1
|
Tandon D, Kubinyi E, Sándor S, Faughnan H, Miklósi Á, vonHoldt BM. Canine hyper-sociability structural variants associated with altered three-dimensional chromatin state. BMC Genomics 2024; 25:767. [PMID: 39112925 PMCID: PMC11305043 DOI: 10.1186/s12864-024-10614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/11/2024] [Indexed: 08/11/2024] Open
Abstract
Strong selection on complex traits can lead to skewed trait means and reduced trait variability in populations. An example of this phenomenon can be evidenced in allele frequency changes and skewed trait distributions driven by persistent human-directed selective pressures in domesticated species. Dog domestication is linked to several genomic variants; however, the functional impacts of these variants may not always be straightforward when found in non-coding regions of the genome. Four polymorphic transposable elements (TE) found within non-coding sites along a 5 Mb region on canine CFA6 have evolved due to directional selection associated with heightened human-directed hyper-sociability in domesticated dogs. We found that the polymorphic TE in intron 17 of the canine GTF2I gene, which was previously reported to be negatively correlated with canid human-directed hyper-sociability, is associated with altered chromatin looping and hence distinct cis-regulatory landscapes. We reported supporting evidence of an E2F1-DNA binding peak concordant with the altered loop and higher expression of GTF2I exon 18, indicative of alternative splicing. Globally, we discovered differences in pathways regulating the extra-cellular matrix with respect to TE copy number. Overall, we reported evidence suggesting an intriguing molecular convergence between the emergence of hypersocial behaviors in dogs and the same genes that, when hemizygous, produce human Williams Beuren Syndrome characterized by cranio-facial defects and heightened social behaviors. Our results additionally emphasize the often-overlooked potential role of chromatin architecture in social evolution.
Collapse
Affiliation(s)
- Dhriti Tandon
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| | - Sára Sándor
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Hannah Faughnan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Zhao Y, Shi J, Feng B, Yuan S, Yue X, Shi W, Yan Z, Xu D, Zuo J, Wang Q. Multi-omic analysis of the extension of broccoli quality during storage by folic acid. J Adv Res 2024; 59:65-78. [PMID: 37406731 PMCID: PMC11081962 DOI: 10.1016/j.jare.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
INTRODUCTION Folic acid (FA) is a critical metabolite in all living organisms and an important nutritional component of broccoli. Few studies have been conducted on the impact of an exogenous application of FA on the postharvest physiology of fruits and vegetables during storage. In this regard, the mechanism by which an exogenous application of FA extends the postharvest quality of broccoli is unclear. OBJECTIVE This study utilized a multicomponent analysis to investigate how an exogenous application of FA effects the postharvest quality of broccoli. METHODS Broccoli was soaked in 5 mg/L FA for 10 min and the effect of the treatment on the appearance and nutritional quality of broccoli was evaluated. These data were combined with transcriptomic, metabolomic, and DNA methylation data to provide insight into the potential mechanism by which FA delays senescence. RESULTS The FA treatment inhibited the yellowing of broccoli during storage. CHH methylation was identified as the main type of methylation that occurs in broccoli and the FA treatment was found to inhibit DNA methylation, promote the accumulation of endogenous FA and chlorophyl, and inhibit ethylene biosynthesis in stored broccoli. The FA treatment also prevented the formation of off-odors by inhibiting the degradation of glucosinolate. CONCLUSIONS FA treatment inhibited the loss of nutrients during the storage of broccoli, delayed its yellowing, and inhibited the generation of off-odors. Our study provides deeper insight into the mechanism by which the postharvest application of FA delays postharvest senescence in broccoli and provides the foundation for further studies of postharvest metabolism in broccoli.
Collapse
Affiliation(s)
- Yaqi Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junyan Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Bihong Feng
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaozhen Yue
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wenlin Shi
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhicheng Yan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongying Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Institute of Agri-food Processing and Nutrition, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
3
|
Li Y, Jin L, Liu X, He C, Bi S, Saeed S, Yan W. Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat. PLANT DIVERSITY 2024; 46:386-394. [PMID: 38798730 PMCID: PMC11119517 DOI: 10.1016/j.pld.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024]
Abstract
Vernalization is necessary for winter wheat to flower. However, it is unclear whether vernalization is also required for spring wheat, which is frequently sown in fall, and what molecular mechanisms underlie the vernalization response in wheat varieties. In this study, we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties. For this purpose, we determined how major vernalization genes (VRN1, VRN2, and VRN3) respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression. We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties. We found that in winter wheat, but not in spring wheat, VRN1 expression decreases when returned to warm temperature following vernalization. This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3 (H3K27me3) and tri-methylation of lysine 4 on histone H3 (H3K4me3) at the VRN1 gene. Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes, including those involved in leucine catabolism, cysteine biosynthesis, and flavonoid biosynthesis. These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.
Collapse
Affiliation(s)
- Yunzhen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Niu D, Gao Z, Cui B, Zhang Y, He Y. A molecular mechanism for embryonic resetting of winter memory and restoration of winter annual growth habit in wheat. NATURE PLANTS 2024; 10:37-52. [PMID: 38177663 DOI: 10.1038/s41477-023-01596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
The staple food crop winter bread wheat (Triticum aestivum) acquires competence to flower in late spring after experiencing prolonged cold in temperate winter seasons, through the physiological process of vernalization. Prolonged cold exposure results in transcriptional repression of the floral repressor VERNALIZATION 2 (TaVRN2) and activates the expression of the potent floral promoter VERNALIZATION 1 (TaVRN1). Cold-induced TaVRN1 activation and TaVRN2 repression are maintained in post-cold vegetative growth and development, leading to an epigenetic 'memory of winter cold', enabling spring flowering. When and how the cold memory is reset in wheat is essentially unknown. Here we report that the cold-induced TaVRN1 activation is inherited by early embryos, but reset in subsequent embryo development, whereas TaVRN2 remains silenced through seed development, but is reactivated rapidly by light during seed germination. We further found that a chromatin reader mediates embryonic resetting of TaVRN1 and that chromatin modifications play an important role in the regulation of TaVRN1 expression and thus the floral transition, in response to developmental state and environmental cues. The findings define a two-step molecular mechanism for re-establishing vernalization requirement in common wheat, ensuring that each generation must experience winter cold to acquire competence to flower in spring.
Collapse
Affiliation(s)
- De Niu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Zheng Gao
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Bowen Cui
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yongxing Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
5
|
Shi Y, Yu B, Cheng S, Hu W, Liu F. The Change in Whole-Genome Methylation and Transcriptome Profile under Autophagy Defect and Nitrogen Starvation. Int J Mol Sci 2023; 24:14047. [PMID: 37762347 PMCID: PMC10530911 DOI: 10.3390/ijms241814047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Through whole-genome bisulfite sequencing and RNA-seq, we determined the potential impact of autophagy in regulating DNA methylation in Arabidopsis, providing a solid foundation for further understanding the molecular mechanism of autophagy and how plants cope with nitrogen deficiency. A total of 335 notable differentially expressed genes (DEGs) were discovered in wild-type Arabidopsis (Col-0-N) and an autophagic mutant cultivated under nitrogen starvation (atg5-1-N). Among these, 142 DEGs were associated with hypomethylated regions (hypo-DMRs) and were upregulated. This suggests a correlation between DNA demethylation and the ability of Arabidopsis to cope with nitrogen deficiency. Examination of the hypo-DMR-linked upregulated DEGs indicated that the expression of MYB101, an ABA pathway regulator, may be regulated by DNA demethylation and the recruitment of transcription factors (TFs; ERF57, ERF105, ERF48, and ERF111), which may contribute to the growth arrest induced by abscisic acid (ABA). Additionally, we found that DNA methylation might impact the biosynthesis of salicylic acid (SA). The promoter region of ATGH3.12 (PBS3), a key enzyme in SA synthesis, was hypomethylated, combined with overexpression of PBS3 and its potential TF AT3G46070, suggesting that autophagy defects may lead to SA-activated senescence, depending on DNA demethylation. These findings suggest that DNA hypomethylation may impact the mechanism by which Arabidopsis autophagy mutants (atg5-1) respond to nitrogen deficiency, specifically in relation to ABA and SA regulation. Our evaluation of hormone levels verified that these two hormones are significantly enriched under nitrogen deficiency in atg5-1-N compared to Col-0-N.
Collapse
Affiliation(s)
- Yunfeng Shi
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| | - Baiyang Yu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Shan Cheng
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332000, China; (Y.S.); (B.Y.); (S.C.)
| |
Collapse
|
6
|
Du L, Ma Z, Mao H. Duplicate Genes Contribute to Variability in Abiotic Stress Resistance in Allopolyploid Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:2465. [PMID: 37447026 DOI: 10.3390/plants12132465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 07/15/2023]
Abstract
Gene duplication is a universal biological phenomenon that drives genomic variation and diversity, plays a crucial role in plant evolution, and contributes to innovations in genetic engineering and crop development. Duplicated genes participate in the emergence of novel functionality, such as adaptability to new or more severe abiotic stress resistance. Future crop research will benefit from advanced, mechanistic understanding of the effects of gene duplication, especially in the development and deployment of high-performance, stress-resistant, elite wheat lines. In this review, we summarize the current knowledge of gene duplication in wheat, including the principle of gene duplication and its effects on gene function, the diversity of duplicated genes, and how they have functionally diverged. Then, we discuss how duplicated genes contribute to abiotic stress response and the mechanisms of duplication. Finally, we have a future prospects section that discusses the direction of future efforts in the short term regarding the elucidation of replication and retention mechanisms of repetitive genes related to abiotic stress response in wheat, excellent gene function research, and practical applications.
Collapse
Affiliation(s)
- Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Zhenbing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Bhar A, Chakraborty A, Roy A. Plant Responses to Biotic Stress: Old Memories Matter. PLANTS (BASEL, SWITZERLAND) 2021; 11:84. [PMID: 35009087 PMCID: PMC8747260 DOI: 10.3390/plants11010084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/20/2023]
Abstract
Plants are fascinating organisms present in most ecosystems and a model system for studying different facets of ecological interactions on Earth. In the environment, plants constantly encounter a multitude of abiotic and biotic stresses. The zero-avoidance phenomena make them more resilient to such environmental odds. Plants combat biotic stress or pathogenic ingression through a complex orchestration of intracellular signalling cascades. The plant-microbe interaction primarily relies on acquired immune response due to the absence of any specialised immunogenic cells for adaptive immune response. The generation of immune memory is mainly carried out by T cells as part of the humoral immune response in animals. Recently, prodigious advancements in our understanding of epigenetic regulations in plants invoke the "plant memory" theory afresh. Current innovations in cutting-edge genomic tools have revealed stress-associated genomic alterations and strengthened the idea of transgenerational memory in plants. In plants, stress signalling events are transferred as genomic imprints in successive generations, even without any stress. Such immunogenic priming of plants against biotic stresses is crucial for their eco-evolutionary success. However, there is limited literature capturing the current knowledge of the transgenerational memory of plants boosting biotic stress responses. In this context, the present review focuses on the general concept of memory in plants, recent advancements in this field and comprehensive implications in biotic stress tolerance with future perspectives.
Collapse
Affiliation(s)
- Anirban Bhar
- Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, West Bengal, India
| | - Amrita Chakraborty
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Amit Roy
- EVA4.0-Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16500 Prague, Czech Republic
| |
Collapse
|
8
|
In-Depth Sequence Analysis of Bread Wheat VRN1 Genes. Int J Mol Sci 2021; 22:ijms222212284. [PMID: 34830166 PMCID: PMC8626038 DOI: 10.3390/ijms222212284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022] Open
Abstract
The VERNALIZATION1 (VRN1) gene encodes a MADS-box transcription factor and plays an important role in the cold-induced transition from the vegetative to reproductive stage. Allelic variability of VRN1 homoeologs has been associated with large differences in flowering time. The aim of this study was to investigate the genetic variability of VRN1 homoeologs (VRN-A1, VRN-B1 and VRN-D1). We performed an in-depth sequence analysis of VRN1 homoeologs in a panel of 105 winter and spring varieties of hexaploid wheat. We describe the novel allele Vrn-B1f with an 836 bp insertion within intron 1 and show its specific expression pattern associated with reduced heading time. We further provide the complete sequence of the Vrn-A1b allele, revealing a 177 bp insertion in intron 1, which is transcribed into an alternative splice variant. Copy number variation (CNV) analysis of VRN1 homoeologs showed that VRN-B1 and VRN-D1 are present in only one copy. The copy number of recessive vrn-A1 ranged from one to four, while that of dominant Vrn-A1 was one or two. Different numbers of Vrn-A1a copies in the spring cultivars Branisovicka IX/49 and Bastion did not significantly affect heading time. We also report on the deletion of secondary structures (G-quadruplex) in promoter sequences of cultivars with more vrn-A1 copies.
Collapse
|
9
|
Abstract
Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme temperatures. These stressors greatly limit the distribution of plants, alter their growth and development, and reduce crop productivity. Recent progress in our understanding of the molecular mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel nature; multiple processes are involved, including sensing, signalling, transcription, transcript processing, translation and post-translational protein modifications. This improved knowledge can be used to boost crop productivity and agricultural sustainability through genetic, chemical and microbial approaches.
Collapse
|
10
|
Zhao Y, Zhong Y, Ye C, Liang P, Pan X, Zhang YY, Zhang Y, Shen Y. Multi-omics analyses on Kandelia obovata reveal its response to transplanting and genetic differentiation among populations. BMC PLANT BIOLOGY 2021; 21:341. [PMID: 34281510 PMCID: PMC8287808 DOI: 10.1186/s12870-021-03123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Restoration through planting is the dominant strategy to conserve mangrove ecosystems. However, many of the plantations fail to survive. Site and seeding selection matters for planting. The process of afforestation, where individuals were planted in a novel environment, is essentially human-controlled transplanting events. Trying to deepen and expand the understanding of the effects of transplanting on plants, we have performed a seven-year-long reciprocal transplant experiment on Kandelia obovata along a latitudinal gradient. RESULTS Combined phenotypic analyses and next-generation sequencing, we found phenotypic discrepancies among individuals from different populations in the common garden and genetic differentiation among populations. The central population with abundant genetic diversity and high phenotypic plasticity had a wide plantable range. But its biomass was reduced after being transferred to other latitudes. The suppressed expression of lignin biosynthesis genes revealed by RNA-seq was responsible for the biomass reduction. Moreover, using whole-genome bisulfite sequencing, we observed modification of DNA methylation in MADS-box genes that involved in the regulation of flowering time, which might contribute to the adaptation to new environments. CONCLUSIONS Taking advantage of classical ecological experiments as well as multi-omics analyses, our work observed morphology differences and genetic differentiation among different populations of K. obovata, offering scientific advice for the development of restoration strategy with long-term efficacy, also explored phenotypic, transcript, and epigenetic responses of plants to transplanting events between latitudes.
Collapse
Affiliation(s)
- Yuze Zhao
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, 571199, China
| | - Yifan Zhong
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Congting Ye
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Pingping Liang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xiaobao Pan
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of E, ducation for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
11
|
Baduel P, Colot V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200123. [PMID: 33866816 PMCID: PMC8059525 DOI: 10.1098/rstb.2020.0123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA provides the fundamental framework for heritability, yet heritable trait variation need not be completely ‘hard-wired’ into the DNA sequence. In plants, the epigenetic machinery that controls transposable element (TE) activity, and which includes DNA methylation, underpins most known cases of inherited trait variants that are independent of DNA sequence changes. Here, we review our current knowledge of the extent, mechanisms and potential adaptive contribution of epiallelic variation at TE-containing alleles in this group of species. For the purpose of this review, we focus mainly on DNA methylation, as it provides an easily quantifiable readout of such variation. The picture that emerges is complex. On the one hand, pronounced differences in DNA methylation at TE sequences can either occur spontaneously or be induced experimentally en masse across the genome through genetic means. Many of these epivariants are stably inherited over multiple sexual generations, thus leading to transgenerational epigenetic inheritance. Functional consequences can be significant, yet they are typically of limited magnitude and although the same epivariants can be found in nature, the factors involved in their generation in this setting remain to be determined. On the other hand, moderate DNA methylation variation at TE-containing alleles can be reproducibly induced by the environment, again usually with mild effects, and most of this variation tends to be lost across generations. Based on these considerations, we argue that TE-containing alleles, rather than their inherited epiallelic variants, are the main targets of natural selection. Thus, we propose that the adaptive contribution of TE-associated epivariation, whether stable or not, lies predominantly in its capacity to modulate TE mobilization in response to the environment, hence providing hard-wired opportunities for the flexible exploration of the phenotypic space. This article is part of the theme issue ‘How does epigenetics influence the course of evolution?’
Collapse
Affiliation(s)
- Pierre Baduel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
| |
Collapse
|
12
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
13
|
Liu J, He Z. Small DNA Methylation, Big Player in Plant Abiotic Stress Responses and Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:595603. [PMID: 33362826 PMCID: PMC7758401 DOI: 10.3389/fpls.2020.595603] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 05/12/2023]
Abstract
DNA methylation is a conserved epigenetic mark that plays important roles in maintaining genome stability and regulating gene expression. As sessile organisms, plants have evolved sophisticated regulatory systems to endure or respond to diverse adverse abiotic environmental challenges, i.e., abiotic stresses, such as extreme temperatures (cold and heat), drought and salinity. Plant stress responses are often accompanied by changes in chromatin modifications at diverse responsive loci, such as 5-methylcytosine (5mC) and N 6-methyladenine (6mA) DNA methylation. Some abiotic stress responses are memorized for several hours or days through mitotic cell divisions and quickly reset to baseline levels after normal conditions are restored, which is referred to as somatic memory. In some cases, stress-induced chromatin marks are meiotically heritable and can impart the memory of stress exposure from parent plants to at least the next stress-free offspring generation through the mechanisms of transgenerational epigenetic inheritance, which may offer the descendants the potential to be adaptive for better fitness. In this review, we briefly summarize recent achievements regarding the establishment, maintenance and reset of DNA methylation, and highlight the diverse roles of DNA methylation in plant responses to abiotic stresses. Further, we discuss the potential role of DNA methylation in abiotic stress-induced somatic memory and transgenerational inheritance. Future research directions are proposed to develop stress-tolerant engineered crops to reduce the negative effects of abiotic stresses.
Collapse
Affiliation(s)
- Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Sicilia A, Scialò E, Puglisi I, Lo Piero AR. Anthocyanin Biosynthesis and DNA Methylation Dynamics in Sweet Orange Fruit [ Citrus sinensis L. (Osbeck)] under Cold Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7024-7031. [PMID: 32520546 PMCID: PMC8008385 DOI: 10.1021/acs.jafc.0c02360] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
The blood red color of pigmented orange fruit varieties [Citrus sinensis L. (Osbeck)] is due to the presence of anthocyanin pigments that largely contribute to determine the high organoleptic qualities and the nutritional properties of the fruits. The content of pigments in sweet orange depends primarily on genetic factors and on environmental conditions. In particular, it has been extensively shown that cold temperature induces an increase of anthocyanin content that is achieved by the induction of the related gene expression. The purpose of our work is to understand the mechanism underlying the color variegation occurring inside the blood oranges during the cold induction of anthocyanin biosynthesis, despite the fact that the entire fruit is genotypically programmed to produce pigments. Therefore, the amount of anthocyanin and the expression of both structural and regulatory genes have been monitored in either high-pigmented (HP) or not/low pigmented (NP) segments of the same fruit during the storage at 4 °C for a total experimental period of 25 days. Our results clearly indicate that the anthocyanin content is directly correlated with the levels of gene transcription, with higher pigmented areas showing higher enhancement of gene expression. Furthermore, we analyzed the reshaping of the DNA methylation status at the promoter regions of genes related to anthocyanin biosynthetic pathway, such as DFR and Ruby. Our results unequivocally demonstrate that in the promoter regions of both DFR and Ruby, the amount of cytosine methylation strongly decreases along the cold storage in the HP areas, whereas it increases in the NP areas of the same fruit, probably causing a partial block of the gene transcription. Finally, by measuring the changes in the expression levels of the Citrus DNA demethylases, we found that DML1 might play a crucial role in determining the observed demethylation of DFR and Ruby promoters, with its expression induced by cold in the HP areas of the fruits. This is the first report in which different levels of gene expression implicated in anthocyanin production in blood orange fruit is correlated with an epigenetic control mechanism such as promoter methylation.
Collapse
|
15
|
Xu L, Yuan K, Yuan M, Meng X, Chen M, Wu J, Li J, Qi Y. Regulation of Rice Tillering by RNA-Directed DNA Methylation at Miniature Inverted-Repeat Transposable Elements. MOLECULAR PLANT 2020; 13:851-863. [PMID: 32087371 DOI: 10.1016/j.molp.2020.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/15/2019] [Accepted: 12/20/2019] [Indexed: 05/24/2023]
Abstract
Tillering is a major determinant of rice plant architecture and grain yield. Here, we report that depletion of rice OsNRPD1a and OsNRPD1b, two orthologs of the largest subunit of RNA polymerase IV, leads to a high-tillering phenotype, in addition to dwarfism and smaller panicles. OsNRPD1a and OsNRPD1b are required for the production of 24-nt small interfering RNAs that direct DNA methylation at transposable elements (TEs) including miniature inverted-repeat TEs (MITEs). Interestingly, many genes are regulated either positively or negatively by TE methylation. Among them, OsMIR156d and OsMIR156j, which promote rice tillering, are repressed by CHH methylation at two MITEs in the promoters. By contrast, D14, which suppresses rice tillering, is activated by CHH methylation at an MITE in its downstream. Our findings reveal regulation of rice tillering by RNA-directed DNA methylation at MITEs and provide potential targets for agronomic trait enhancement through epigenome editing.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Kun Yuan
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Yuan
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Xiangbing Meng
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayang Li
- Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
16
|
Shangguan L, Fang X, Jia H, Chen M, Zhang K, Fang J. Characterization of DNA methylation variations during fruit development and ripening of Vitis vinifera (cv. 'Fujiminori'). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:617-637. [PMID: 32255927 PMCID: PMC7113366 DOI: 10.1007/s12298-020-00759-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/21/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
The fruit is the most important economical organ in the grape; accordingly, to investigate the grapevine genomic methylation landscape and examine its functional significance during fruit development, we generated whole genome DNA methylation maps for various developmental stages in the fruit of grapevine. In this study, thirteen DNA methylation-related genes and their expression profiles were identified and analyzed. The methylation levels for mC, mCG, mCHG, and mCHH contexts in 65 days after flowering (65DAF) fruit (véraison stage) were higher than those in 40DAF (green stage) and 90DAF (mature stage) fruits. Relative to methylation in the mC context, methylation levels in the mCHH context were higher than those of mCG and mCHG. The DNA methylation level in the ncRNA regions was significantly higher than that in exon, gene, intron, and mRNA regions. The differentially methylated regions (DMRs) and differentially methylated promoters (DMPs) in 65DAF_vs_40DAF were both higher than those in 90DAF_vs_65DAF and 90DAF_vs_40DAF. Most DMRs (or DMPs) were involved in metabolic processes and cell processes, binding, and catalytic activity. These results indicated that DNA methylation represses gene expression during grape fruit development, and it broadens our understanding of the landscape and function of DNA methylation in grapevine genomes.
Collapse
Affiliation(s)
- Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095 China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province, China
| | - Haifeng Jia
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095 China
| | - Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095 China
| | - Kekun Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095 China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu Province, China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095 China
| |
Collapse
|
17
|
Espinas NA, Tu LN, Furci L, Shimajiri Y, Harukawa Y, Miura S, Takuno S, Saze H. Transcriptional regulation of genes bearing intronic heterochromatin in the rice genome. PLoS Genet 2020; 16:e1008637. [PMID: 32187179 PMCID: PMC7145194 DOI: 10.1371/journal.pgen.1008637] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 04/09/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Intronic regions of eukaryotic genomes accumulate many Transposable Elements (TEs). Intronic TEs often trigger the formation of transcriptionally repressive heterochromatin, even within transcription-permissive chromatin environments. Although TE-bearing introns are widely observed in eukaryotic genomes, their epigenetic states, impacts on gene regulation and function, and their contributions to genetic diversity and evolution, remain poorly understood. In this study, we investigated the genome-wide distribution of intronic TEs and their epigenetic states in the Oryza sativa genome, where TEs comprise 35% of the genome. We found that over 10% of rice genes contain intronic heterochromatin, most of which are associated with TEs and repetitive sequences. These heterochromatic introns are longer and highly enriched in promoter-proximal positions. On the other hand, introns also accumulate hypomethylated short TEs. Genes with heterochromatic introns are implicated in various biological functions. Transcription of genes bearing intronic heterochromatin is regulated by an epigenetic mechanism involving the conserved factor OsIBM2, mutation of which results in severe developmental and reproductive defects. Furthermore, we found that heterochromatic introns evolve rapidly compared to non-heterochromatic introns. Our study demonstrates that heterochromatin is a common epigenetic feature associated with actively transcribed genes in the rice genome.
Collapse
Affiliation(s)
- Nino A. Espinas
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama city, Kanagawa, Japan
| | - Le Ngoc Tu
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Yasuka Shimajiri
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
- EditForce, Fukuoka, Japan
| | - Yoshiko Harukawa
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Saori Miura
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
18
|
Tang X, Liang M, Han J, Cheng J, Zhang H, Liu X. Ectopic expression of LoSVP, a MADS-domain transcription factor from lily, leads to delayed flowering in transgenic Arabidopsis. PLANT CELL REPORTS 2020; 39:289-298. [PMID: 31741036 DOI: 10.1007/s00299-019-02491-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/11/2019] [Indexed: 05/17/2023]
Abstract
A MADS-domain transcription factorLoSVP, which could delay flowering through vernalization pathway, was isolated from lily. MADS-domain transcription factors play important roles in plant growth and development, especially in the transition from vegetative phase to reproductive phase. However, their functions in bulbous flowering plants are largely unknown. In this work, a SHORT VEGETATIVE PHASE (SVP) encoding genes LoSVP from oriental lily was isolated. Bioinformatic analyses demonstrated that LoSVP encodes a type II MADS-box protein containing a conserved MADS-box, as well as a conserved K-box domain. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed ubiquitous expression of LoSVP in various tissues, including petals, stamens, pistils, leaves and scales. Real-time polymerase chain reaction (PCR) analyses demonstrated that LoSVP was predominantly expressed in the early stage of developing flowers. Constitutive expression of LoSVP in Arabidopsis led to significantly delayed flowering of transgenic plants. These results suggest that LoSVP is involved in plant flowering and could be used as a potential candidate gene for the genetic regulation of flowering time in higher plants.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Meixia Liang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Junjie Han
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Street, Yantai, 265500, Shandong, China
| | - Jieshan Cheng
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Hongxia Zhang
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
- Institute for Advanced Study of Coastal Ecology, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China
| | - Xiaohua Liu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong, China.
| |
Collapse
|
19
|
Abstract
The evolutionary processes that transitioned plants to land-based habitats also incorporated a multiplicity of strategies to enhance resilience to the greater environmental variation encountered on land. The sensing of light, its quality, quantity, and duration, is central to plant survival and, as such, serves as a central network hub. Similarly, plants as sessile organisms that can encounter isolation must continually assess their reproductive options, requiring plasticity in propagation by self- and cross-pollination or asexual strategies. Irregular fluctuations and intermittent extremes in temperature, soil fertility, and moisture conditions have given impetus to genetic specializations for network resiliency, protein neofunctionalization, and internal mechanisms to accelerate their evolution. We review some of the current advancements made in understanding plant resiliency and phenotypic plasticity mechanisms. These mechanisms incorporate unusual nuclear-cytoplasmic interactions, various transposable element (TE) activities, and epigenetic plasticity of central gene networks that are broadly pleiotropic to influence resiliency phenotypes.
Collapse
Affiliation(s)
- Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Abstract
DNA methylation is a conserved epigenetic modification that is important for gene regulation and genome stability. Aberrant patterns of DNA methylation can lead to plant developmental abnormalities. A specific DNA methylation state is an outcome of dynamic regulation by de novo methylation, maintenance of methylation and active demethylation, which are catalysed by various enzymes that are targeted by distinct regulatory pathways. In this Review, we discuss DNA methylation in plants, including methylating and demethylating enzymes and regulatory factors, and the coordination of methylation and demethylation activities by a so-called methylstat mechanism; the functions of DNA methylation in regulating transposon silencing, gene expression and chromosome interactions; the roles of DNA methylation in plant development; and the involvement of DNA methylation in plant responses to biotic and abiotic stress conditions.
Collapse
|
21
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
22
|
Kaleem F, Shabir G, Aslam K, Rasul S, Manzoor H, Shah SM, Khan AR. An Overview of the Genetics of Plant Response to Salt Stress: Present Status and the Way Forward. Appl Biochem Biotechnol 2018; 186:306-334. [PMID: 29611134 DOI: 10.1007/s12010-018-2738-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 03/15/2018] [Indexed: 01/24/2023]
Abstract
Salinity is one of the major threats faced by the modern agriculture today. It causes multidimensional effects on plants. These effects depend upon the plant growth stage, intensity, and duration of the stress. All these lead to stunted growth and reduced yield, ultimately inducing economic loss to the farming community in particular and to the country in general. The soil conditions of agricultural land are deteriorating at an alarming rate. Plants assess the stress conditions, transmit the specific stress signals, and then initiate the response against that stress. A more complete understanding of plant response mechanisms and their practical incorporation in crop improvement is an essential step towards achieving the goal of sustainable agricultural development. Literature survey shows that investigations of plant stresses response mechanism are the focus area of research for plant scientists. Although these efforts lead to reveal different plant response mechanisms against salt stress, yet many questions still need to be answered to get a clear picture of plant strategy to cope with salt stress. Moreover, these studies have indicated the presence of a complicated network of different integrated pathways. In order to work in a progressive way, a review of current knowledge is critical. Therefore, this review aims to provide an overview of our understanding of plant response to salt stress and to indicate some important yet unexplored dynamics to improve our knowledge that could ultimately lead towards crop improvement.
Collapse
Affiliation(s)
- Fawad Kaleem
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Ghulam Shabir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Kashif Aslam
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sumaira Rasul
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hamid Manzoor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Shahid Masood Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Abdul Rehman Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
| |
Collapse
|
23
|
Feng Y, Zhao Y, Wang K, Li YC, Wang X, Yin J. Identification of vernalization responsive genes in the winter wheat cultivar Jing841 by transcriptome sequencing. J Genet 2017; 95:957-964. [PMID: 27994195 DOI: 10.1007/s12041-016-0724-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aimed to identify vernalization responsive genes in the winter wheat cultivar Jing841 by comparing the transcriptome data with that of a spring wheat cultivar Liaochun10. For each cultivar, seedlings before and after the vernalization treatment were sequenced by Solexa/Illumina sequencing. Genes differentially expressed after and before vernalization were identified as differentially expressed genes (DEGs) using false discovery rate (FDR) ≤ 0.001 and |log2 (fold change)|>1 as cutoffs. The Jing841-specific DEGs were screened and subjected to functional annotation using gene ontology (GO) database. Vernalization responsive genes among the specific genes were selected for validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the expression change over the time was investigated for the top 11 genes with the most significant expression differences. A total of 138,062 unigenes were obtained. Overall, 636 DEGs were identified as vernalization responsive genes including some known genes such as VRN-1 and COR14a, and some unknown contigs. The qRT-PCR validated changes in the expression of 18 DEGs that were detected by RNA-seq. Among them, 11 genes displayed four different types of expression patterns over time during the 30-day-long vernalization treatment. Genes or contigs such as VRN-A1, COR14a, IRIP, unigene1806 and Cl18953. Contig2 probably have critical roles in vernalization.
Collapse
Affiliation(s)
- Yalan Feng
- College of Agriculture, Henan University of Science and Technology, Luoyang 471003, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
24
|
Li W, Liu X, Lu Y. Transcriptome comparison reveals key candidate genes in response to vernalization of Oriental lily. BMC Genomics 2016; 17:664. [PMID: 27549794 PMCID: PMC4994294 DOI: 10.1186/s12864-016-2955-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 07/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oriental hybrid lily 'Sorbonne', a very important cut flower for lily, is enjoyed great popularity in the world, but it must experience a period of low winter temperature to initiate or accelerate the flowering process. To gain a better understanding of the temperature signaling pathway and the molecular metabolic reactions involved in the vernalization response, a genome-wide transcriptional analysis using RNA-Seq was performed. RESULTS 188,447,956 sequencing reads was assembled into 66,327 unigenes and showed similarity to known proteins in the Swiss-Prot protein database, and 2,893, 30,406 and 60,737 unigenes aligned to existing sequences in the KEGG, COG, and GO databases. Based on qRT-PCR results, we studied the expression of three signal regulation pathways genes-the plant hormones signal transduction (LoAP2, LoIAA1, LoARF10), the DNA methylation (LoCMT, LoFLD), and vernalizatin pathway (LoFLC, LoVRN1, LoVRN2, LoFT, LoSOC1, LoLFY, LoSVP) in the immature flower buds of Oriental hybrid lily. In addition, we identified two vernalizaiton-related genes (LoSVP and LoVRN1) from the cDNA library, which appear to be promising candidates for playing key roles in the development and response of flowering in Oriental lily plants, and LoSVP had a function in delaying flowering but LoVRN1could promote flowering early. CONCLUSIONS We collected a sample for transcriptome sequencing and comparison when the bulb's apical meristem was in the time of floral transition when the apical meristem had not converted into the morphological differentiation process, which helped to obtain more genes playing key roles in the floral induction pathways. The upstream and downstream relationship between different genes were forecasted by the analysis of genes' expression levels in a wide range of time. Future research that is targeted towards how genes interact on each other, which will promote establishing and perfecting the molecular mechanisms of floral induction pathway by vernalization.
Collapse
Affiliation(s)
- Wenqi Li
- College of Landscape Architecture & China National Engineering Research Center for Floriculture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Xiaohua Liu
- College of Landscape Architecture & China National Engineering Research Center for Floriculture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yingmin Lu
- College of Landscape Architecture & China National Engineering Research Center for Floriculture, Beijing Forestry University, No.35 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
25
|
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:157-165. [PMID: 27235540 DOI: 10.1016/j.bbagrm.2016.05.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023]
Abstract
Transposable elements (TEs) comprise a major portion of many plant genomes and bursts of TE movements cause novel genomic variation within species. In order to maintain proper gene function, plant genomes have evolved a variety of mechanisms to tolerate the presence of TEs within or near genes. Here, we review our understanding of the interactions between TEs and gene expression in plants by assessing three ways that transposons can influence gene expression. First, there is growing evidence that TE insertions within introns or untranslated regions of genes are often tolerated and have minimal impact on expression level or splicing. However, there are examples in which TE insertions within genes can result in aberrant or novel transcripts. Second, TEs can provide novel alternative promoters, which can lead to new expression patterns or original coding potential of an alternate transcript. Third, TE insertions near genes can influence regulation of gene expression through a variety of mechanisms. For example, TEs may provide novel cis-acting regulatory sites behaving as enhancers or insert within existing enhancers to influence transcript production. Alternatively, TEs may change chromatin modifications in regions near genes, which in turn can influence gene expression levels. Together, the interactions of genes and TEs provide abundant evidence for the role of TEs in changing basic functions within plant genomes beyond acting as latent genomic elements or as simple insertional mutagens. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Cory D Hirsch
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
26
|
Machczyńska J, Zimny J, Bednarek PT. Tissue culture-induced genetic and epigenetic variation in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927) regenerants. PLANT MOLECULAR BIOLOGY 2015; 89:279-92. [PMID: 26337939 PMCID: PMC4579263 DOI: 10.1007/s11103-015-0368-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/22/2015] [Indexed: 05/26/2023]
Abstract
Plant regeneration via in vitro culture can induce genetic and epigenetic variation; however, the extent of such changes in triticale is not yet understood. In the present study, metAFLP, a variation of methylation-sensitive amplified fragment length polymorphism analysis, was used to investigate tissue culture-induced variation in triticale regenerants derived from four distinct genotypes using androgenesis and somatic embryogenesis. The metAFLP technique enabled identification of both sequence and DNA methylation pattern changes in a single experiment. Moreover, it was possible to quantify subtle effects such as sequence variation, demethylation, and de novo methylation, which affected 19, 5.5, 4.5% of sites, respectively. Comparison of variation in different genotypes and with different in vitro regeneration approaches demonstrated that both the culture technique and genetic background of donor plants affected tissue culture-induced variation. The results showed that the metAFLP approach could be used for quantification of tissue culture-induced variation and provided direct evidence that in vitro plant regeneration could cause genetic and epigenetic variation.
Collapse
Affiliation(s)
- Joanna Machczyńska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Błonie, Radzików, Poland.
| |
Collapse
|
27
|
To TK, Saze H, Kakutani T. DNA Methylation within Transcribed Regions. PLANT PHYSIOLOGY 2015; 168:1219-25. [PMID: 26143255 PMCID: PMC4528756 DOI: 10.1104/pp.15.00543] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/02/2015] [Indexed: 05/10/2023]
Abstract
DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation.
Collapse
Affiliation(s)
- Taiko K To
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| | - Hidetoshi Saze
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| | - Tetsuji Kakutani
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan (T.K.T., T.K.); andOkinawa Institute of Science and Technology, Onna-son, Okinawa 904-0412, Japan (H.S.)
| |
Collapse
|
28
|
Le TN, Miyazaki Y, Takuno S, Saze H. Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res 2015; 43:3911-21. [PMID: 25813042 PMCID: PMC4417168 DOI: 10.1093/nar/gkv258] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/17/2015] [Indexed: 11/30/2022] Open
Abstract
Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units.
Collapse
Affiliation(s)
- Tu N Le
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Yuji Miyazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
29
|
Thomas M, Pingault L, Poulet A, Duarte J, Throude M, Faure S, Pichon JP, Paux E, Probst AV, Tatout C. Evolutionary history of Methyltransferase 1 genes in hexaploid wheat. BMC Genomics 2014; 15:922. [PMID: 25342325 PMCID: PMC4223845 DOI: 10.1186/1471-2164-15-922] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/13/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plant and animal methyltransferases are key enzymes involved in DNA methylation at cytosine residues, required for gene expression control and genome stability. Taking advantage of the new sequence surveys of the wheat genome recently released by the International Wheat Genome Sequencing Consortium, we identified and characterized MET1 genes in the hexaploid wheat Triticum aestivum (TaMET1). RESULTS Nine TaMET1 genes were identified and mapped on homoeologous chromosome groups 2A/2B/2D, 5A/5B/5D and 7A/7B/7D. Synteny analysis and evolution rates suggest that the genome organization of TaMET1 genes results from a whole genome duplication shared within the grass family, and a second gene duplication, which occurred specifically in the Triticeae tribe prior to the speciation of diploid wheat. Higher expression levels were observed for TaMET1 homoeologous group 2 genes compared to group 5 and 7, indicating that group 2 homoeologous genes are predominant at the transcriptional level, while group 5 evolved into pseudogenes. We show the connection between low expression levels, elevated evolution rates and unexpected enrichment in CG-dinucleotides (CG-rich isochores) at putative promoter regions of homoeologous group 5 and 7, but not of group 2 TaMET1 genes. Bisulfite sequencing reveals that these CG-rich isochores are highly methylated in a CG context, which is the expected target of TaMET1. CONCLUSIONS We retraced the evolutionary history of MET1 genes in wheat, explaining the predominance of group 2 homoeologous genes and suggest CG-DNA methylation as one of the mechanisms involved in wheat genome dynamics.
Collapse
Affiliation(s)
- Mélanie Thomas
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Lise Pingault
- />UMR INRA 1095 Blaise Pascal University, Genetics Diversity & Ecophysiology of Cereals (GDEC), Clermont-Ferrand – Theix, 5 chemin de Beaulieu, 63039 Clermont-Ferrand Cedex 2, France
| | - Axel Poulet
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| | - Jorge Duarte
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Mickaël Throude
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Sébastien Faure
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Jean-Philippe Pichon
- />BIOGEMMA, route d’Ennezat, Centre de Recherche de Chappes, CS 90126, 63720 Chappes, France
| | - Etienne Paux
- />UMR INRA 1095 Blaise Pascal University, Genetics Diversity & Ecophysiology of Cereals (GDEC), Clermont-Ferrand – Theix, 5 chemin de Beaulieu, 63039 Clermont-Ferrand Cedex 2, France
| | - Aline Valeska Probst
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| | - Christophe Tatout
- />UMR CNRS 6293 INSERM U 1103 Clermont Université, Genetics Reproduction and Development (GReD), 24 avenue des Landais, BP80026, 63171 Aubière Cedex, France
| |
Collapse
|
30
|
Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, Huan Q, Tang Y, Zhao C, Wagner D, Gao C, Chong K. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat. Nat Commun 2014; 5:4572. [PMID: 25091017 PMCID: PMC4143922 DOI: 10.1038/ncomms5572] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 07/01/2014] [Indexed: 11/15/2022] Open
Abstract
Vernalization, sensing of prolonged cold, is important for seasonal flowering in eudicots and monocots. While vernalization silences a repressor (FLC, MADS-box transcription factor) in eudicots, it induces an activator (TaVRN1, an AP1 clade MADS-box transcription factor) in monocots. The mechanism for TaVRN1 induction during vernalization is not well understood. Here we reveal a novel mechanism for controlling TaVRN1 mRNA accumulation in response to prolonged cold sensing in wheat. The carbohydrate-binding protein VER2, a jacalin lectin, promotes TaVRN1 upregulation by physically interacting with the RNA-binding protein TaGRP2. TaGRP2 binds to TaVRN1 pre-mRNA and inhibits TaVRN1 mRNA accumulation. The physical interaction between VER2 and TaGRP2 is controlled by TaGRP2 O-GlcNAc modification, which gradually increases during vernalization. The interaction between VER2 and O-GlcNAc-TaGRP2 reduces TaGRP2 protein accumulation in the nucleus and/or promotes TaGRP2 dissociation from TaVRN1, leading to TaVRN1 mRNA accumulation. Our data reveal a new mechanism for sensing prolonged cold in temperate cereals.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Present address: Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shujuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- These authors contributed equally to this work
| | - Chunhua Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- These authors contributed equally to this work
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lijing Xing
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuda Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yimiao Tang
- Hybrid Wheat Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Changping Zhao
- Hybrid Wheat Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Caixia Gao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- National Center for Plant Gene Research, Beijing 100093, China
| |
Collapse
|