1
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
2
|
Seyed Hajizadeh H, Azizi S, Aghaee A, Karakus S, Kaya O. Nano-silicone and Ascophyllum nodosum-based biostimulant down-regulates the negative effect of in vitro induced-salinity in Rosa damascena. BMC PLANT BIOLOGY 2023; 23:560. [PMID: 37957557 PMCID: PMC10644502 DOI: 10.1186/s12870-023-04584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Rosa damascena is extensively cultivated in various regions of Iran due to its aesthetic attributes, medicinal qualities, and essential oil production. This study investigated the efficacy of Ascophyllum nodosum extract (AnE) at concentrations of 0, 2, and 3 g L- 1 and Nano-silicon (nSiO2) at concentrations of 0, 50, and 100 mg L- 1 in ameliorating the impact of salinity on two genotypes of Damask rose ('Chaharfasl' and 'Kashan') under in vitro culture conditions. Additionally, various physio-chemical characteristics of R. damascena explants were assessed. RESULTS The findings revealed that exposure to 100 mM NaCl resulted in a substantial reduction in the Relative Water Content (RWC), Membrane Stability Index (MSI), leaf pigments (Chlorophyll b, Chlorophyll a, total Chlorophyll, and carotenoids), chlorophyll fluorescence parameters, and protein content in both genotypes when compared to control conditions. Salinity induced a significant increase in the parameter F0 and a decrease in the parameter Fv/Fm compared to the control conditions in both genotypes. Nonetheless, the genotype Kashan treated with 3 g L- 1 AnE + 100 mg L- 1 nSiO2 exhibited the maximum Fm value under control conditions, with a significant difference compared to other treatments. Furthermore, salinity caused a considerable reduction in Fm in both 'Kashan' and 'Chaharfasl' by 22% and 17%, respectively, when compared to the control condition. 'Kashan' displayed the maximum Fv/Fm compared to the other genotype. The maximum levels of Malondialdehyde (MAD) and hydrogen peroxide (H2O2) were also observed in explants affected by salinity. The combination of 3 g L- 1 AnE + 100 mg L- 1 nSiO2, followed by 2 g L- 1 AnE + 100 mg L- 1 nSiO2, exhibited substantial positive effects. Salinity also led to an increase in proline content and the activity of peroxidase (POD), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and catalase (CAT) in both genotypes. The activity of these enzymes was further enhanced when AnE was applied at concentrations of 2 and 3 g L- 1 in combination with 100 mg L- 1 nSiO2. CONCLUSIONS The 'Kashan' genotype displayed greater tolerance to salinity by enhancing water balance, maintaining membrane integrity, and augmenting the activity of antioxidant enzymes compared to 'Chaharfasl'. The utilization of nSiO2 and AnE biostimulants demonstrated potential benefits for R. damascena, both under salinity and control conditions. These findings hold substantial importance for researchers, policymakers, and farmers, offering valuable insights into the development of salinity-tolerant crop varieties.
Collapse
Affiliation(s)
- Hanifeh Seyed Hajizadeh
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran.
| | - Sahar Azizi
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, 55136-553, Iran
| | - Ahmad Aghaee
- Department of Biology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Sinem Karakus
- Çölemerik Vocational School, Hakkari University, Hakkari, 30000, Turkey
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Turkey
| | - Ozkan Kaya
- Republic of Turkey Ministry of Agriculture and Forestry, Erzincan Horticultural Research Institute, Erzincan, 24060, Turkey
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| |
Collapse
|
3
|
Recent Duplications Dominate VQ and WRKY Gene Expansions in Six Prunus Species. Int J Genomics 2021; 2021:4066394. [PMID: 34961840 PMCID: PMC8710041 DOI: 10.1155/2021/4066394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/09/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Genes encoding VQ motif-containing (VQ) transcriptional regulators and WRKY transcription factors can participate separately or jointly in plant growth, development, and abiotic and biotic stress responses. In this study, 222 VQ and 645 WRKY genes were identified in six Prunus species. Based on phylogenetic tree topologies, the VQ and WRKY genes were classified into 13 and 32 clades, respectively. Therefore, at least 13 VQ gene copies and 32 WRKY gene copies were present in the genome of the common ancestor of the six Prunus species. Similar small Ks value peaks for the VQ and WRKY genes suggest that the two gene families underwent recent duplications in the six studied species. The majority of the Ka/Ks ratios were less than 1, implying that most of the VQ and WRKY genes had undergone purifying selection. Pi values were significantly higher in the VQ genes than in the WRKY genes, and the VQ genes therefore exhibited greater nucleotide diversity in the six species. Forty-one of the Prunus VQ genes were predicted to interact with 44 of the WRKY genes, and the expression levels of some predicted VQ-WRKY interacting pairs were significantly correlated. Differential expression patterns of the VQ and WRKY genes suggested that some might be involved in regulating aphid resistance in P. persica and fruit development in P. avium.
Collapse
|
4
|
Jiang L, Chen Y, Bi D, Cao Y, Tong J. Deciphering Evolutionary Dynamics of WRKY I Genes in Rosaceae Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.801490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
WRKY transcription factors participate in various regulation processes at different developmental stages in higher plants. Here, 98 WRKY I genes were identified in seven Rosaceae species. The WRKY I genes are highly enriched in some subgroups and are selectively expanded in Chinese pear [Pyrus bretschneideri (P. bretschneideri)] and apple [Malus domestica (M. domestica)]. By searching for intra-species gene microsynteny, we found the majority of chromosomal segments for WRKY I-containing segments in both P. bretschneideri and M. domestica genomes, while paired segments were hardly identified in the other five genomes. Furthermore, we analyzed the environmental selection pressure of duplicated WRKY I gene pairs, which indicated that the strong purifying selection for WRKY domains may contribute to the stability of its structure and function. The expression patterns of duplication PbWRKY genes revealed that functional redundancy for some of these genes was derived from common ancestry and neo-functionalization or sub-functionalization for some of them. This study traces the evolution of WRKY I genes in Rosaceae genomes and lays the foundation for functional studies of these genes in the future. Our results also show that the rates of gene loss and gain in different Rosaceae genomes are far from equilibrium.
Collapse
|
5
|
Ireland HS, Wu C, Deng CH, Hilario E, Saei A, Erasmuson S, Crowhurst RN, David KM, Schaffer RJ, Chagné D. The Gillenia trifoliata genome reveals dynamics correlated with growth and reproduction in Rosaceae. HORTICULTURE RESEARCH 2021; 8:233. [PMID: 34719690 PMCID: PMC8558331 DOI: 10.1038/s41438-021-00662-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 05/03/2023]
Abstract
The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.
Collapse
Affiliation(s)
- Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Elena Hilario
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ali Saei
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Sylvia Erasmuson
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch Mail Centre, Christchurch, 8140, New Zealand
| | - Ross N Crowhurst
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92196, Auckland Mail Centre, Auckland, 1142, New Zealand
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Karine M David
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Robert J Schaffer
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland, 1142, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Road, RD 3, Motueka, 7198, New Zealand
| | - David Chagné
- Genomics Aotearoa, ℅ Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand.
| |
Collapse
|
6
|
A Rosaceae Family-Level Approach To Identify Loci Influencing Soluble Solids Content in Blackberry for DNA-Informed Breeding. G3-GENES GENOMES GENETICS 2020; 10:3729-3740. [PMID: 32769135 PMCID: PMC7534445 DOI: 10.1534/g3.120.401449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Rosaceae family-level candidate gene approach was used to identify genes associated with sugar content in blackberry (Rubus subgenus Rubus). Three regions conserved among apple (Malus × domestica), peach (Prunus persica), and alpine strawberry (Fragaria vesca) were identified that contained previously detected sweetness-related quantitative trait loci (QTL) in at least two of the crops. Sugar related genes from these conserved regions and 789 sugar-associated apple genes were used to identify 279 Rubus candidate transcripts. A Hyb-Seq approach was used in conjunction with PacBio sequencing to generate haplotype level sequence information of sugar-related genes for 40 cultivars with high and low soluble solids content from the University of Arkansas and USDA blackberry breeding programs. Polymorphisms were identified relative to the ‘Hillquist’ blackberry (R. argutus) and ORUS 4115-3 black raspberry (R. occidentalis) genomes and tested for their association with soluble solids content (SSC). A total of 173 alleles were identified that were significantly (α = 0.05) associated with SSC. KASP genotyping was conducted for 92 of these alleles on a validation set of blackberries from each breeding program and 48 markers were identified that were significantly associated with SSC. One QTL, qSSC-Ruh-ch1.1, identified in both breeding programs accounted for an increase of 1.5 °Brix and the polymorphisms were detected in the intron space of a sucrose synthase gene. This discovery represents the first environmentally stable sweetness QTL identified in blackberry. The approach demonstrated in this study can be used to develop breeding tools for other crops that have not yet benefited directly from the genomics revolution.
Collapse
|
7
|
Yan M, Byrne DH, Klein PE, Yang J, Dong Q, Anderson N. Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map. HORTICULTURE RESEARCH 2018; 5:17. [PMID: 29619228 PMCID: PMC5878828 DOI: 10.1038/s41438-018-0021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 01/22/2018] [Indexed: 05/09/2023]
Abstract
Roses, which have been cultivated for at least 5000 years, are one of the most important ornamental crops in the world. Because of the interspecific nature and high heterozygosity in commercial roses, the genetic resources available for rose are limited. To effectively identify markers associated with QTL controlling important traits, such as disease resistance, abundant markers along the genome and careful phenotyping are required. Utilizing genotyping by sequencing technology and the strawberry genome (Fragaria vesca v2.0.a1) as a reference, we generated thousands of informative single nucleotide polymorphism (SNP) markers. These SNPs along with known bridge simple sequence repeat (SSR) markers allowed us to create the first high-density integrated consensus map for diploid roses. Individual maps were first created for populations J06-20-14-3×"Little Chief" (J14-3×LC), J06-20-14-3×"Vineyard Song" (J14-3×VS) and "Old Blush"×"Red Fairy" (OB×RF) and these maps were linked with 824 SNPs and 13 SSR bridge markers. The anchor SSR markers were used to determine the numbering of the rose linkage groups. The diploid consensus map has seven linkage groups (LGs), a total length of 892.2 cM, and an average distance of 0.25 cM between 3527 markers. By combining three individual populations, the marker density and the reliability of the marker order in the consensus map was improved over a single population map. Extensive synteny between the strawberry and diploid rose genomes was observed. This consensus map will serve as the tool for the discovery of marker-trait associations in rose breeding using pedigree-based analysis. The high level of conservation observed between the strawberry and rose genomes will help further comparative studies within the Rosaceae family and may aid in the identification of candidate genes within QTL regions.
Collapse
Affiliation(s)
- Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Jizhou Yang
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
- Present Address: Department of Computer Science, San Francisco State University, San Francisco, CA 94132 USA
| | - Qianni Dong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
- Present Address: Monsanto Company, 700 Chesterfield Parkway West, Chesterfield, MO 63017 USA
| | - Natalie Anderson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
8
|
González M, Carrasco B, Salazar E. Genome-wide identification and characterization of R2R3MYB family in Rosaceae. GENOMICS DATA 2016; 9:50-7. [PMID: 27408811 PMCID: PMC4927548 DOI: 10.1016/j.gdata.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/04/2016] [Accepted: 06/18/2016] [Indexed: 11/09/2022]
Abstract
Transcription factors R2R3MYB family have been associated with the control of secondary metabolites, development of structures, cold tolerance and response to biotic and abiotic stress, among others. In recent years, genomes of Rosaceae botanical family are available. Although this information has been used to study the karyotype evolution of these species from an ancestral genome, there are no studies that treat the evolution and diversity of gene families present in these species or in the botanical family. Here we present the first comparative study of the R2R3MYB subfamily of transcription factors in three species of Rosaceae family (Malus domestica, Prunus persica and Fragaria vesca). We described 186, 98 and 86 non-redundant gene models for apple, peach and strawberry, respectively. In this research, we analyzed the intron–exon structure and genomic distribution of R2R3MYB families mentioned above. The phylogenetic comparisons revealed putative functions of some R2R3MYB transcription factors. This analysis found 44 functional subgroups, seven of which were unique for Rosaceae. In addition, our results showed a highly collinearity among some genes revealing the existence of conserved gene models between the three species studied. Although some gene models in these species have been validated under several approaches, more research in the Rosaceae family is necessary to determine gene expression patterns in specific tissues and development stages to facilitate understanding of the regulatory and biochemical mechanism in this botanical family.
Collapse
Affiliation(s)
- Máximo González
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Basilio Carrasco
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Erika Salazar
- Unidad de Recursos Genéticos, CRI La Platina, Instituto de Investigaciones Agropecuarias, Av. Santa Rosa 11610, La Pintana, Santiago, Chile
| |
Collapse
|
9
|
Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus. BMC Res Notes 2016; 9:268. [PMID: 27169718 PMCID: PMC4864905 DOI: 10.1186/s13104-016-2069-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Rosaceae family encompasses numerous genera exhibiting morphological diversification in fruit types and plant habit as well as a wide variety of chromosome numbers. Comparative genomics between various Rosaceous genera has led to the hypothesis that the ancestral genome of the family contained nine chromosomes, however, the synteny studies performed in the Rosaceae to date encompass species with base chromosome numbers x = 7 (Fragaria), x = 8 (Prunus), and x = 17 (Malus), and no study has included species from one of the many Rosaceous genera containing a base chromosome number of x = 9. RESULTS A genetic linkage map of the species Physocarpus opulifolius (x = 9) was populated with sequence characterised SNP markers using genotyping by sequencing. This allowed for the first time, the extent of the genome diversification of a Rosaceous genus with a base chromosome number of x = 9 to be performed. Orthologous loci distributed throughout the nine chromosomes of Physocarpus and the eight chromosomes of Prunus were identified which permitted a meaningful comparison of the genomes of these two genera to be made. CONCLUSIONS The study revealed a high level of macro-synteny between the two genomes, and relatively few chromosomal rearrangements, as has been observed in studies of other Rosaceous genomes, lending further support for a relatively simple model of genomic evolution in Rosaceae.
Collapse
|
10
|
Urrutia M, Schwab W, Hoffmann T, Monfort A. Genetic dissection of the (poly)phenol profile of diploid strawberry (Fragaria vesca) fruits using a NIL collection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:151-168. [PMID: 26566833 DOI: 10.1016/j.plantsci.2015.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/24/2015] [Accepted: 07/25/2015] [Indexed: 05/18/2023]
Abstract
Over the last few years, diploid strawberry (Fragaria vesca) has been recognized as a model species for applied research of cultivated strawberry (Fragaria × ananassa) that is one of the most economically important crops. Berries, particularly strawberries, are known for their high antioxidant capacity due to a high concentration of (poly) phenolic compounds. Studies have already characterized the phenolic composition of fruits from sets of cultivated strawberries but the quantification of phenolics in a Fragaria mapping population has not been reported, yet. The metabolite profiling of a F. vesca near isogenic line (NIL) collection by LC-MS allowed the unambiguous identification of 22 (poly)-phenols, including anthocyanins, flavonols, flavan-3-ols, flavanones, hydroxycinnamic acid derivatives, and ellagic acid in the diploid strawberry fruit. The variability in the collection revealed that the genetic factor was more decisive than the environmental factor for the accumulation of 18 of the 24 compounds. Genotyping the NIL collection with the Axiom® IStraw90® SNPs array, we were able to map 76 stable QTLs controlling accumulation of the (poly)-phenolic compounds. They provide a powerful new tool to characterise candidate genes to increase the antioxidant capacity of fruits and produce healthier strawberries for consumers.
Collapse
Affiliation(s)
- Maria Urrutia
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Amparo Monfort
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
11
|
Vukosavljev M, Arens P, Voorrips RE, van ‘t Westende WPC, Esselink GD, Bourke PM, Cox P, van de Weg WE, Visser RGF, Maliepaard C, Smulders MJM. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. HORTICULTURE RESEARCH 2016; 3:16052. [PMID: 27818777 PMCID: PMC5080978 DOI: 10.1038/hortres.2016.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 05/21/2023]
Abstract
Dense genetic maps create a base for QTL analysis of important traits and future implementation of marker-assisted breeding. In tetraploid rose, the existing linkage maps include <300 markers to cover 28 linkage groups (4 homologous sets of 7 chromosomes). Here we used the 68k WagRhSNP Axiom single-nucleotide polymorphism (SNP) array for rose, in combination with SNP dosage calling at the tetraploid level, to genotype offspring from the garden rose cultivar 'Red New Dawn'. The offspring proved to be not from a single bi-parental cross. In rose breeding, crosses with unintended parents occur regularly. We developed a strategy to separate progeny into putative populations, even while one of the parents was unknown, using principle component analysis on pairwise genetic distances based on sets of selected SNP markers that were homozygous, and therefore uninformative for one parent. One of the inferred populations was consistent with self-fertilization of 'Red New Dawn'. Subsequently, linkage maps were generated for a bi-parental and a self-pollinated population with 'Red New Dawn' as the common maternal parent. The densest map, for the selfed parent, had 1929 SNP markers on 25 linkage groups, covering 1765.5 cM at an average marker distance of 0.9 cM. Synteny with the strawberry (Fragaria vesca) genome was extensive. Rose ICM1 corresponded to F. vesca pseudochromosome 7 (Fv7), ICM4 to Fv4, ICM5 to Fv3, ICM6 to Fv2 and ICM7 to Fv5. Rose ICM2 corresponded to parts of F. vesca pseudochromosomes 1 and 6, whereas ICM3 is syntenic to the remainder of Fv6.
Collapse
Affiliation(s)
- Mirjana Vukosavljev
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Roeland E Voorrips
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Wendy PC van ‘t Westende
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - GD Esselink
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Peter M Bourke
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Peter Cox
- Roath BV, Eindhoven, The Netherlands
| | - W Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Chris Maliepaard
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Marinus JM Smulders
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
- ()
| |
Collapse
|
12
|
Yamamoto T, Terakami S. Genomics of pear and other Rosaceae fruit trees. BREEDING SCIENCE 2016; 66:148-59. [PMID: 27069399 PMCID: PMC4780798 DOI: 10.1270/jsbbs.66.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/12/2016] [Indexed: 05/04/2023]
Abstract
The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry.
Collapse
Affiliation(s)
- Toshiya Yamamoto
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| | - Shingo Terakami
- NARO Institute of Fruit Tree Science,
2-1 Fujimoto, Tsukuba, Ibaraki 305-8605,
Japan
| |
Collapse
|
13
|
Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication. Int J Genomics 2015; 2015:536943. [PMID: 26770968 PMCID: PMC4685131 DOI: 10.1155/2015/536943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 01/01/2023] Open
Abstract
The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry.
Collapse
|
14
|
Bushakra JM, Bryant DW, Dossett M, Vining KJ, VanBuren R, Gilmore BS, Lee J, Mockler TC, Finn CE, Bassil NV. A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag(4) conferring resistance to the aphid Amphorophora agathonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1631-46. [PMID: 26037086 PMCID: PMC4477079 DOI: 10.1007/s00122-015-2541-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 05/07/2023]
Abstract
We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.
Collapse
Affiliation(s)
- Jill M Bushakra
- USDA-ARS National Clonal Germplasm Repository, 33447 Peoria Rd., Corvallis, OR, 97333, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Urrutia M, Bonet J, Arús P, Monfort A. A near-isogenic line (NIL) collection in diploid strawberry and its use in the genetic analysis of morphologic, phenotypic and nutritional characters. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1261-1275. [PMID: 25841354 DOI: 10.1007/s00122-015-2503-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/20/2015] [Indexed: 06/04/2023]
Abstract
First near-isogenic line collection in diploid strawberry, a tool for morphologic, phenotypic and nutritional QTL analysis. Diploid strawberry (Fragaria vesca), with a small genome, has a high degree of synteny with the octoploid cultivated strawberry (F. × ananassa), so can be used as a simplified model for genetic analysis of the octoploid species. Agronomically interesting traits are usually inherited quantitatively and they need to be studied in large segregating progenies well characterized with molecular markers. Near-isogenic lines (NILs) are tools to dissect quantitative characters and identify some of their components as Mendelian traits. NILs are fixed homozygous lines that share the same genetic background from a recurrent parent with a single introgression region from a donor parent. Here, we developed the first NIL collection in Fragaria, with F. vesca cv. Reine des Vallées as the recurrent parent and F. bucharica as the donor parent. A collection of 39 NILs was identified using a set of single sequence repeat markers. The NILs had an average introgression of 32 cM (6 % of genome) and were phenotyped over several years in two locations. This collection segregates for agronomic characters, such as flowering, germination, fruit size and shape, and nutritional content. At least 16 QTLs for morphological and reproductive traits, such as round fruits and vegetative propagation, and seven for nutritional traits such as sugar composition and total polyphenol content, were identified. The NIL collection of F. vesca can significantly facilitate understanding of the genetics of many traits and provide insight into the more complex F. × ananassa genome.
Collapse
Affiliation(s)
- María Urrutia
- IRTA, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | | | | | | |
Collapse
|
16
|
A phylogenetic analysis of the genus Fragaria (strawberry) using intron-containing sequence from the ADH-1 gene. PLoS One 2014; 9:e102237. [PMID: 25078607 PMCID: PMC4117466 DOI: 10.1371/journal.pone.0102237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae.
Collapse
|
17
|
Yang L, Koo DH, Li D, Zhang T, Jiang J, Luan F, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen J, Weng Y. Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:16-30. [PMID: 24127692 DOI: 10.1111/tpj.12355] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/07/2013] [Accepted: 10/10/2013] [Indexed: 05/22/2023]
Abstract
In the large Cucurbitaceae genus Cucumis, cucumber (C. sativus) is the only species with 2n = 2x = 14 chromosomes. The majority of the remaining species, including melon (C. melo) and the sister species of cucumber, C. hystrix, have 2n = 2x = 24 chromosomes, implying a reduction from n = 12 to n = 7. To understand the underlying mechanisms, we investigated chromosome synteny among cucumber, C. hystrix and melon using integrated and complementary approaches. We identified 14 inversions and a C. hystrix lineage-specific reciprocal inversion between C. hystrix and melon. The results reveal the location and orientation of 53 C. hystrix syntenic blocks on the seven cucumber chromosomes, and allow us to infer at least 59 chromosome rearrangement events that led to the seven cucumber chromosomes, including five fusions, four translocations, and 50 inversions. The 12 inferred chromosomes (AK1-AK12) of an ancestor similar to melon and C. hystrix had strikingly different evolutionary fates, with cucumber chromosome C1 apparently resulting from insertion of chromosome AK12 into the centromeric region of translocated AK2/AK8, cucumber chromosome C3 originating from a Robertsonian-like translocation between AK4 and AK6, and cucumber chromosome C5 originating from fusion of AK9 and AK10. Chromosomes C2, C4 and C6 were the result of complex reshuffling of syntenic blocks from three (AK3, AK5 and AK11), three (AK5, AK7 and AK8) and five (AK2, AK3, AK5, AK8 and AK11) ancestral chromosomes, respectively, through 33 fusion, translocation and inversion events. Previous results (Huang, S., Li, R., Zhang, Z. et al., , Nat. Genet. 41, 1275-1281; Li, D., Cuevas, H.E., Yang, L., Li, Y., Garcia-Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y. 2011a, BMC Genomics, 12, 396) showing that cucumber C7 stayed largely intact during the entire evolution of Cucumis are supported. Results from this study allow a fine-scale understanding of the mechanisms of dysploid chromosome reduction that has not been achieved previously.
Collapse
Affiliation(s)
- Luming Yang
- Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. HORTICULTURE RESEARCH 2014; 1:1. [PMID: 26504527 PMCID: PMC4591673 DOI: 10.1038/hortres.2014.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/24/2013] [Indexed: 05/04/2023]
Abstract
The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species.
Collapse
Affiliation(s)
- Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lara Giongo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Matteo Buti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Nada Surbanovski
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Roberto Viola
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Daniel J Sargent
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
19
|
Fresnedo-Ramírez J, Martínez-García PJ, Parfitt DE, Crisosto CH, Gradziel TM. Heterogeneity in the entire genome for three genotypes of peach [Prunus persica (L.) Batsch] as distinguished from sequence analysis of genomic variants. BMC Genomics 2013; 14:750. [PMID: 24182359 PMCID: PMC4046826 DOI: 10.1186/1471-2164-14-750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 10/19/2013] [Indexed: 12/22/2022] Open
Abstract
Background Peach [Prunus persica (L.) Batsch] is an economically important fruit crop that has become a genetic-genomic model for all Prunus species in the family Rosaceae. A doubled haploid reference genome sequence length of 227.3 Mb, a narrow genetic base contrasted by a wide phenotypic variability, the generation of cultivars through hybridization with subsequent clonal propagation, and the current accessibility of many founder genotypes, as well as the pedigree of modern commercial cultivars make peach a model for the study of inter-cultivar genomic heterogeneity and its shaping by artificial selection. Results The quantitative genomic differences among the three genotypes studied as genomic variants, included small variants (SNPs and InDels) and structural variants (SV) (duplications, inversions and translocations). The heirloom cultivar 'Georgia Belle’ and an almond by peach introgression breeding line 'F8,1-42’ are more heterogeneous than is the modern cultivar 'Dr. Davis’ when compared to the peach reference genome ('Lovell’). A pair-wise comparison of consensus genome sequences with 'Lovell’ showed that 'F8,1-42’ and 'Georgia Belle’ were more divergent than were 'Dr. Davis’ and 'Lovell’. Conclusions A novel application of emerging bioinformatics tools to the analysis of ongoing genome sequencing project outputs has led to the identification of a range of genomic variants. Results can be used to delineate the genomic and phenotypic differences among peach genotypes. For crops such as fruit trees, the availability of old cultivars, breeding selections and their pedigrees, make them suitable models for the study of genome shaping by artificial selection. The findings from the study of such genomic variants can then elucidate the control of pomological traits and the characterization of metabolic pathways, thus facilitating the development of protocols for the improvement of Prunus crops. Electronic supplementary material The online version of this article (doi: 10.1186/1471-2164-14-750) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Fresnedo-Ramírez
- Department of Plant Sciences, University of California Davis, One Shields Ave, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
20
|
Genome-wide characterization and linkage mapping of simple sequence repeats in mei (Prunus mume Sieb. et Zucc.). PLoS One 2013; 8:e59562. [PMID: 23555708 PMCID: PMC3610739 DOI: 10.1371/journal.pone.0059562] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.
Collapse
|
21
|
Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA, Chagné D, Buck EJ, Gardiner SE. Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:311-27. [PMID: 22398438 DOI: 10.1007/s00122-012-1835-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/17/2012] [Indexed: 05/23/2023]
Abstract
The genus Rubus belongs to the Rosaceae and is comprised of 600-800 species distributed world-wide. To date, genetic maps of the genus consist largely of non-transferable markers such as amplified fragment length polymorphisms. An F(1) population developed from a cross between an advanced breeding selection of Rubus occidentalis (96395S1) and R. idaeus 'Latham' was used to construct a new genetic map consisting of DNA sequence-based markers. The genetic linkage maps presented here are constructed of 131 markers on at least one of the two parental maps. The majority of the markers are orthologous, including 14 Rosaceae conserved orthologous set markers, and 60 new gene-based markers developed for raspberry. Thirty-four published raspberry simple sequence repeat markers were used to align the new maps to published raspberry maps. The 96395S1 genetic map consists of six linkage groups (LG) and covers 309 cM with an average of 10 cM between markers; the 'Latham' genetic map consists of seven LG and covers 561 cM with an average of 5 cM between markers. We used BLAST analysis to align the orthologous sequences used to design primer pairs for Rubus genetic mapping with the genome sequences of Fragaria vesca 'Hawaii 4', Malus × domestica 'Golden Delicious', and Prunus 'Lovell'. The alignment of the orthologous markers designed here suggests that the genomes of Rubus and Fragaria have a high degree of synteny and that synteny decreases with phylogenetic distance. Our results give unprecedented insights into the genome evolution of raspberry from the putative ancestral genome of the single ancestor common to Rosaceae.
Collapse
Affiliation(s)
- J M Bushakra
- The New Zealand Institute for Plant & Food Research Limited, Batchelar Road, Private Bag 11600, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM, Arús P, Shulaev V, Verde I, Morgante M, Rokhsar D, Velasco R, Sargent DJ. Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 2012; 13:129. [PMID: 22475018 PMCID: PMC3368713 DOI: 10.1186/1471-2164-13-129] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 04/04/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Rosaceae include numerous economically important and morphologically diverse species. Comparative mapping between the member species in Rosaceae have indicated some level of synteny. Recently the whole genome of three crop species, peach, apple and strawberry, which belong to different genera of the Rosaceae family, have been sequenced, allowing in-depth comparison of these genomes. RESULTS Our analysis using the whole genome sequences of peach, apple and strawberry identified 1399 orthologous regions between the three genomes, with a mean length of around 100 kb. Each peach chromosome showed major orthology mostly to one strawberry chromosome, but to more than two apple chromosomes, suggesting that the apple genome went through more chromosomal fissions in addition to the whole genome duplication after the divergence of the three genera. However, the distribution of contiguous ancestral regions, identified using the multiple genome rearrangements and ancestors (MGRA) algorithm, suggested that the Fragaria genome went through a greater number of small scale rearrangements compared to the other genomes since they diverged from a common ancestor. Using the contiguous ancestral regions, we reconstructed a hypothetical ancestral genome for the Rosaceae 7 composed of nine chromosomes and propose the evolutionary steps from the ancestral genome to the extant Fragaria, Prunus and Malus genomes. CONCLUSION Our analysis shows that different modes of evolution may have played major roles in different subfamilies of Rosaceae. The hypothetical ancestral genome of Rosaceae and the evolutionary steps that lead to three different lineages of Rosaceae will facilitate our understanding of plant genome evolution as well as have a practical impact on knowledge transfer among member species of Rosaceae.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Alessandro Cestaro
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Michela Troggio
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Dorrie Main
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Ping Zheng
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Ilhyung Cho
- Computer Science, Saginaw Valley State University, University Center, MI 48710, USA
| | - Kevin M Folta
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | - Bryon Sosinski
- Department of Horticultural Science, North Carolina State University, Campus Box 7609, Raleigh, NC 27695, USA
| | - Albert Abbott
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Jean-Marc Celton
- UMR Génétique et Horticulture (GenHort), INRA/Agrocampus-ouest/Université d'Angers, Centre Angers-Nantes, 42 rue Georges Morel -, BP 60057, 49071 Beaucouzé cedex, France
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, Texas, USA
| | - Ignazio Verde
- CRA - Fruit Tree Research Center, Via di Fioranello, 52, 00134 Rome, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico L. Danieli, via Linussio, 51, 33100 Udine, Italy
| | - Daniel Rokhsar
- DOE Joint Genomics Institute, 2800 Mitchell Dr, Walnut Creek, CA, USA
| | - Riccardo Velasco
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Daniel James Sargent
- Istituto Agrario San Michele all'Adige, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| |
Collapse
|
23
|
Gar O, Sargent DJ, Tsai CJ, Pleban T, Shalev G, Byrne DH, Zamir D. An autotetraploid linkage map of rose (Rosa hybrida) validated using the strawberry (Fragaria vesca) genome sequence. PLoS One 2011; 6:e20463. [PMID: 21647382 PMCID: PMC3103584 DOI: 10.1371/journal.pone.0020463] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/24/2011] [Indexed: 01/21/2023] Open
Abstract
Polyploidy is a pivotal process in plant evolution as it increase gene redundancy and morphological intricacy but due to the complexity of polysomic inheritance we have only few genetic maps of autopolyploid organisms. A robust mapping framework is particularly important in polyploid crop species, rose included (2n = 4x = 28), where the objective is to study multiallelic interactions that control traits of value for plant breeding. From a cross between the garden, peach red and fragrant cultivar Fragrant Cloud (FC) and a cut-rose yellow cultivar Golden Gate (GG), we generated an autotetraploid GGFC mapping population consisting of 132 individuals. For the map we used 128 sequence-based markers, 141 AFLP, 86 SSR and three morphological markers. Seven linkage groups were resolved for FC (Total 632 cM) and GG (616 cM) which were validated by markers that segregated in both parents as well as the diploid integrated consensus map.The release of the Fragaria vesca genome, which also belongs to the Rosoideae, allowed us to place 70 rose sequenced markers on the seven strawberry pseudo-chromosomes. Synteny between Rosa and Fragaria was high with an estimated four major translocations and six inversions required to place the 17 non-collinear markers in the same order. Based on a verified linear order of the rose markers, we could further partition each of the parents into its four homologous groups, thus providing an essential framework to aid the sequencing of an autotetraploid genome.
Collapse
Affiliation(s)
- Oron Gar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Ching-Jung Tsai
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tzili Pleban
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gil Shalev
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Dani Zamir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
24
|
Cachi AM, Wünsch A. Characterization and mapping of non-S gametophytic self-compatibility in sweet cherry (Prunus avium L.). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1847-56. [PMID: 21127024 DOI: 10.1093/jxb/erq374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Self-incompatibility in Prunus (Rosaceae) species, such as sweet cherry, is controlled by a multiallelic locus (S), in which two tightly linked genes, S-RNase and SFB (S haplotype-specific F-box), determine the specificity of the pollen and the style. Fertilization in these species occurs only if the S-specificities expressed in the pollen and the pistils are different. However, modifier genes have been proposed to be necessary for a full manifestation of the self-incompatibility response. 'Cristobalina' is a spontaneous self-compatible sweet cherry cultivar that originated in Eastern Spain. Previous studies with this genotype suggested that pollen modifier gene(s), not linked to the S-locus, may be the cause of self-incompatibility breakdown. In this work, an F(1) population from 'Cristobalina' that segregates for this trait was used to identify molecular markers linked to self-compatibility by bulked segregant analysis. One simple sequence repeat (SSR) locus (EMPaS02) was found to be linked to self-compatibility in this population at 3.2 cM. Two additional populations derived from 'Cristobalina' were used to confirm the linkage of this marker to self-compatibility. Since EMPaS02 has been mapped to the sweet cherry linkage group 3, other markers located on the same linkage group were analysed in these populations to confirm the location of the self-compatibility locus.
Collapse
Affiliation(s)
- A M Cachi
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain
| | | |
Collapse
|
25
|
Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai CJ, Byrne DH, Smulders MJM, Foucher F, Debener T. Towards a unified genetic map for diploid roses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:489-500. [PMID: 20936462 DOI: 10.1007/s00122-010-1463-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/24/2010] [Indexed: 05/03/2023]
Abstract
We have constructed the first integrated consensus map (ICM) for rose, based on the information of four diploid populations and more than 1,000 initial markers. The single population maps are linked via 59 bridge markers, on average 8.4 per linkage group (LG). The integrated map comprises 597 markers, 206 of which are sequence-based, distributed over a length of 530 cM on seven LGs. By using a larger effective population size and therefore higher marker density, the marker order in the ICM is more reliable than in the single population maps. This is supported by a more even marker distribution and a decrease in gap sizes in the consensus map as compared to the single population maps. This unified map establishes a standard nomenclature for rose LGs, and presents the location of important ornamental traits, such as self-incompatibility, black spot resistance (Rdr1), scent production and recurrent blooming. In total, the consensus map includes locations for 10 phenotypic single loci, QTLs for 7 different traits and 51 ESTs or gene-based molecular markers. This consensus map combines for the first time the information for traits with high relevance for rose variety development. It will serve as a tool for selective breeding and marker assisted selection. It will benefit future efforts of the rose community to sequence the whole rose genome and will be useful for synteny studies in the Rosaceae family and especially in the section Rosoideae.
Collapse
Affiliation(s)
- Monika Spiller
- Institute for Plant Genetics, Leibniz University Hannover, Herrenhaeuser Strasse 2, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A, Gardiner S, Velasco R, Arús P, Chagné D, Troggio M. Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 2011; 11:9. [PMID: 21226921 PMCID: PMC3033827 DOI: 10.1186/1471-2148-11-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. RESULTS We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. CONCLUSIONS A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.
Collapse
Affiliation(s)
- Eudald Illa
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, Carretera de Cabrils Km 2, 08348 Cabrils (Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jung S, Cho I, Sosinski B, Abbott A, Main D. Comparative genomic sequence analysis of strawberry and other rosids reveals significant microsynteny. BMC Res Notes 2010; 3:168. [PMID: 20565715 PMCID: PMC2893199 DOI: 10.1186/1756-0500-3-168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragaria belongs to the Rosaceae, an economically important family that includes a number of important fruit producing genera such as Malus and Prunus. Using genomic sequences from 50 Fragaria fosmids, we have examined the microsynteny between Fragaria and other plant models. RESULTS In more than half of the strawberry fosmids, we found syntenic regions that are conserved in Populus, Vitis, Medicago and/or Arabidopsis with Populus containing the greatest number of syntenic regions with Fragaria. The longest syntenic region was between LG VIII of the poplar genome and the strawberry fosmid 72E18, where seven out of twelve predicted genes were collinear. We also observed an unexpectedly high level of conserved synteny between Fragaria (rosid I) and Vitis (basal rosid). One of the strawberry fosmids, 34E24, contained a cluster of R gene analogs (RGAs) with NBS and LRR domains. We detected clusters of RGAs with high sequence similarity to those in 34E24 in all the genomes compared. In the phylogenetic tree we have generated, all the NBS-LRR genes grouped together with Arabidopsis CNL-A type NBS-LRR genes. The Fragaria RGA grouped together with those of Vitis and Populus in the phylogenetic tree. CONCLUSIONS Our analysis shows considerable microsynteny between Fragaria and other plant genomes such as Populus, Medicago, Vitis, and Arabidopsis to a lesser degree. We also detected a cluster of NBS-LRR type genes that are conserved in all the genomes compared.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
28
|
Bosković RI, Sargent DJ, Tobutt KR. Genetic evidence that two independent S-loci control RNase-based self-incompatibility in diploid strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:755-63. [PMID: 20008462 PMCID: PMC2814107 DOI: 10.1093/jxb/erp340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The self-incompatibility mechanism that reduces inbreeding in many plants of the Rosaceae is attributed to a multi-allelic S locus which, in the Prunoideae and Maloideae subfamilies, comprises two complementary genes, a stylar-expressed S-RNase and a pollen-expressed SFB. To elucidate incompatibility in the subfamily Rosoideae, stylar-specific RNases and self-(in)compatibility status were analysed in various diploid strawberries, especially Fragaria nubicola and F. viridis, both self-incompatible, and F. vesca, self-compatible, and in various progenies derived from them. Unexpectedly, two unlinked RNase loci, S and T, were found, encoding peptides distinct from Prunoideae and Maloideae S-RNases; the presence of a single active allele at either is sufficient to confer self-incompatibility. By contrast, in diploid Maloideae and Prunoideae a single locus encodes S-RNases that share several conserved regions and two active alleles are required for self-incompatibility. Our evidence implicates the S locus in unilateral inter-specific incompatibility and shows that S and T RNases can, remarkably, confer not only allele-specific rejection of cognate pollen but also unspecific rejection of Sn Tn pollen, where n indicates a null allele, consistent with the the presence of the pollen component, SFB, activating the cognitive function of these RNases. Comparison of relevant linkage groups between Fragaria and Prunus suggests that Prunus S-RNases, unique in having two introns, may have resulted from gene conversion in an ancestor of Prunus. In addition, it is shown that there is a non-S locus that is essential for self-incompatibility in diploid Fragaria.
Collapse
Affiliation(s)
- Radovan I Bosković
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
29
|
Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 2009; 10:562. [PMID: 19943965 PMCID: PMC2789105 DOI: 10.1186/1471-2164-10-562] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/29/2009] [Indexed: 12/28/2022] Open
Abstract
Background Detailed comparative genome analyses within the economically important Rosaceae family have not been conducted. This is largely due to the lack of conserved gene-based molecular markers that are transferable among the important crop genera within the family [e.g. Malus (apple), Fragaria (strawberry), and Prunus (peach, cherry, apricot and almond)]. The lack of molecular markers and comparative whole genome sequence analysis for this family severely hampers crop improvement efforts as well as QTL confirmation and validation studies. Results We identified a set of 3,818 rosaceaous unigenes comprised of two or more ESTs that correspond to single copy Arabidopsis genes. From this Rosaceae Conserved Orthologous Set (RosCOS), 1039 were selected from which 857 were used for the development of intron-flanking primers and allele amplification. This led to successful amplification and subsequent mapping of 613 RosCOS onto the Prunus TxE reference map resulting in a genome-wide coverage of 0.67 to 1.06 gene-based markers per cM per linkage group. Furthermore, the RosCOS primers showed amplification success rates from 23 to 100% across the family indicating that a substantial part of the RosCOS primers can be directly employed in other less studied rosaceaous crops. Comparisons of the genetic map positions of the RosCOS with the physical locations of the orthologs in the Populus trichocarpa genome identified regions of colinearity between the genomes of Prunus-Rosaceae and Populus-Salicaceae. Conclusion Conserved orthologous genes are extremely useful for the analysis of genome evolution among closely and distantly related species. The results presented in this study demonstrate the considerable potential of the mapped Prunus RosCOS for genome-wide marker employment and comparative whole genome studies within the Rosaceae family. Moreover, these markers will also function as useful anchor points for the genome sequencing efforts currently ongoing in this family as well as for comparative QTL analyses.
Collapse
Affiliation(s)
- Antonio Cabrera
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Bonet J, Girona EL, Sargent DJ, Muñoz-Torres MC, Monfort A, Abbott AG, Arús P, Simpson DW, Davik J. The development and characterisation of a bacterial artificial chromosome library for Fragaria vesca. BMC Res Notes 2009; 2:188. [PMID: 19772672 PMCID: PMC2754993 DOI: 10.1186/1756-0500-2-188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 09/23/2009] [Indexed: 11/30/2022] Open
Abstract
Background The cultivated strawberry Fragaria ×ananassa is one of the most economically-important soft-fruit species. Few structural genomic resources have been reported for Fragaria and there exists an urgent need for the development of physical mapping resources for the genus. The first stage in the development of a physical map for Fragaria is the construction and characterisation of a high molecular weight bacterial artificial chromosome (BAC) library. Methods A BAC library, consisting of 18,432 clones was constructed from Fragaria vesca f. semperflorens accession 'Ali Baba'. BAC DNA from individual library clones was pooled to create a PCR-based screening assay for the library, whereby individual clones could be identified with just 34 PCR reactions. These pools were used to screen the BAC library and anchor individual clones to the diploid Fragaria reference map (FV×FN). Findings Clones from the BAC library developed contained an average insert size of 85 kb, representing over seven genome equivalents. The pools and superpools developed were used to identify a set of BAC clones containing 70 molecular markers previously mapped to the diploid Fragaria FV×FN reference map. The number of positive colonies identified for each marker suggests the library represents between 4× and 10× coverage of the diploid Fragaria genome, which is in accordance with the estimate of library coverage based on average insert size. Conclusion This BAC library will be used for the construction of a physical map for F. vesca and the superpools will permit physical anchoring of molecular markers using PCR.
Collapse
Affiliation(s)
- Julio Bonet
- IRTA. Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB, 38348 Cabrils, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Celton JM, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE. Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2009; 2:182. [PMID: 19747407 PMCID: PMC2749866 DOI: 10.1186/1756-0500-2-182] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/14/2009] [Indexed: 11/13/2022] Open
Abstract
Background Comparative genome mapping determines the linkage between homologous genes of related taxa. It has already been used in plants to characterize agronomically important genes in lesser studied species, using information from better studied species. In the Maloideae sub-family, which includes fruit species such as apple, pear, loquat and quince, genome co-linearity has been suggested between the genera Malus and Pyrus; however map comparisons are incomplete to date. Findings Genetic maps for the apple rootstocks 'Malling 9' ('M.9') (Malus × domestica) and 'Robusta 5' ('R5') (Malus × robusta), and pear cultivars 'Bartlett' and 'La France' (Pyrus communis) were constructed using Simple Sequence Repeat (SSR) markers developed from both species, including a new set of 73 pear Expressed Sequence Tag (EST) SSR markers. Integrated genetic maps for apple and pear were then constructed using 87 and 131 SSR markers in common, respectively. The genetic maps were aligned using 102 markers in common, including 64 pear SSR markers and 38 apple SSR markers. Of these 102 markers, 90 anchor markers showed complete co-linearity between the two genomes. Conclusion Our alignment of the genetic maps of two Malus cultivars of differing species origin with two Pyrus communis cultivars confirms the ready transferability of SSR markers from one genus to the other and supports a high level of co-linearity within the sub-family Maloideae between the genomes of Malus and Pyrus.
Collapse
Affiliation(s)
- Jean-Marc Celton
- University of Western Cape, Biotechnology Department, Modderdam Road, Bellville, Cape Town, 7535, South Africa.
| | | | | | | | | | | | | |
Collapse
|