1
|
Genetic diversity of native and cultivated Ugandan Robusta coffee (Coffea canephora Pierre ex A. Froehner): Climate influences, breeding potential and diversity conservation. PLoS One 2021; 16:e0245965. [PMID: 33556074 PMCID: PMC7870046 DOI: 10.1371/journal.pone.0245965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Wild genetic resources and their ability to adapt to environmental change are critically important in light of the projected climate change, while constituting the foundation of agricultural sustainability. To address the expected negative effects of climate change on Robusta coffee trees (Coffea canephora), collecting missions were conducted to explore its current native distribution in Uganda over a broad climatic range. Wild material from seven forests could thus be collected. We used 19 microsatellite (SSR) markers to assess genetic diversity and structure of this material as well as material from two ex-situ collections and a feral population. The Ugandan C. canephora diversity was then positioned relative to the species’ global diversity structure. Twenty-two climatic variables were used to explore variations in climatic zones across the sampled forests. Overall, Uganda’s native C. canephora diversity differs from other known genetic groups of this species. In northwestern (NW) Uganda, four distinct genetic clusters were distinguished being from Zoka, Budongo, Itwara and Kibale forests A large southern-central (SC) cluster included Malabigambo, Mabira, and Kalangala forest accessions, as well as feral and cultivated accessions, suggesting similarity in genetic origin and strong gene flow between wild and cultivated compartments. We also confirmed the introduction of Congolese varieties into the SC region where most Robusta coffee production takes place. Identified populations occurred in divergent environmental conditions and 12 environmental variables significantly explained 16.3% of the total allelic variation across populations. The substantial genetic variation within and between Ugandan populations with different climatic envelopes might contain adaptive diversity to cope with climate change. The accessions that we collected have substantially enriched the diversity hosted in the Ugandan collections and thus contribute to ex situ conservation of this vital genetic resource. However, there is an urgent need to develop strategies to enhance complementary in-situ conservation of Coffea canephora in native forests in northwestern Uganda.
Collapse
|
2
|
Merot‐L'anthoene V, Tournebize R, Darracq O, Rattina V, Lepelley M, Bellanger L, Tranchant‐Dubreuil C, Coulée M, Pégard M, Metairon S, Fournier C, Stoffelen P, Janssens SB, Kiwuka C, Musoli P, Sumirat U, Legnaté H, Kambale J, Ferreira da Costa Neto J, Revel C, de Kochko A, Descombes P, Crouzillat D, Poncet V. Development and evaluation of a genome-wide Coffee 8.5K SNP array and its application for high-density genetic mapping and for investigating the origin of Coffea arabica L. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1418-1430. [PMID: 30582651 PMCID: PMC6576098 DOI: 10.1111/pbi.13066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Coffee species such as Coffea canephora P. (Robusta) and C. arabica L. (Arabica) are important cash crops in tropical regions around the world. C. arabica is an allotetraploid (2n = 4x = 44) originating from a hybridization event of the two diploid species C. canephora and C. eugenioides (2n = 2x = 22). Interestingly, these progenitor species harbour a greater level of genetic variability and are an important source of genes to broaden the narrow Arabica genetic base. Here, we describe the development, evaluation and use of a single-nucleotide polymorphism (SNP) array for coffee trees. A total of 8580 unique and informative SNPs were selected from C. canephora and C. arabica sequencing data, with 40% of the SNP located in annotated genes. In particular, this array contains 227 markers associated to 149 genes and traits of agronomic importance. Among these, 7065 SNPs (~82.3%) were scorable and evenly distributed over the genome with a mean distance of 54.4 Kb between markers. With this array, we improved the Robusta high-density genetic map by adding 1307 SNP markers, whereas 945 SNPs were found segregating in the Arabica mapping progeny. A panel of C. canephora accessions was successfully discriminated and over 70% of the SNP markers were transferable across the three species. Furthermore, the canephora-derived subgenome of C. arabica was shown to be more closely related to C. canephora accessions from northern Uganda than to other current populations. These validated SNP markers and high-density genetic maps will be useful to molecular genetics and for innovative approaches in coffee breeding.
Collapse
|
3
|
Sablok G, Pérez-Pulido AJ, Do T, Seong TY, Casimiro-Soriguer CS, La Porta N, Ralph PJ, Squartini A, Muñoz-Merida A, Harikrishna JA. PlantFuncSSR: Integrating First and Next Generation Transcriptomics for Mining of SSR-Functional Domains Markers. FRONTIERS IN PLANT SCIENCE 2016; 7:878. [PMID: 27446111 PMCID: PMC4922199 DOI: 10.3389/fpls.2016.00878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/03/2016] [Indexed: 05/30/2023]
Abstract
Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr.
Collapse
Affiliation(s)
- Gaurav Sablok
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, SydneyNSW, Australia
| | - Antonio J. Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC), Universidad Pablo de OlavideSevilla, Spain
| | - Thac Do
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, SydneyNSW, Australia
| | - Tan Y. Seong
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | | | - Nicola La Porta
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
- MountFOR Project Centre, European Forest InstituteTrento, Italy
- Consiglio Nazionale delle Ricerche, Istituto per la Valorizzazione del Legno e delle Specie ArboreeFlorence, Italy
| | - Peter J. Ralph
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology, SydneyNSW, Australia
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PadovaPadova, Italy
| | - Antonio Muñoz-Merida
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do PortoVila do Conde, Portugal
| | - Jennifer A. Harikrishna
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
4
|
Gomez C, Despinoy M, Hamon S, Hamon P, Salmon D, Akaffou DS, Legnate H, de Kochko A, Mangeas M, Poncet V. Shift in precipitation regime promotes interspecific hybridization of introduced Coffea species. Ecol Evol 2016; 6:3240-55. [PMID: 27096083 PMCID: PMC4829533 DOI: 10.1002/ece3.2055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/06/2022] Open
Abstract
The frequency of plant species introductions has increased in a highly connected world, modifying species distribution patterns to include areas outside their natural ranges. These introductions provide the opportunity to gain new insight into the importance of flowering phenology as a component of adaptation to a new environment. Three Coffea species, C. arabica, C. canephora (Robusta), and C. liberica, native to intertropical Africa have been introduced to New Caledonia. On this archipelago, a secondary contact zone has been characterized where these species coexist, persist, and hybridize spontaneously. We investigated the impact of environmental changes undergone by each species following its introduction in New Caledonia on flowering phenology and overcoming reproductive barriers between sister species. We developed species distribution models and compared both environmental envelopes and climatic niches between native and introduced hybrid zones. Flowering phenology was monitored in a population in the hybrid zone along with temperature and precipitation sequences recorded at a nearby weather station. The extent and nature of hybridization events were characterized using chloroplast and nuclear microsatellite markers. The three Coffea species encountered weak environmental suitability compared to their native ranges when introduced to New Caledonia, especially C. arabica and C. canephora. The niche of the New Caledonia hybrid zone was significantly different from all three species' native niches based on identity tests (I Similarity and D Schoener's Similarity Indexes). This area appeared to exhibit intermediate conditions between the native conditions of the three species for temperature-related variables and divergent conditions for precipitation-related ones. Flowering pattern in these Coffea species was shown to have a strong genetic component that determined the time between the triggering rain and anthesis (flower opening), specific to each species. However, a precipitation regime different from those in Africa was directly involved in generating partial flowering overlap between species and thus in allowing hybridization and interspecific gene flow. Interspecific hybrids accounted for 4% of the mature individuals in the sympatric population and occurred between each pair of species with various level of introgression. Adaptation to new environmental conditions following introduction of Coffea species to New Caledonia has resulted in a secondary contact between three related species, which would not have happened in their native ranges, leading to hybridization and gene flow.
Collapse
Affiliation(s)
- Céline Gomez
- IRDUMR DIADEBP 6450134394Montpellier Cedex 5France
| | - Marc Despinoy
- IRDUMR ESPACE DEV (S140)BP A598848Cedex NouméaNouvelle Calédonie
| | - Serge Hamon
- IRDUMR DIADEBP 6450134394Montpellier Cedex 5France
| | - Perla Hamon
- IRDUMR DIADEBP 6450134394Montpellier Cedex 5France
| | | | | | | | | | - Morgan Mangeas
- IRDUMR ESPACE DEV (S140)BP A598848Cedex NouméaNouvelle Calédonie
| | | |
Collapse
|
5
|
Abstract
The detection and analysis of genetic variation plays an important role in plant breeding and this role is increasing with the continued development of genome sequencing technologies. Molecular genetic markers are important tools to characterize genetic variation and assist with genomic breeding. Processing and storing the growing abundance of molecular marker data being produced requires the development of specific bioinformatics tools and advanced databases. Molecular marker databases range from species specific through to organism wide and often host a variety of additional related genetic, genomic, or phenotypic information. In this chapter, we will present some of the features of plant molecular genetic marker databases, highlight the various types of marker resources, and predict the potential future direction of crop marker databases.
Collapse
|
6
|
Development of genic and genomic SSR markers of robusta coffee (Coffea canephora Pierre Ex A. Froehner). PLoS One 2014; 9:e113661. [PMID: 25461752 PMCID: PMC4252042 DOI: 10.1371/journal.pone.0113661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Coffee breeding and improvement efforts can be greatly facilitated by availability of a large repository of simple sequence repeats (SSRs) based microsatellite markers, which provides efficiency and high-resolution in genetic analyses. This study was aimed to improve SSR availability in coffee by developing new genic−/genomic-SSR markers using in-silico bioinformatics and streptavidin-biotin based enrichment approach, respectively. The expressed sequence tag (EST) based genic microsatellite markers (EST-SSRs) were developed using the publicly available dataset of 13,175 unigene ESTs, which showed a distribution of 1 SSR/3.4 kb of coffee transcriptome. Genomic SSRs, on the other hand, were developed from an SSR-enriched small-insert partial genomic library of robusta coffee. In total, 69 new SSRs (44 EST-SSRs and 25 genomic SSRs) were developed and validated as suitable genetic markers. Diversity analysis of selected coffee genotypes revealed these to be highly informative in terms of allelic diversity and PIC values, and eighteen of these markers (∼27%) could be mapped on a robusta linkage map. Notably, the markers described here also revealed a very high cross-species transferability. In addition to the validated markers, we have also designed primer pairs for 270 putative EST-SSRs, which are expected to provide another ca. 200 useful genetic markers considering the high success rate (88%) of marker conversion of similar pairs tested/validated in this study.
Collapse
|
7
|
Dereeper A, Bocs S, Rouard M, Guignon V, Ravel S, Tranchant-Dubreuil C, Poncet V, Garsmeur O, Lashermes P, Droc G. The coffee genome hub: a resource for coffee genomes. Nucleic Acids Res 2014; 43:D1028-35. [PMID: 25392413 PMCID: PMC4383925 DOI: 10.1093/nar/gku1108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The whole genome sequence of Coffea canephora, the perennial diploid species known as Robusta, has been recently released. In the context of the C. canephora genome sequencing project and to support post-genomics efforts, we developed the Coffee Genome Hub (http://coffee-genome.org/), an integrative genome information system that allows centralized access to genomics and genetics data and analysis tools to facilitate translational and applied research in coffee. We provide the complete genome sequence of C. canephora along with gene structure, gene product information, metabolism, gene families, transcriptomics, syntenic blocks, genetic markers and genetic maps. The hub relies on generic software (e.g. GMOD tools) for easy querying, visualizing and downloading research data. It includes a Genome Browser enhanced by a Community Annotation System, enabling the improvement of automatic gene annotation through an annotation editor. In addition, the hub aims at developing interoperability among other existing South Green tools managing coffee data (phylogenomics resources, SNPs) and/or supporting data analyses with the Galaxy workflow manager.
Collapse
Affiliation(s)
- Alexis Dereeper
- UMR Résistance des Plantes aux Bioagresseurs (RPB), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | - Stéphanie Bocs
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), CIRAD, F-34398 Montpellier, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Sébastien Ravel
- UMR Résistance des Plantes aux Bioagresseurs (RPB), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | - Christine Tranchant-Dubreuil
- UMR Diversité Adaptation et DEveloppement des plantes (DIADE), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | - Valérie Poncet
- UMR Diversité Adaptation et DEveloppement des plantes (DIADE), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | - Olivier Garsmeur
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), CIRAD, F-34398 Montpellier, France
| | - Philippe Lashermes
- UMR Résistance des Plantes aux Bioagresseurs (RPB), Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | - Gaëtan Droc
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), CIRAD, F-34398 Montpellier, France
| |
Collapse
|
8
|
B VS, Muthamilarasan M, Misra G, Prasad M. FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 2013; 8:e71418. [PMID: 23951158 PMCID: PMC3741111 DOI: 10.1371/journal.pone.0071418] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
The prominent attributes of foxtail millet (Setaria italica L.) including its small genome size, short life cycle, inbreeding nature, and phylogenetic proximity to various biofuel crops have made this crop an excellent model system to investigate various aspects of architectural, evolutionary and physiological significances in Panicoid bioenergy grasses. After release of its whole genome sequence, large-scale genomic resources in terms of molecular markers were generated for the improvement of both foxtail millet and its related species. Hence it is now essential to congregate, curate and make available these genomic resources for the benefit of researchers and breeders working towards crop improvement. In view of this, we have constructed the Foxtail millet Marker Database (FmMDb; http://www.nipgr.res.in/foxtail.html), a comprehensive online database for information retrieval, visualization and management of large-scale marker datasets with unrestricted public access. FmMDb is the first database which provides complete marker information to the plant science community attempting to produce elite cultivars of millet and bioenergy grass species, thus addressing global food insecurity.
Collapse
Affiliation(s)
| | | | - Gopal Misra
- National Institute of Plant Genome Research, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
9
|
Razafinarivo NJ, Guyot R, Davis AP, Couturon E, Hamon S, Crouzillat D, Rigoreau M, Dubreuil-Tranchant C, Poncet V, De Kochko A, Rakotomalala JJ, Hamon P. Genetic structure and diversity of coffee (Coffea) across Africa and the Indian Ocean islands revealed using microsatellites. ANNALS OF BOTANY 2013; 111:229-48. [PMID: 23275631 PMCID: PMC3555535 DOI: 10.1093/aob/mcs283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS The coffee genus (Coffea) comprises 124 species, and is indigenous to the Old World Tropics. Due to its immense economic importance, Coffea has been the focus of numerous genetic diversity studies, but despite this effort it remains insufficiently studied. In this study the genetic diversity and genetic structure of Coffea across Africa and the Indian Ocean islands is investigated. METHODS Genetic data were produced using 13 polymorphic nuclear microsatellite markers (simple sequence repeats, SSRs), including seven expressed sequence tag-SSRs, and the data were analysed using model- and non-model-based methods. The study includes a total of 728 individuals from 60 species. KEY RESULTS Across Africa and the Indian Ocean islands Coffea comprises a closely related group of species with an overall pattern of genotypes running from west to east. Genetic structure was identified in accordance with pre-determined geographical regions and phylogenetic groups. There is a good relationship between morpho-taxonomic species delimitations and genetic units. Genetic diversity in African and Indian Ocean Coffea is high in terms of number of alleles detected, and Madagascar appears to represent a place of significant diversification in terms of allelic richness and species diversity. CONCLUSIONS Cross-species SSR transferability in African and Indian Ocean islands Coffea was very efficient. On the basis of the number of private alleles, diversification in East Africa and the Indian Ocean islands appears to be more recent than in West and West-Central Africa, although this general trend is complicated in Africa by the position of species belonging to lineages connecting the main geographical regions. The general pattern of phylogeography is not in agreement with an overall east to west (Mascarene, Madagascar, East Africa, West Africa) increase in genome size, the high proportion of shared alleles between the four regions or the high numbers of exclusive shared alleles between pairs or triplets of regions.
Collapse
|
10
|
Cui X, Wang Q, Yin W, Xu H, Wilson ZA, Wei C, Pan S, Zhang D. PMRD: a curated database for genes and mutants involved in plant male reproduction. BMC PLANT BIOLOGY 2012; 12:215. [PMID: 23153247 PMCID: PMC3607949 DOI: 10.1186/1471-2229-12-215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 11/07/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Male reproduction is an essential biological event in the plant life cycle separating the diploid sporophyte and haploid gametophyte generations, which involves expression of approximately 20,000 genes. The control of male reproduction is also of economic importance for plant breeding and hybrid seed production. With the advent of forward and reverse genetics and genomic technologies, a large number of male reproduction-related genes have been identified. Thus it is extremely challenging for individual researchers to systematically collect, and continually update, all the available information on genes and mutants related to plant male reproduction. The aim of this study is to manually curate such gene and mutant information and provide a web-accessible resource to facilitate the effective study of plant male reproduction. DESCRIPTION Plant Male Reproduction Database (PMRD) is a comprehensive resource for browsing and retrieving knowledge on genes and mutants related to plant male reproduction. It is based upon literature and biological databases and includes 506 male sterile genes and 484 mutants with defects of male reproduction from a variety of plant species. Based on Gene Ontology (GO) annotations and literature, information relating to a further 3697 male reproduction related genes were systematically collected and included, and using in text curation, gene expression and phenotypic information were captured from the literature. PMRD provides a web interface which allows users to easily access the curated annotations and genomic information, including full names, symbols, locations, sequences, expression patterns, functions of genes, mutant phenotypes, male sterile categories, and corresponding publications. PMRD also provides mini tools to search and browse expression patterns of genes in microarray datasets, run BLAST searches, convert gene ID and generate gene networks. In addition, a Mediawiki engine and a forum have been integrated within the database, allowing users to share their knowledge, make comments and discuss topics. CONCLUSION PMRD provides an integrated link between genetic studies and the rapidly growing genomic information. As such this database provides a global view of plant male reproduction and thus aids advances in this important area.
Collapse
Affiliation(s)
- Xiao Cui
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiudao Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wenzhe Yin
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huayong Xu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, Nottingham, LE12 5RD, UK
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shenyuan Pan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
11
|
Guyot R, Lefebvre-Pautigny F, Tranchant-Dubreuil C, Rigoreau M, Hamon P, Leroy T, Hamon S, Poncet V, Crouzillat D, de Kochko A. Ancestral synteny shared between distantly-related plant species from the asterid (Coffea canephora and Solanum Sp.) and rosid (Vitis vinifera) clades. BMC Genomics 2012; 13:103. [PMID: 22433423 PMCID: PMC3372433 DOI: 10.1186/1471-2164-13-103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. RESULTS Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. CONCLUSIONS These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain divergences. Our results are considerably useful for syntenic studies between supposedly remote species for the isolation of important genes for agronomy.
Collapse
Affiliation(s)
- Romain Guyot
- UMR DIADE, Evolution et Dynamique des Génomes, Institut de Recherche pour le Développement (IRD), BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nowak MD, Davis AP, Anthony F, Yoder AD. Expression and trans-specific polymorphism of self-incompatibility RNases in coffea (Rubiaceae). PLoS One 2011; 6:e21019. [PMID: 21731641 PMCID: PMC3120821 DOI: 10.1371/journal.pone.0021019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/17/2011] [Indexed: 12/20/2022] Open
Abstract
Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.
Collapse
Affiliation(s)
- Michael D Nowak
- Department of Biology, Duke University, Durham, North Carolina, United States of America.
| | | | | | | |
Collapse
|