aspects of NR regulation. To gain a better understanding of miRNAs and their relationship with rubber tree gene regulation networks, large genomic DNA insert-containing libraries were generated to complement the incomplete draft genome sequence and applied as a new powerful tool to predict a function of interested genes. Bacterial artificial chromosome and fosmid libraries, containing a total of 120,576 clones with an average insert size of 43.35 kb, provided approximately 2.42 haploid genome equivalents of coverage based on the estimated 2.15 gb rubber tree genome. Based on these library sequences, the precursors of 1 member of rubber tree-specific miRNAs and 12 members of conserved miRNAs were successfully identified. A panel of miRNAs was characterized for phytohormone response by precisely identifying phytohormone-responsive motifs in their promoter sequences. Furthermore, the quantitative real-time PCR on ethylene stimulation of rubber trees was performed to demonstrate that the miR2118, miR159, miR164 and miR166 are responsive to ethylene, thus confirmed the prediction by genomic DNA analysis. The cis-regulatory elements identified in the promoter regions of these miRNA genes help augment our understanding of miRNA gene regulation and provide a foundation for further investigation of the regulation of rubber tree miRNAs.
Collapse
|
8
|
Leach LJ, Belfield EJ, Jiang C, Brown C, Mithani A, Harberd NP. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat. BMC Genomics 2014; 15:276. [PMID: 24726045 PMCID: PMC4023595 DOI: 10.1186/1471-2164-15-276] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/02/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.
Collapse
|
9
|
Doležel J, Vrána J, Cápal P, Kubaláková M, Burešová V, Šimková H. Advances in plant chromosome genomics. Biotechnol Adv 2014; 32:122-36. [DOI: 10.1016/j.biotechadv.2013.12.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/20/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023]
|
10
|
Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge. Nat Commun 2013; 4:2070. [PMID: 23792912 DOI: 10.1038/ncomms3070] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/29/2013] [Indexed: 11/08/2022] Open
Abstract
Gall midges induce formation of host nutritive cells and alter plant metabolism to utilize host resources. Here we show that the gene Mayetiola destructor susceptibility-1 on wheat chromosome 3AS encodes a small heat-shock protein and is a major susceptibility gene for infestation of wheat by the gall midge M. destructor, commonly known as the Hessian fly. Transcription of Mayetiola destructor susceptibility-1 and its homoeologs increases upon insect infestation. Ectopic expression of Mayetiola destructor susceptibility-1 or induction by heat shock suppresses resistance of wheat mediated by the resistance gene H13 to Hessian fly. Silencing of Mayetiola destructor susceptibility-1 by RNA interference confers immunity to all Hessian fly biotypes on normally susceptible wheat genotypes. Mayetiola destructor susceptibility-1-silenced plants also show reduced lesion formation due to infection by the powdery mildew fungus Blumeria graminis f. sp. tritici. Modification of susceptibility genes may provide broad and durable sources of resistance to Hessian fly, B. graminis f. sp. tritici, and other pests.
Collapse
|
11
|
Raats D, Frenkel Z, Krugman T, Dodek I, Sela H, Simková H, Magni F, Cattonaro F, Vautrin S, Bergès H, Wicker T, Keller B, Leroy P, Philippe R, Paux E, Doležel J, Feuillet C, Korol A, Fahima T. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution. Genome Biol 2013; 14:R138. [PMID: 24359668 PMCID: PMC4053865 DOI: 10.1186/gb-2013-14-12-r138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 11/16/2022] Open
Abstract
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
Collapse
|
12
|
Tanaka T, Kobayashi F, Joshi GP, Onuki R, Sakai H, Kanamori H, Wu J, Simkova H, Nasuda S, Endo TR, Hayakawa K, Doležel J, Ogihara Y, Itoh T, Matsumoto T, Handa H. Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Res 2013; 21:103-14. [PMID: 24086083 PMCID: PMC3989483 DOI: 10.1093/dnares/dst041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Common wheat (Triticum aestivum L.) is one of the most important cereals in the world. To improve wheat quality and productivity, the genomic sequence of wheat must be determined. The large genome size (∼17 Gb/1 C) and the hexaploid status of wheat have hampered the genome sequencing of wheat. However, flow sorting of individual chromosomes has allowed us to purify and separately shotgun-sequence a pair of telocentric chromosomes. Here, we describe a result from the survey sequencing of wheat chromosome 6B (914 Mb/1 C) using massively parallel 454 pyrosequencing. From the 4.94 and 5.51 Gb shotgun sequence data from the two chromosome arms of 6BS and 6BL, 235 and 273 Mb sequences were assembled to cover ∼55.6 and 54.9% of the total genomic regions, respectively. Repetitive sequences composed 77 and 86% of the assembled sequences on 6BS and 6BL, respectively. Within the assembled sequences, we predicted a total of 4798 non-repetitive gene loci with the evidence of expression from the wheat transcriptome data. The numbers and chromosomal distribution patterns of the genes for tRNAs and microRNAs in wheat 6B were investigated, and the results suggested a significant involvement of DNA transposon diffusion in the evolution of these non-protein-coding RNA genes. A comparative analysis of the genomic sequences of wheat 6B and monocot plants clearly indicated the evolutionary conservation of gene contents.
Collapse
Affiliation(s)
- Tsuyoshi Tanaka
- 1Bioinformatics Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 2013; 195:263-273. [PMID: 23821595 DOI: 10.1534/genetics.113.152330/-/dc1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production.
Collapse
Affiliation(s)
- Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu S, Sehgal SK, Li J, Lin M, Trick HN, Yu J, Gill BS, Bai G. Cloning and characterization of a critical regulator for preharvest sprouting in wheat. Genetics 2013; 195:263-73. [PMID: 23821595 PMCID: PMC3761307 DOI: 10.1534/genetics.113.152330] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/15/2013] [Indexed: 11/18/2022] Open
Abstract
Sprouting of grains in mature spikes before harvest is a major problem in wheat (Triticum aestivum) production worldwide. We cloned and characterized a gene underlying a wheat quantitative trait locus (QTL) on the short arm of chromosome 3A for preharvest sprouting (PHS) resistance in white wheat using comparative mapping and map-based cloning. This gene, designated TaPHS1, is a wheat homolog of a MOTHER OF FLOWERING TIME (TaMFT)-like gene. RNA interference-mediated knockdown of the gene confirmed that TaPHS1 positively regulates PHS resistance. We discovered two causal mutations in TaPHS1 that jointly altered PHS resistance in wheat. One GT-to-AT mutation generates a mis-splicing site, and the other A-to-T mutation creates a premature stop codon that results in a truncated nonfunctional transcript. Association analysis of a set of wheat cultivars validated the role of the two mutations on PHS resistance. The molecular characterization of TaPHS1 is significant for expediting breeding for PHS resistance to protect grain yield and quality in wheat production.
Collapse
Affiliation(s)
- Shubing Liu
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Sunish K. Sehgal
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Jiarui Li
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Meng Lin
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Harold N. Trick
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Jianming Yu
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guihua Bai
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506
- Hard Winter Wheat Genetics Research Unit, U.S. Department of Agriculture–Agricultural Research Service, Manhattan, Kansas 66506
| |
Collapse
|
15
|
Rustgi S, Shafqat MN, Kumar N, Baenziger PS, Ali ML, Dweikat I, Campbell BT, Gill KS. Genetic dissection of yield and its component traits using high-density composite map of wheat chromosome 3A: bridging gaps between QTLs and underlying genes. PLoS One 2013; 8:e70526. [PMID: 23894667 PMCID: PMC3722237 DOI: 10.1371/journal.pone.0070526] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
Earlier we identified wheat (Triticum aestivum L.) chromosome 3A as a major determinant of grain yield and its component traits. In the present study, a high-density genetic linkage map of 81 chromosome 3A-specific markers was developed to increase the precision of previously identified yield component QTLs, and to map QTLs for biomass-related traits. Many of the previously identified QTLs for yield and its component traits were confirmed and were localized to narrower intervals. Four novel QTLs one each for shoot biomass (Xcfa2262-Xbcd366), total biomass (wPt2740-Xcfa2076), kernels/spike (KPS) (Xwmc664-Xbarc67), and Pseudocercosporella induced lodging (PsIL) were also detected. The major QTLs identified for grain yield (GY), KPS, grain volume weight (GVWT) and spikes per square meter (SPSM) respectively explained 23.2%, 24.2%, 20.5% and 20.2% of the phenotypic variation. Comparison of the genetic map with the integrated physical map allowed estimation of recombination frequency in the regions of interest and suggested that QTLs for grain yield detected in the marker intervals Xcdo549-Xbarc310 and Xpsp3047-Xbarc356 reside in the high-recombination regions, thus should be amenable to map-based cloning. On the other hand, QTLs for KPS and SPSM flanked by markers Xwmc664 and Xwmc489 mapped in the low-recombination region thus are not suitable for map-based cloning. Comparisons with the rice (Oryza sativa L.) genomic DNA sequence identified 11 candidate genes (CGs) for yield and yield related QTLs of which chromosomal location of two (CKX2 and GID2-like) was confirmed using wheat aneuploids. This study provides necessary information to perform high-resolution mapping for map-based cloning and for CG-based cloning of yield QTLs.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Mustafa N. Shafqat
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Neeraj Kumar
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - M. Liakat Ali
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ismail Dweikat
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - B. Todd Campbell
- Agricultural Research Service, Coastal Plains Soil, Water, and Plant Research Center, Florence, South Carolina, United States of America
| | - Kulvinder Singh Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
16
|
Cação SMB, Silva NV, Domingues DS, Vieira LGE, Diniz LEC, Vinecky F, Alves GSC, Andrade AC, Carpentieri-Pipolo V, Pereira LFP. Construction and characterization of a BAC library from the Coffea arabica genotype Timor Hybrid CIFC 832/2. Genetica 2013; 141:217-26. [PMID: 23677718 DOI: 10.1007/s10709-013-9720-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
Abstract
Most of the world's coffee production originates from Coffea arabica, an allotetraploid species with low genetic diversity and for which few genomic resources are available. Genomic libraries with large DNA fragment inserts are useful tools for the study of plant genomes, including the production of physical maps, integration studies of physical and genetic maps, genome structure analysis and gene isolation by positional cloning. Here, we report the construction and characterization of a Bacterial Artificial Chromosome (BAC) library from C. arabica Timor Hybrid CIFC 832/2, a parental genotype for several modern coffee cultivars. The BAC library consists of 56,832 clones with an average insert size of 118 kb, which represents a dihaploid genome coverage of five to sixfold. The content of organellar DNA was estimated at 1.04 and 0.5 % for chloroplast and mitochondrial DNA, respectively. The BAC library was screened for the NADPH-dependent mannose-6-phosphate reductase gene (CaM6PR) with markers positioned on four linkage groups of a partial C. arabica genetic map. A mixed approach using PCR and membrane hybridization of BAC pools allowed for the discovery of nine BAC clones with the CaM6PR gene and 53 BAC clones that were anchored to the genetic map with simple sequence repeat markers. This library will be a useful tool for future studies on comparative genomics and the identification of genes and regulatory elements controlling major traits in this economically important crop species.
Collapse
Affiliation(s)
- S M B Cação
- Laboratory of Plant Biotechnology, Instituto Agronomico do Paraná, CP 481 Londrina, Paraná 86001-970, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Asamizu E, Shirasawa K, Hirakawa H, Sato S, Tabata S, Yano K, Ariizumi T, Shibata D, Ezura H. Mapping of Micro-Tom BAC-End Sequences to the Reference Tomato Genome Reveals Possible Genome Rearrangements and Polymorphisms. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:437026. [PMID: 23227037 PMCID: PMC3514829 DOI: 10.1155/2012/437026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/18/2012] [Indexed: 05/29/2023]
Abstract
A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, "Heinz 1706." By referring to the "Heinz 1706" physical map and by eliminating redundant or nonsignificant hits, 28,804 "unique pair ends" and 8,263 "unique ends" were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423 bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565 bp) and 140,862 were found in heterochromatin (1 per 2,737 bp). The average polymorphism density in the genome was 1 polymorphism per 2,886 bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database.
Collapse
Affiliation(s)
- Erika Asamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| |
Collapse
|