1
|
Chen M, Xia L, Tan X, Gao S, Wang S, Li M, Zhang Y, Xu T, Cheng Y, Chu Y, Hu S, Wu S, Zhang Z. Seeing the unseen in characterizing RNA editome during rice endosperm development. Commun Biol 2024; 7:1314. [PMID: 39397073 PMCID: PMC11471866 DOI: 10.1038/s42003-024-07032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Rice (Oryza sativa L.) endosperm is essential to provide nutrients for seed germination and determine grain yield. RNA editing, a post-transcriptional modification essential for plant development, unfortunately, is not fully characterized during rice endosperm development. Here, we perform systematic analyses to characterize RNA editome during rice endosperm development. We find that most editing sites are C-to-U CDS-recoding in mitochondria, leading to increased hydrophobic amino acids and changed structures of mitochondrial proteins. Comparative analysis of RNA editome reveals that CDS-recoding sites present higher editing frequencies with lower variabilities and their resultant recoded amino acids tend to exhibit stronger evolutionary conservation across many land plants. Furthermore, we classify mitochondrial genes into three groups, presenting distinct patterns in terms of CDS-recoding events. Besides, we conduct genome-wide screening to detect pentatricopeptide repeat (PPR) proteins and construct PPR-RNA binding profiles, yielding candidate PPR editing factors related to rice endosperm development. Taken together, our findings provide valuable insights for deciphering fundamental mechanisms of rice endosperm development underlying RNA editing machinery.
Collapse
Affiliation(s)
- Ming Chen
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xinyu Tan
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shenghan Gao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sen Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Man Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuansheng Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Xu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Cheng
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Chu
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songnian Hu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Shuangyang Wu
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna, Austria.
| | - Zhang Zhang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Guo S, Li Z, Li C, Liu Y, Liang X, Qin Y. Assembly and characterization of the complete mitochondrial genome of Ventilago leiocarpa. PLANT CELL REPORTS 2024; 43:77. [PMID: 38386216 DOI: 10.1007/s00299-023-03126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Ventilago leiocarpa for the first time. Two and one sites lead to the generation of stop and stat codon through editing were verified. Ventilago leiocarpa, a member of the Rhamnaceae family, is frequently utilized in traditional medicine due to the medicinal properties of its roots. In this study, we successfully assembled the mitogenome of V. leiocarpa using both BGI short reads and Nanopore long reads. This mitogenome has a total length of 331,839 bp. The annotated results showed 36 unique protein-coding, 16 tRNA and 3 rRNA genes in this mitogenome. Furthermore, we confirmed the presence of a branched structure through the utilization of long reads mapping, PCR amplification, and Sanger sequencing. Specifically, the ctg1 can form a single circular molecule or combine with ctg4 to form a linear molecule. Likewise, ctg2 can form a single circular molecule or can be connected to ctg4 to form a linear molecule. Subsequently, through a comparative analysis of the mitogenome and cpgenome sequences, we identified ten mitochondrial plastid sequences (MTPTs), including two complete protein-coding genes and five complete tRNA genes. The existence of MTPTs was verified by long reads. Colinear analysis showed that the mitogenomes of Rosales were highly divergent in structure. Finally, we identified 545 RNA editing sites involving 36 protein-coding genes by Deepred-mt. To validate our findings, we conducted PCR amplification and Sanger sequencing, which confirmed the generation of stop codons in atp9-223 and rps10-391, as well as the generation of a start codon in nad4L-2. This project reported the complex structure and RNA editing event of the V. Leiocarpa mitogenome, which will provide valuable information for the study of mitochondrial gene expression.
Collapse
Affiliation(s)
- Song Guo
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Zeyang Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Chunlian Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530010, People's Republic of China
| | - Xianglan Liang
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
| | - Yiming Qin
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China.
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China.
| |
Collapse
|
3
|
Huang KY, Kan SL, Shen TT, Gong P, Feng YY, Du H, Zhao YP, Wan T, Wang XQ, Ran JH. A Comprehensive Evolutionary Study of Chloroplast RNA Editing in Gymnosperms: A Novel Type of G-to-A RNA Editing Is Common in Gymnosperms. Int J Mol Sci 2022; 23:ijms231810844. [PMID: 36142757 PMCID: PMC9505161 DOI: 10.3390/ijms231810844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Pin Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
4
|
Yang Y, Yu X, Wei P, Liu C, Chen Z, Li X, Liu X. Comparative chloroplast genome and transcriptome analysis on the ancient genus Isoetes from China. FRONTIERS IN PLANT SCIENCE 2022; 13:924559. [PMID: 35968088 PMCID: PMC9372280 DOI: 10.3389/fpls.2022.924559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Isoetes is a famous living fossil that plays a significant role in the evolutionary studies of the plant kingdom. To explore the adaptive evolution of the ancient genus Isoetes from China, we focused on Isoetes yunguiensis (Q.F. Wang and W.C. Taylor), I. shangrilaensis (X. Li, Y.Q. Huang, X.K. Dai & X. Liu), I. taiwanensis (DeVol), I. sinensis (T.C. Palmer), I. hypsophila_GHC (Handel-Mazzetti), and I. hypsophila_HZS in this study. We sequenced, assembled, and annotated six individuals' chloroplast genomes and transcriptomes, and performed a series of analyses to investigate their chloroplast genome structures, RNA editing events, and adaptive evolution. The six chloroplast genomes of Isoetes exhibited a typical quadripartite structure with conserved genome sequence and structure. Comparative analyses of Isoetes species demonstrated that the gene organization, genome size, and GC contents of the chloroplast genome are highly conserved across the genus. Besides, our positive selection analyses suggested that one positively selected gene was statistically supported in Isoetes chloroplast genomes using the likelihood ratio test (LRT) based on branch-site models. Moreover, we detected positive selection signals using transcriptome data, suggesting that nuclear-encoded genes involved in the adaption of Isoetes species to the extreme environment of the Qinghai-Tibetan Plateau (QTP). In addition, we identified 291-579 RNA editing sites in the chloroplast genomes of six Isoetes based on transcriptome data, well above the average of angiosperms. RNA editing in protein-coding transcripts results from amino acid changes to increase their hydrophobicity and conservation in Isoetes, which may help proteins form functional three-dimensional structure. Overall, the results of this study provide comprehensive transcriptome and chloroplast genome resources and contribute to a better understanding of adaptive evolutionary and molecular biology in Isoetes.
Collapse
Affiliation(s)
- Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, China
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Mao Y, Yin Y, Cui X, Wang H, Su X, Qin X, Liu Y, Hu Y, Shen X. Homologous Cloning of Potassium Channel Genes From the Superior Apple Rootstock Line 12-2, Which is Tolerant to Apple Replant Disease. Front Genet 2022; 13:803160. [PMID: 35154275 PMCID: PMC8826240 DOI: 10.3389/fgene.2022.803160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Potassium channels are important ion channels that are responsible for the absorption of potassium in the plant nutrient uptake system. In this study, we used homologous molecular cloning to obtain 8 K+ channel genes from the superior apple rootstock line 12-2 (self-named): MsAKT1-1, MsKAT3-2, MsKAT1-3, MsK2P3-4, MsK2P3-5, MsK2P5-6, MsK2P3-7, and MsK2P3-8. Their lengths varied from 942 bp (MsK2P5-6) to 2625 bp (MsAKT1-1), and the number of encoded amino acids varied from 314 (MsK2P5-6) to 874 (MsAKT1-1). Subcellular localization predictions showed that MsAKT1-1, MsKAT3-2, and MsKAT1-3 were localized on the plasma membrane, and MsK2P3-4, MsK2P3-5, MsK2P5-6, MsK2P3-7, and MsK2P3-8 were localized on the vacuole and plasma membrane. The 8 K+ channel proteins contained α helices, extended strands, β turns, and random coils. MsKAT1-3 had four transmembrane structures, MsKAT3-2 had six, and the other six K+ channel genes had five. Protein structure domain analysis showed that MsAKT1-1 contained nine protein domains, followed by MsKAT3-2 with four, MsKAT1-3 with three, and the other five two-pore domain K+ channel proteins with two. Semi-quantitative RT-PCR detection of the K+ channel genes showed that their expression levels were high in roots. qRT-PCR analysis showed that the relative expression levels of the 8 genes changed after exposure to ARD stress. The above results provide a theoretical basis for further research on the functions of potassium channel genes in 12-2 and a scientific basis for the breeding of ARD-resistant rootstock.
Collapse
Affiliation(s)
- Yunfei Mao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yijun Yin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xueli Cui
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Haiyan Wang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - XiaFei Su
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xin Qin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yangbo Liu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yanli Hu
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiang Shen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Sadamitsu A, Inoue Y, Sakakibara K, Tsubota H, Yamaguchi T, Deguchi H, Nishiyama T, Shimamura M. The complete plastid genome sequence of the enigmatic moss, Takakia lepidozioides (Takakiopsida, Bryophyta): evolutionary perspectives on the largest collection of genes in mosses and the intensive RNA editing. PLANT MOLECULAR BIOLOGY 2021; 107:431-449. [PMID: 34817767 DOI: 10.1007/s11103-021-01214-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Complete chloroplast genome sequence of a moss, Takakia lepidozioides (Takakiopsida) is reported. The largest collection of genes in mosses and the intensive RNA editing were discussed from evolutionary perspectives. We assembled the entire plastid genome sequence of Takakia lepidozioides (Takakiopsida), emerging from the first phylogenetic split among extant mosses. The genome sequences were assembled into a circular molecule 149,016 bp in length, with a quadripartite structure comprising a large and a small single-copy region separated by inverted repeats. It contained 88 genes coding for proteins, 32 for tRNA, four for rRNA, two open reading frames, and at least one pseudogene (tufA). This is the largest number of genes of all sequenced plastid genomes in mosses and Takakia is the only moss that retains the seven coding genes ccsA, cysA, cysT, petN rpoA, rps16 and trnPGGG. Parsimonious interpretation of gene loss suggests that the last common ancestor of bryophytes had all seven genes and that mosses lost at least three of them during their diversification. Analyses of the plastid transcriptome identified the extraordinary frequency of RNA editing with more than 1100 sites. We indicated a close correlation between the monoplastidy of vegetative tissue and the intensive RNA editing sites in the plastid genome in land plant lineages. Here, we proposed a hypothesis that the small population size of plastids in each vegetative cell of some early diverging land plants, including Takakia, might cause the frequent fixation of mutations in plastid genome through the intracellular genetic drift and that deleterious mutations might be continuously compensated by RNA editing during or following transcription.
Collapse
Affiliation(s)
- Atsushi Sadamitsu
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Yuya Inoue
- Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, Ibaraki, 305-0005, Japan
- Hattori Botanical Laboratory, 6-1-26 Obi, Nichinan, Miyazaki, 889-2535, Japan
| | - Keiko Sakakibara
- Department of Life Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hiromi Tsubota
- Miyajima Natural Botanical Garden, Graduate School of Integrated Sciences for Life, Hiroshima University, 1156-2, Mitsumaruko-yama, Miyajima-cho, Hatsukaichi, Hiroshima, 739-0543, Japan
| | - Tomio Yamaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Hironori Deguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa, 920-0934, Japan
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
7
|
Zhu J, Zhang CQ, Xu J, Gilbert RG, Liu Q. Identification of Structure-Controlling Rice Biosynthesis Enzymes. Biomacromolecules 2021; 22:2148-2159. [PMID: 33914519 DOI: 10.1021/acs.biomac.1c00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The main enzymes controlling the chain-length distributions (CLDs) of starches are starch synthases (SSs), starch branching enzymes (SBEs), and debranching enzymes (DBEs), which have various isoforms, denoted as SSI, SSII-1, etc. Different isozymes dominate the CLD in different ranges of degrees of polymerization (DPs). Models have been developed for the CLDs in terms of the activities of isoforms of these enzymes, in terms of two parameters: βi, which is the ratio of the activity of SBE to that of SS in set i, and hi, which is the relative activity of SS in that set. These provide good fits to data but without specifying which isozymes are in set i. Here, CLDs for amylopectin and amylose synthesis in rice endosperm are explored. Molecular weight distributions of the different chains formed in 87 rice varieties were obtained using size-exclusion chromatography following enzymatic debranching (converting a complex branched macromolecule to linear polymers), and fitted by the biosynthesis-based models. The mutants of each isoform among tested rice varieties were identified by amino-acid mutations in coding sequences based on the extraction and analysis of whole gene sequences. The significant differences between mutant groups of different isoforms indicate that SSI, SSII-3, SSIII-1, SSIII-2, and SBEI as well as GBSSI (an isozyme of granule-bound starch synthase) belong to the enzymes sets that control amylose biosynthesis. Further, GBSSI is in the enzyme sets that control amylopectin chains. This enables specification of all isozymes and the DP range, which they dominate, over the entire DP range. As the CLD controls many functional properties of rice, this can help breeders target and develop improved rice species.
Collapse
Affiliation(s)
- Jihui Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 9 100081, China
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Key Laboratory of Crop Genetics and Physiology, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
8
|
Bautista MAC, Zheng Y, Hu Z, Deng Y, Chen T. Comparative Analysis of Complete Chloroplast Genome Sequences of Wild and Cultivated Bougainvillea (Nyctaginaceae). PLANTS (BASEL, SWITZERLAND) 2020; 9:E1671. [PMID: 33260641 PMCID: PMC7760935 DOI: 10.3390/plants9121671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
Bougainvillea (Nyctaginaceae) is a popular ornamental plant group primarily grown for its striking colorful bracts. However, despite its established horticultural value, limited genomic resources and molecular studies have been reported for this genus. Thus, to address this existing gap, complete chloroplast genomes of four species (Bougainvillea glabra, Bougainvillea peruviana, Bougainvillea pachyphylla, Bougainvillea praecox) and one Bougainvillea cultivar were sequenced and characterized. The Bougainvillea cp genomes range from 153,966 bp to 154,541 bp in length, comprising a large single-copy region (85,159 bp-85,708 bp) and a small single-copy region (18,014 bp-18,078 bp) separated by a pair of inverted repeats (25,377-25,427 bp). All sequenced plastomes have 131 annotated genes, including 86 protein-coding, eight rRNA, and 37 tRNA genes. These five newly sequenced Bougainvillea cp genomes were compared to the Bougainvillea spectabilis cp genome deposited in GeBank. The results showed that all cp genomes have highly similar structures, contents, and organization. They all exhibit quadripartite structures and all have the same numbers of genes and introns. Codon usage, RNA editing sites, and repeat analyses also revealed highly similar results for the six cp genomes. The amino acid leucine has the highest proportion and almost all favored synonymous codons have either an A or U ending. Likewise, out of the 42 predicted RNA sites, most conversions were from serine (S) to leucine (L). The majority of the simple sequence repeats detected were A/T mononucleotides, making the cp genomes A/T-rich. The contractions and expansions of the IR boundaries were very minimal as well, hence contributing very little to the differences in genome size. In addition, sequence variation analyses showed that Bougainvillea cp genomes share nearly identical genomic profiles though several potential barcodes, such as ycf1, ndhF, and rpoA were identified. Higher variation was observed in both B. peruviana and B. pachyphylla cp sequences based on SNPs and indels analysis. Phylogenetic reconstructions further showed that these two species appear to be the basal taxa of Bougainvillea. The rarely cultivated and wild species of Bougainvillea (B. pachyphylla, B. peruviana, B. praecox) diverged earlier than the commonly cultivated species and cultivar (B. spectabilis, B. glabra, B. cv.). Overall, the results of this study provide additional genetic resources that can aid in further phylogenetic and evolutionary studies in Bougainvillea. Moreover, genetic information from this study is potentially useful in identifying Bougainvillea species and cultivars, which is essential for both taxonomic and plant breeding studies.
Collapse
Affiliation(s)
- Mary Ann C. Bautista
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China;
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zheng
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China;
| | - Zhangli Hu
- School of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518060, China;
| | - Yunfei Deng
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen 518004, China;
- Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zheng P, Wang D, Huang Y, Chen H, Du H, Tu J. Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs. PLANTS 2020; 9:plants9101277. [PMID: 32998293 PMCID: PMC7600565 DOI: 10.3390/plants9101277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/30/2020] [Accepted: 09/27/2020] [Indexed: 01/05/2023]
Abstract
Cytidine to uridine (C-to-U) RNA editing is an important type of substitutional RNA modification and is almost omnipresent in plant chloroplasts and mitochondria. In rice mitochondria, 491 C-to-U editing sites have been identified previously, and case studies have elucidated the function of several C-to-U editing sites in rice, but the functional consequence of most C-to-U alterations needs to be investigated further. Here, by means of Sanger sequencing and publicly available RNA-seq data, we identified a total of 569 C-to-U editing sites in rice mitochondria-encoded open reading frames (ORFs), 85.41% of these editing sites were observed on the first or the second base of a codon, resulting in the alteration of encoded amino acid. Moreover, we found some novel editing sites and several inaccurately annotated sites which may be functionally important, based on the highly conserved amino acids encoded by these edited codons. Finally, we annotated all 569 C-to-U RNA editing sites in their biological context. More precise information about C-to-U editing sites in rice mitochondria-encoded ORFs will facilitate our investigation on the function of C-to-U editing events in rice and also provide a valid benchmark from rice for the analysis of mitochondria C-to-U editing in other plant species.
Collapse
Affiliation(s)
- Peng Zheng
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
| | - Dongxin Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Yuqing Huang
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
| | - Hao Chen
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
| | - Hao Du
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
- Correspondence: (H.D.); (J.T.)
| | - Jumin Tu
- Zhejiang Provincial Key Laboratory of Crop Germplasm Resources, Institute of Crop Science, Zhejiang University, No. 866, Yu-Hang-Tang Road, Hangzhou 310058, China; (P.Z.); (Y.H.); (H.C.)
- Correspondence: (H.D.); (J.T.)
| |
Collapse
|
10
|
Lin Z, Zhou P, Ma X, Deng Y, Liao Z, Li R, Ming R. Comparative analysis of chloroplast genomes in Vasconcellea pubescens A.DC. and Carica papaya L. Sci Rep 2020; 10:15799. [PMID: 32978465 PMCID: PMC7519098 DOI: 10.1038/s41598-020-72769-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/28/2020] [Indexed: 01/12/2023] Open
Abstract
The chloroplast genome is an integral part of plant genomes in a species along with nuclear and mitochondrial genomes, contributing to adaptation, diversification, and evolution of plant lineages. In the family Caricaceae, only the Carica papaya chloroplast genome and its nuclear and mitochondrial genomes were sequenced, and no chloroplast genome-wide comparison across genera was conducted. Here, we sequenced and assembled the chloroplast genome of Vasconcellea pubescens A.DC. using Oxford Nanopore Technology. The size of the genome is 158,712 bp, smaller than 160,100 bp of the C. papaya chloroplast genome. And two structural haplotypes, LSC_IRa_SSCrc_IRb and LSC_IRa_SSC_IRb, were identified in both V. pubescens and C. papaya chloroplast genomes. The insertion-deletion mutations may play an important role in Ycf1 gene evolution in family Caricaceae. Ycf2 is the only one gene positively selected in the V. pubescens chloroplast genome. In the C. papaya chloroplast genome, there are 46 RNA editing loci with an average RNA editing efficiency of 63%. These findings will improve our understanding of the genomes of these two crops in the family Caricaceae and will contribute to crop improvement.
Collapse
Affiliation(s)
- Zhicong Lin
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Xinyi Ma
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youjin Deng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Zhenyang Liao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ruoyu Li
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Ray Ming
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Ramadan AM. Light/heat effects on RNA editing in chloroplast NADH-plastoquinone oxidoreductase subunit 2 (ndhB) gene of Calotropis (Calotropis procera). J Genet Eng Biotechnol 2020; 18:49. [PMID: 32915330 PMCID: PMC7486354 DOI: 10.1186/s43141-020-00064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/02/2020] [Indexed: 11/22/2022]
Abstract
Background RNA editing is common in terrestrial plants, especially in mitochondria and chloroplast. In the photosynthesis process, NAD dehydrogenase plays a very important role. Subunit 2 of NADH-dehydrogenase is one of the major subunits in NAD dehydrogenase complex. Using desert plant Calotropis (Calotropis procera), this study focuses on the RNA editing activity of ndhB based on light time. Results NdhB (NADH-dehydrogenase subunit 2) gene accession no. MK144329 was isolated from Calotropis procera genomic data (PRJNA292713). Additionally, using RNA-seq data, the cDNA of the ndhB gene of C. procera was isolated at three daylight periods, i.e., dawn (accession no. MK165161), at midday (accession no. MK165160), and pre-dusk (accession no. MK165159). Seven RNA editing sites have been found in several different positions (nucleotide no. C467, C586, C611, C737, C746, C830, and C1481) within the ndhB coding region. The rate of these alterations was deferentially edited across the three daylight periods. RNA editing rate of ndhB gene was highest at dawn, (87.5, 79.6, 78.5, 76, 68.6, 39.3, and 96.9%, respectively), less in midday (74.8, 54.1, 62.6, 47.4, 45.5, 47.4, and 93.4%, respectively), and less at pre-dusk (67, 52.6, 56.9, 40.1, 40.7, 33.2, and 90%, respectively), also all these sites were validated by qRT-PCR. Conclusion The differential editing of chloroplast ndhB gene across light periods may be led to a somehow relations between the RNA editing and control of photosynthesis.
Collapse
Affiliation(s)
- Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, Jeddah, 21589, Saudi Arabia. .,Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt.
| |
Collapse
|
12
|
Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B. High Level of Conservation of Mitochondrial RNA Editing Sites Among Four Populus Species. G3 (BETHESDA, MD.) 2019; 9:709-717. [PMID: 30617214 PMCID: PMC6404595 DOI: 10.1534/g3.118.200763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/01/2019] [Indexed: 01/29/2023]
Abstract
RNA editing occurs in the endosymbiont organelles of higher plants as C-to-U conversions of defined nucleotides. The availability of large quantities of RNA sequencing data makes it possible to identify RNA editing sites and to quantify their editing extent. We have investigated RNA editing in 34 protein-coding mitochondrial transcripts of four Populus species, a genus noteworthy for its remarkably small number of RNA editing sites compared to other angiosperms. 27 of these transcripts were subject to RNA editing in at least one species. In total, 355 RNA editing sites were identified with high confidence, their editing extents ranging from 10 to 100%. The most heavily edited transcripts were ccmB with the highest density of RNA editing sites (53.7 sites / kb) and ccmFn with the highest number of sites (39 sites). Most of the editing events are at position 1 or 2 of the codons, usually altering the encoded amino acid, and are highly conserved among the species, also with regard to their editing extent. However, one SNP was found in the newly sequenced and annotated mitochondrial genome of P. alba resulting in the loss of an RNA editing site compared to P. tremula and P. davidiana This SNP causes a C-to-T transition and an amino acid exchange from Ser to Phe, highlighting the widely discussed role of RNA editing in compensating mutations.
Collapse
Affiliation(s)
| | - Malte Mader
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Ingo Zorn
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| |
Collapse
|
13
|
Kaila T, Saxena S, Ramakrishna G, Tyagi A, Tribhuvan KU, Srivastava H, Chaudhury A, Singh NK, Gaikwad K. Comparative RNA editing profile of mitochondrial transcripts in cytoplasmic male sterile and fertile pigeonpea reveal significant changes at the protein level. Mol Biol Rep 2019; 46:2067-2084. [PMID: 30759299 DOI: 10.1007/s11033-019-04657-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/28/2019] [Indexed: 11/26/2022]
Abstract
RNA editing is a process which leads to post-transcriptional alteration of the nucleotide sequence of the corresponding mRNA molecule which may or may not lead to changes at the protein level. Apart from its role in providing variability at the transcript and protein levels, sometimes, such changes may lead to abnormal expression of the mitochondrial gene leading to a cytoplasmic male sterile phenotype. Here we report the editing status of 20 major mitochondrial transcripts in both male sterile (AKCMS11) and male fertile (AKPR303) pigeonpea genotypes. The validation of the predicted editing sites was done by mapping RNA-seq reads onto the amplified mitochondrial genes, and 165 and 159 editing sites were observed in bud tissues of the male sterile and fertile plant respectively. Among the resulting amino acid alterations, the most frequent one was the conversion of hydrophilic amino acids to hydrophobic. The alterations thus detected in our study indicates differential editing, but no major change in terms of the abnormal protein structure was detected. However, the above investigation provides an insight into the behaviour of pigeonpea mitochondrial genome in native and alloplasmic state and could hold clues in identification of editing factors and their role in adaptive evolution in pigeonpea.
Collapse
Affiliation(s)
- Tanvi Kaila
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Swati Saxena
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Anshika Tyagi
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Kishor U Tribhuvan
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Harsha Srivastava
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Ashok Chaudhury
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, India
| | | | - Kishor Gaikwad
- ICAR-National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
14
|
RNA editing analysis of ATP synthase genes in the cotton cytoplasmic male sterile line H276A. Biol Res 2019; 52:6. [PMID: 30728078 PMCID: PMC6364438 DOI: 10.1186/s40659-019-0212-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/14/2019] [Indexed: 11/22/2022] Open
Abstract
Background Pollen development is an energy-consuming process that particularly occurs during meiosis. Low levels of adenosine triphosphate (ATP) may cause cell death, resulting in CMS (cytoplasmic male sterility). DNA sequence differences in ATP synthase genes have been revealed between the N- and S-cytoplasms in the cotton CMS system. However, very few data are available at the RNA level. In this study, we compared five ATP synthase genes in the H276A, H276B and fertile F1 (H276A/H268) lines using RNA editing, RNA blotting and quantitative real time-PCR (qRT-PCR) to explore their contribution to CMS. A molecular marker for identifying male sterile cytoplasm (MSC) was also developed. Results RNA blotting revealed the absence of any novel orf for the ATP synthase gene sequence in the three lines. Forty-one RNA editing sites were identified in the coding sequences. RNA editing showed that proteins had 32.43% higher hydrophobicity and that 39.02% of RNA editing sites had proline converted to leucine. Two new stop codons were detected in atp6 and atp9 by RNA editing. Real-time qRT-PCR data showed that the atp1, atp6, atp8, and atp9 genes had substantially lower expression levels in H276A compared with those in H276B. By contrast, the expression levels of all five genes were increased in F1 (H276A/H268). Moreover, a molecular marker based on a 6-bp deletion upstream of atp8 in H276A was developed to identify male sterile cytoplasm (MSC) in cotton. Conclusions Our data substantially contributes to the understanding of the function of ATP synthase genes in cotton CMS. Therefore, we suggest that ATP synthase genes might be an indirect cause of cotton CMS. Further research is needed to investigate the relationship among ATP synthase genes in cotton CMS. Electronic supplementary material The online version of this article (10.1186/s40659-019-0212-0) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Takenaka M, Jörg A, Burger M, Haag S. RNA editing mutants as surrogates for mitochondrial SNP mutants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:310-321. [PMID: 30599308 DOI: 10.1016/j.plaphy.2018.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
In terrestrial plants, RNA editing converts specific cytidines to uridines in mitochondrial and plastidic transcripts. Most of these events appear to be important for proper function of organellar encoded genes, since translated proteins from edited mRNAs show higher similarity with evolutionary conserved polypeptide sequences. So far about 100 nuclear encoded proteins have been characterized as RNA editing factors in plant organelles. Respective RNA editing mutants reduce or lose editing activity at different sites and display various macroscopic phenotypes from pale or albino in the case of chloroplasts to growth retardation or even embryonic lethality. Therefore, RNA editing mutants can be a useful resource of surrogate mutants for organellar encoded genes, especially for mitochondrially encoded genes that it is so far unfeasible to manipulate. However, connections between RNA editing defects and observed phenotypes in the mutants are often hard to elucidate, since RNA editing factors often target multiple RNA sites in different genes simultaneously. In this review article, we summarize the physiological aspects of respective RNA editing mutants and discuss them as surrogate mutants for functional analysis of mitochondrially encoded genes.
Collapse
Affiliation(s)
- Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Matthias Burger
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| |
Collapse
|
16
|
Edera AA, Gandini CL, Sanchez-Puerta MV. Towards a comprehensive picture of C-to-U RNA editing sites in angiosperm mitochondria. PLANT MOLECULAR BIOLOGY 2018; 97:215-231. [PMID: 29761268 DOI: 10.1007/s11103-018-0734-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Our understanding of the dynamic and evolution of RNA editing in angiosperms is in part limited by the few editing sites identified to date. This study identified 10,217 editing sites from 17 diverse angiosperms. Our analyses confirmed the universality of certain features of RNA editing, and offer new evidence behind the loss of editing sites in angiosperms. RNA editing is a post-transcriptional process that substitutes cytidines (C) for uridines (U) in organellar transcripts of angiosperms. These substitutions mostly take place in mitochondrial messenger RNAs at specific positions called editing sites. By means of publicly available RNA-seq data, this study identified 10,217 editing sites in mitochondrial protein-coding genes of 17 diverse angiosperms. Even though other types of mismatches were also identified, we did not find evidence of non-canonical editing processes. The results showed an uneven distribution of editing sites among species, genes, and codon positions. The analyses revealed that editing sites were conserved across angiosperms but there were some species-specific sites. Non-synonymous editing sites were particularly highly conserved (~ 80%) across the plant species and were efficiently edited (80% editing extent). In contrast, editing sites at third codon positions were poorly conserved (~ 30%) and only partially edited (~ 40% editing extent). We found that the loss of editing sites along angiosperm evolution is mainly occurring by replacing editing sites with thymidines, instead of a degradation of the editing recognition motif around editing sites. Consecutive and highly conserved editing sites had been replaced by thymidines as result of retroprocessing, by which edited transcripts are reverse transcribed to cDNA and then integrated into the genome by homologous recombination. This phenomenon was more pronounced in eudicots, and in the gene cox1. These results suggest that retroprocessing is a widespread driving force underlying the loss of editing sites in angiosperm mitochondria.
Collapse
Affiliation(s)
- Alejandro A Edera
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina.
| | - Carolina L Gandini
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, M5528AHB, Chacras de Coria, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
17
|
Phylogenetic Relationships of the Fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island Based on Chloroplast Genome Sequencing. Genes (Basel) 2016; 7:genes7120115. [PMID: 28009803 PMCID: PMC5192491 DOI: 10.3390/genes7120115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/18/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022] Open
Abstract
Cyrtomium falcatum is a popular ornamental fern cultivated worldwide. Native to the Korean Peninsula, Japan, and Dokdo Island in the Sea of Japan, it is the only fern present on Dokdo Island. We isolated and characterized the chloroplast (cp) genome of C. falcatum, and compared it with those of closely related species. The genes trnV-GAC and trnV-GAU were found to be present within the cp genome of C. falcatum, whereas trnP-GGG and rpl21 were lacking. Moreover, cp genomes of Cyrtomium devexiscapulae and Adiantum capillus-veneris lack trnP-GGG and rpl21, suggesting these are not conserved among angiosperm cp genomes. The deletion of trnR-UCG, trnR-CCG, and trnSeC in the cp genomes of C. falcatum and other eupolypod ferns indicates these genes are restricted to tree ferns, non-core leptosporangiates, and basal ferns. The C. falcatum cp genome also encoded ndhF and rps7, with GUG start codons that were only conserved in polypod ferns, and it shares two significant inversions with other ferns, including a minor inversion of the trnD-GUC region and an approximate 3 kb inversion of the trnG-trnT region. Phylogenetic analyses showed that Equisetum was found to be a sister clade to Psilotales-Ophioglossales with a 100% bootstrap (BS) value. The sister relationship between Pteridaceae and eupolypods was also strongly supported by a 100% BS, but Bayesian molecular clock analyses suggested that C. falcatum diversified in the mid-Paleogene period (45.15 ± 4.93 million years ago) and might have moved from Eurasia to Dokdo Island.
Collapse
|
18
|
Hijikata A, Yura K, Ohara O, Go M. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain. Meta Gene 2015; 4:92-106. [PMID: 25941633 PMCID: PMC4412953 DOI: 10.1016/j.mgene.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/03/2015] [Indexed: 10/26/2022] Open
Abstract
Tafazzin is a mitochondrial phospholipid transacylase, and its mutations cause Barth syndrome (BTHS). Human tafazzin gene produces four distinct alternatively spliced transcripts. To understand the molecular mechanisms of tafazzin deficiency, we performed an atomic resolution analysis of the influence of the BTHS mutations and of alternative splicing on the structure and function of tafazzin. From the three-dimensional (3D) homology modeling of tafazzin, we identified candidate amino acid residues that contribute to cardiolipin binding and to mitochondrial membrane associations that facilitate acyl-transfer reactions. Primate specific exon 5, which is alternatively spliced, is predicted to correspond to an intrinsically unstructured region in the protein. We proposed that this region should change the substrate-binding affinity and/or contribute to primate-specific molecular interactions. Exon 7, another alternatively spliced exon, encodes a region forming a part of the putative substrate-binding cleft, suggesting that the gene products lacking exon 7 will lose their substrate-binding ability. We demonstrate a clear localization of the BTHS mutations at residues responsible for membrane association, substrate binding, and the conformational stability of tafazzin. These findings provide new insights into the function of defective tafazzin and the pathogenesis of BTHS at the level of protein 3D structure and the evolution of alternatively spliced exons in primates.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan ; Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Mitiko Go
- Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan ; Research Organization of Information and Systems, 4-3-13, Toranomon, Minatoku, Tokyo 105-0001, Japan
| |
Collapse
|
19
|
Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S, Satoh N, Shoguchi E. Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 2014; 6:1408-22. [PMID: 24881086 PMCID: PMC4079212 DOI: 10.1093/gbe/evu109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly.
Collapse
Affiliation(s)
- Sutada Mungpakdee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Ryo Koyanagi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, JapanDNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Makiko Tanaka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Japan
| |
Collapse
|
20
|
Berry JO, Yerramsetty P, Zielinski AM, Mure CM. Photosynthetic gene expression in higher plants. PHOTOSYNTHESIS RESEARCH 2013; 117:91-120. [PMID: 23839301 DOI: 10.1007/s11120-013-9880-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 05/08/2023]
Abstract
Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.
Collapse
Affiliation(s)
- James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA,
| | | | | | | |
Collapse
|
21
|
RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol Genet Genomics 2013; 288:445-57. [DOI: 10.1007/s00438-013-0764-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
22
|
Jiang Y, Fan SL, Song MZ, Yu JN, Yu SX. Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures. GENETICS AND MOLECULAR RESEARCH 2012; 11:987-1001. [PMID: 22576925 DOI: 10.4238/2012.april.19.4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
RNA editing can alter individual nucleotides in primary transcripts, which can cause the amino acids encoded by edited RNA to deviate from the ones predicted from the DNA template. We investigated RNA editing sites of protein-coding genes from the chloroplast genome of cotton. Fifty-four editing sites were identified in 27 transcripts, which is the highest editing frequency found until now in angiosperms. All these editing sites were C-to-U conversion, biased toward ndh genes and U_A context. Examining published editotypes in various angiosperms, we found that RNA editing mostly converts amino acid from hydrophilic to hydrophobic and restores evolutionary conserved amino acids. Using bioinformatics to analyze the effect of editing events on protein secondary and three-dimensional structures, we found that 21 editing sites can affect protein secondary structures and seven editing sites can alter three-dimensional protein structures. These results imply that 24 editing sites in cotton chloroplast transcripts may play an important role in their protein structures and functions.
Collapse
Affiliation(s)
- Y Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, PR China
| | | | | | | | | |
Collapse
|
23
|
Castandet B, Araya A. The nucleocytoplasmic conflict, a driving force for the emergence of plant organellar RNA editing. IUBMB Life 2011; 64:120-5. [PMID: 22162179 DOI: 10.1002/iub.581] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/01/2011] [Indexed: 11/11/2022]
Abstract
RNA editing challenges the central dogma of molecular biology by changing the genetic information at the transcript level. In plant organelles, RNAs are modified by deamination of some specific cytosine residues, but the origin of this process remains puzzling. Different from the generally accepted neutral model to explain the emergence of RNA editing in plant organelles, we propose a new hypothesis based on the nucleocytoplasmic conflict theory. We assume that mutations in organellar genomes arose first and spread into the population provided they increased the transmission of their own maternally inherited genome. RNA editing appeared subsequently as a nuclear-encoded correction mechanism to restore the transmission of the nuclear genome. In plants, a well-known consequence of the nucleocytoplasmic conflict is cytoplasmic male sterility (CMS) which is counteracted by the emergence of fertility restorer genes (Rf) belonging to the pentatricopeptide repeat (PPR) protein family. Interestingly, RNA-editing deficiency can lead to CMS, and it now clearly appears that PPR proteins are major players in RNA editing. This striking similarity between the mechanisms of fertility restoration and RNA editing can be explained if both reactions are the consequence of the same driving force, the nucleocytoplasmic conflict. Similarly, the prevalence of RNA editing in eukaryotic organellar genomes could also be a consequence of the genetic antagonism between organellar and nuclear genomes.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853, USA.
| | | |
Collapse
|
24
|
Chen H, Deng L, Jiang Y, Lu P, Yu J. RNA editing sites exist in protein-coding genes in the chloroplast genome of Cycas taitungensis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:961-70. [PMID: 22044752 DOI: 10.1111/j.1744-7909.2011.01082.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
RNA editing is a post-transcriptional process that results in modifications of ribonucleotides at specific locations. In land plants editing can occur in both mitochondria and chloroplasts and most commonly involves C-to-U changes, especially in seed plants. Using prediction and experimental determination, we investigated RNA editing in 40 protein-coding genes from the chloroplast genome of Cycas taitungensis. A total of 85 editing sites were identified in 25 transcripts. Comparison analysis of the published editotypes of these 25 transcripts in eight species showed that RNA editing events gradually disappear during plant evolution. The editing in the first and third codon position disappeared quicker than that in the second codon position. ndh genes have the highest editing frequency while serine and proline codons were more frequently edited than the codons of other amino acids. These results imply that retained RNA editing sites have imbalanced distribution in genes and most of them may function by changing protein structure or interaction. Mitochondrion protein-coding genes have three times the editing sites compared with chloroplast genes of Cycas, most likely due to slower evolution speed.
Collapse
Affiliation(s)
- Haiyan Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | | | | | | | | |
Collapse
|
25
|
Cuenca A, Petersen G, Seberg O, Davis JI, Stevenson DW. Are substitution rates and RNA editing correlated? BMC Evol Biol 2010; 10:349. [PMID: 21070620 PMCID: PMC2989974 DOI: 10.1186/1471-2148-10-349] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
Background RNA editing is a post-transcriptional process that, in seed plants, involves a cytosine to uracil change in messenger RNA, causing the translated protein to differ from that predicted by the DNA sequence. RNA editing occurs extensively in plant mitochondria, but large differences in editing frequencies are found in some groups. The underlying processes responsible for the distribution of edited sites are largely unknown, but gene function, substitution rate, and gene conversion have been proposed to influence editing frequencies. Results We studied five mitochondrial genes in the monocot order Alismatales, all showing marked differences in editing frequencies among taxa. A general tendency to lose edited sites was observed in all taxa, but this tendency was particularly strong in two clades, with most of the edited sites lost in parallel in two different areas of the phylogeny. This pattern is observed in at least four of the five genes analyzed. Except in the groups that show an unusually low editing frequency, the rate of C-to-T changes in edited sites was not significantly higher that in non-edited 3rd codon positions. This may indicate that selection is not actively removing edited sites in nine of the 12 families of the core Alismatales. In all genes but ccmB, a significant correlation was found between frequency of change in edited sites and synonymous substitution rate. In general, taxa with higher substitution rates tend to have fewer edited sites, as indicated by the phylogenetically independent correlation analyses. The elimination of edited sites in groups that lack or have reduced levels of editing could be a result of gene conversion involving a cDNA copy (retroprocessing). If so, this phenomenon could be relatively common in the Alismatales, and may have affected some groups recurrently. Indirect evidence of retroprocessing without a necessary correlation with substitution rate was found mostly in families Alismataceae and Hydrocharitaceae (e.g., groups that suffered a rapid elimination of all their edited sites, without a change in substitution rate). Conclusions The effects of substitution rate, selection, and/or gene conversion on the dynamics of edited sites in plant mitochondria remain poorly understood. Although we found an inverse correlation between substitution rate and editing frequency, this correlation is partially obscured by gene retroprocessing in lineages that have lost most of their edited sites. The presence of processed paralogs in plant mitochondria deserves further study, since most evidence of their occurrence is circumstantial.
Collapse
Affiliation(s)
- Argelia Cuenca
- The Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83 Opg, S, DK-1307 Copenhagen C, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Extensive loss of RNA editing sites in rapidly evolving Silene mitochondrial genomes: selection vs. retroprocessing as the driving force. Genetics 2010; 185:1369-80. [PMID: 20479143 DOI: 10.1534/genetics.110.118000] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Theoretical arguments suggest that mutation rates influence the proliferation and maintenance of RNA editing. We identified RNA editing sites in five species within the angiosperm genus Silene that exhibit highly divergent mitochondrial mutation rates. We found that mutational acceleration has been associated with rapid loss of mitochondrial editing sites. In contrast, we did not find a significant difference in the frequency of editing in chloroplast genes, which lack the mutation rate variation observed in the mitochondrial genome. As found in other angiosperms, the rate of substitution at RNA editing sites in Silene greatly exceeds the rate at synonymous sites, a pattern that has previously been interpreted as evidence for selection against RNA editing. Alternatively, we suggest that editing sites may experience higher rates of C-to-T mutation than other portions of the genome. Such a pattern could be caused by gene conversion with reverse-transcribed mRNA (i.e., retroprocessing). If so, the genomic distribution of RNA editing site losses in Silene suggests that such conversions must be occurring at a local scale such that only one or two editing sites are affected at a time. Because preferential substitution at editing sites appears to occur in angiosperms regardless of the mutation rate, we conclude that mitochondrial rate accelerations within Silene have "fast-forwarded" a preexisting pattern but have not fundamentally changed the evolutionary forces acting on RNA editing sites.
Collapse
|
27
|
Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G. Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. Nucleic Acids Res 2010; 38:4755-67. [PMID: 20385587 PMCID: PMC2919710 DOI: 10.1093/nar/gkq202] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
RNA editing is a widespread post-transcriptional molecular phenomenon that can increase proteomic diversity, by modifying the sequence of completely or partially non-functional primary transcripts, through a variety of mechanistically and evolutionarily unrelated pathways. Editing by base substitution has been investigated in both animals and plants. However, conventional strategies based on directed Sanger sequencing are time-consuming and effectively preclude genome wide identification of RNA editing and assessment of partial and tissue-specific editing sites. In contrast, the high-throughput RNA-Seq approach allows the generation of a comprehensive landscape of RNA editing at the genome level. Short reads from Solexa/Illumina GA and ABI SOLiD platforms have been used to investigate the editing pattern in mitochondria of Vitis vinifera providing significant support for 401 C-to-U conversions in coding regions and an additional 44 modifications in non-coding RNAs. Moreover, 76% of all C-to-U conversions in coding genes represent partial RNA editing events and 28% of them were shown to be significantly tissue specific. Solexa/Illumina and SOLiD platforms showed different characteristics with respect to the specific issue of large-scale editing analysis, and the combined approach presented here reduces the false positive rate of discovery of editing events.
Collapse
Affiliation(s)
- Ernesto Picardi
- Dipartimento di Biochimica e Biologia Molecolare E. Quagliariello, Università degli Studi di Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Traphagen SJ, Dimarco MJ, Silliker ME. RNA editing of 10 Didymium iridis mitochondrial genes and comparison with the homologous genes in Physarum polycephalum. RNA (NEW YORK, N.Y.) 2010; 16:828-838. [PMID: 20159952 PMCID: PMC2844629 DOI: 10.1261/rna.1989310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 12/22/2009] [Indexed: 05/28/2023]
Abstract
Regions of the Didymium iridis mitochondrial genome were identified with similarity to typical mitochondrial genes; however, these regions contained numerous stop codons. We used RT-PCR and DNA sequencing to determine whether, through RNA editing, these regions were transcribed into mRNAs that could encode functional proteins. Ten putative gene regions were examined: atp1, atp6, atp8, atp9, cox1, cox2, cytb, nad4L, nad6, and nad7. The cDNA sequences of each gene could encode a functional mitochondrial protein that was highly conserved compared with homologous genes. The type of editing events and editing sequence features were very similar to those observed in the homologous genes of Physarum polycephalum, though the actual editing locations showed a variable degree of conservation. Edited sites were compared with encoded sites in D. iridis and P. polycephalum for all 10 genes. Edited sequence for a portion of the cox1 gene was available for six myxomycetes, which, when compared, showed a high degree of conservation at the protein level. Different types of editing events showed varying degrees of site conservation with C-to-U base changes being the least conserved. Several aspects of single C insertion editing events led to the preferential creation of hydrophobic amino acid codons that may help to minimize adverse effects on the resulting protein structure.
Collapse
Affiliation(s)
- Stephen J Traphagen
- The English High School, Boston Public Schools, Boston, Massachusetts 02130, USA
| | | | | |
Collapse
|
29
|
Yura K, Sulaiman S, Hatta Y, Shionyu M, Go M. RESOPS: a database for analyzing the correspondence of RNA editing sites to protein three-dimensional structures. PLANT & CELL PHYSIOLOGY 2009; 50:1865-73. [PMID: 19808808 PMCID: PMC2775959 DOI: 10.1093/pcp/pcp132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/24/2009] [Indexed: 05/21/2023]
Abstract
Transcripts from mitochondrial and chloroplast DNA of land plants often undergo cytidine to uridine conversion-type RNA editing events. RESOPS is a newly built database that specializes in displaying RNA editing sites of land plant organelles on protein three-dimensional (3D) structures to help elucidate the mechanisms of RNA editing for gene expression regulation. RESOPS contains the following information: unedited and edited cDNA sequences with notes for the target nucleotides of RNA editing, conceptual translation from the edited cDNA sequence in pseudo-UniProt format, a list of proteins under the influence of RNA editing, multiple amino acid sequence alignments of edited proteins, the location of amino acid residues coded by codons under the influence of RNA editing in protein 3D structures and the statistics of biased distributions of the edited residues with respect to protein structures. Most of the data processing procedures are automated; hence, it is easy to keep abreast of updated genome and protein 3D structural data. In the RESOPS database, we clarified that the locations of residues switched by RNA editing are significantly biased to protein structural cores. The integration of different types of data in the database also help advance the understanding of RNA editing mechanisms. RESOPS is accessible at http://cib.cf.ocha.ac.jp/RNAEDITING/.
Collapse
Affiliation(s)
- Kei Yura
- Computational Biology, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo, Tokyo, 112-8610 Japan.
| | | | | | | | | |
Collapse
|
30
|
Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G. Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:738-49. [PMID: 19453459 DOI: 10.1111/j.1365-313x.2009.03909.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA editing is the alteration of RNA sequences via insertion, deletion and conversion of nucleotides. In flowering plants, specific cytidine residues of RNA transcribed from organellar genomes are converted into uridines. Approximately 35 editing sites are present in the chloroplasts of higher plants; six pentatricopeptide repeat genes involved in RNA editing have been identified in Arabidopsis. However, although approximately 500 editing sites are found in mitochondrial RNAs of flowering plants, only one gene in Arabidopsis has been reported to be involved in such editing. Here, we identified rice mutants that are defective in seven specific RNA editing sites on five mitochondrial transcripts. Their various phenotypes include delayed seed germination, retarded growth, dwarfism and sterility. Mutant seeds from heterozygous plants are opaque. This mutation, named opaque and growth retardation 1 (ogr1), was generated by T-DNA insertion into a gene that encodes a pentatricopeptide repeat protein containing the DYW motif. The OGR1-sGFP fusion protein is localized to mitochondria. Ectopic expression of OGR1 in the mutant complements the altered phenotypes. We conclude that OGR1 is essential for RNA editing in rice mitochondria and is required for normal growth and development.
Collapse
Affiliation(s)
- Sung-Ryul Kim
- Department of Integrative Bioscience and Biotechnology, National Research Laboratory of Plant Functional Genomics and Functional Genomic Center, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Robbins JC, Heller WP, Hanson MR. A comparative genomics approach identifies a PPR-DYW protein that is essential for C-to-U editing of the Arabidopsis chloroplast accD transcript. RNA (NEW YORK, N.Y.) 2009; 15:1142-53. [PMID: 19395655 PMCID: PMC2685521 DOI: 10.1261/rna.1533909] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/11/2009] [Indexed: 05/18/2023]
Abstract
Several nuclear-encoded proteins containing pentatricopeptide repeat (PPR) motifs have previously been identified to be trans-factors essential for particular chloroplast RNA editing events through analysis of mutants affected in chloroplast biogenesis or function. Other PPR genes are known to encode proteins involved in other aspects of organelle RNA metabolism. A function has not been assigned to most members of the large plant PPR gene family. Arabidopsis and rice each contain over 400 PPR genes, of which about a fifth exhibit a C-terminal DYW domain. We describe here a comparative genomics approach that will facilitate identification of the role of RNA-binding proteins in organelle RNA metabolism. We have implemented this strategy to identify an Arabidopsis nuclear-encoded gene RARE1 that is required for editing of the chloroplast accD transcript. RARE1 carries 15 PPR motifs, an E/E+ and a DYW domain, whereas previously reported editing factors CRR4, CRR21, and CLB19 lack a DYW domain. The accD gene encodes the beta carboxyltransferase subunit of acetyl coA carboxylase, which catalyzes the first step in fatty acid biosynthesis in chloroplasts. Despite a lack of accD C794 editing and lack of restoration of an evolutionarily conserved leucine residue in the beta carboxyltransferase protein, rare1 mutants are unexpectedly robust and reproduce under growth room conditions. Previously the serine-to-leucine alteration caused by editing was deemed essential in the light of the finding that a recombinantly expressed "unedited" form of the pea acetyl coA carboxylase was catalytically inactive.
Collapse
Affiliation(s)
- John C Robbins
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|