1
|
Feliu C, Peyret H, Brassart-Pasco S, Oszust F, Poitevin G, Nguyen P, Millart H, Djerada Z. Ticagrelor Prevents Endothelial Cell Apoptosis through the Adenosine Signalling Pathway in the Early Stages of Hypoxia. Biomolecules 2020; 10:biom10050740. [PMID: 32397519 PMCID: PMC7277469 DOI: 10.3390/biom10050740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Several studies have reported the beneficial effects of anti-platelet drugs in cardioprotection against ischaemia-reperfusion injuries. To date, no studies have focused on the indirect cytoprotective effects of ticagrelor via adenosine receptor on the endothelium. METHOD By evaluating cell viability and cleaved caspase 3 expression, we validated a model of endothelial cell apoptosis induced by hypoxia. In hypoxic endothelial cells treated with ticagrelor, we quantified the extracellular concentration of adenosine, and then we studied the involvement of adenosine pathways in the cytoprotective effect of ticagrelor. RESULTS Our results showed that 10 µM ticagrelor induced an anti-apoptotic effect in our model associated with an increase of extracellular adenosine concentration. Similar experiments were conducted with cangrelor but did not demonstrate an anti-apoptotic effect. We also found that A2B and A3 adenosine receptors were involved in the anti-apoptotic effect of ticagrelor in endothelial cells exposed to 2 h of hypoxia stress. CONCLUSION we described an endothelial cytoprotective mechanism of ticagrelor against hypoxia stress, independent of blood elements. We highlighted a mechanism triggered mainly by the increased extracellular bioavailability of adenosine, which activates A2B and A3 receptors on the endothelium.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Hélène Peyret
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Sylvie Brassart-Pasco
- UMR CNRS/URCA 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Reims University Hospital, SFR CAP-santé, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France;
| | - Floriane Oszust
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Gaël Poitevin
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (G.P.); (P.N.)
| | - Philippe Nguyen
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (G.P.); (P.N.)
| | - Hervé Millart
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
| | - Zoubir Djerada
- Department of Pharmacology, Hémostase et Remodelage Vasculaire post-Ischémie (HERVI) E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France; (C.F.); (H.P.); (F.O.); (H.M.)
- Correspondence: ; Tel.: +33-3-26-83-27-82; Fax: +33-3-26-78-84-56
| |
Collapse
|
2
|
Villalpando DM, Gómez Rivas J, Flynn D, R de Bethencourt F, Ferrer M. Gonadal function protects against organ culture-induced vascular damage. Involvement of prostanoids. Prostaglandins Other Lipid Mediat 2020; 148:106406. [PMID: 31945460 DOI: 10.1016/j.prostaglandins.2019.106406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 02/03/2023]
Abstract
Androgen deprivation induces vascular dysfunction in which altered release and action of prostanoids has been extensively studied. On the other hand, the vascular organ-culture system has been reported as a valid model for phenotypic changes that occur in several cardiovascular pathologies. Since there are no studies analyzing the impact of androgenic loss on vascular vulnerability during induced vascular damage, the objective of this study was to analyze the possible preventive role of male sex hormones on the organ culture-induced vascular damage in rat aorta. The link to possible changes in gross structure was also analyzed. For this purpose, fresh and 20 h-cultured aortic arterial segments from intact and orchidectomized rats were used to analyze: (i) the release and vasomotor effect of the thromboxane A2 (TXA2), prostaglandin (PG) E2, PGF2α and PGI2; (ii) the vasodilator response induced by acetylcholine (ACh) as well as the involvement of prostanoids, in particular TXA2, in the ACh-induced response; (iii) the effect of activation of thromboxane/prostaglandin (TP) receptors on the ACh-induced response; and (iv) the vascular structure. The results showed that organ culture: i) increased production of prostanoids; ii) increased prostanoids-induced vasomotor responses; iii) decreased ACh-induced relaxation after incubation with indomethacin, a blocker of cyclooxygenases; iv) increased the ACh-induced relaxation after incubation with the TXA2 synthase inhibitor, furegrelate, more in arteries from orchidectomized rats than in those of intact rats; v) diminished ACh-induced relaxation after U-46619 incubation only in arteries from orchidectomized rats; and vi) preserved the integrity of the different vascular layers. These results showed the protective role of male sex hormones against the induced vascular damage, since a decreased deleterious effect of prostanoids, in particular that of TXA2, was observed in arteries from rats with intact gonadal function.
Collapse
Affiliation(s)
| | - Juan Gómez Rivas
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Spain
| | - Daniel Flynn
- Departamento de Fisiología, Facultad de Medicina, UAM, Spain
| | - Fermín R de Bethencourt
- Servicio de Urología, Hospital Universitario La Paz, Madrid, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, UAM, Spain; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ) Madrid, Spain.
| |
Collapse
|
3
|
Feliu C, Peyret H, Poitevin G, Cazaubon Y, Oszust F, Nguyen P, Millart H, Djerada Z. Complementary Role of P2 and Adenosine Receptors in ATP Induced-Anti-Apoptotic Effects Against Hypoxic Injury of HUVECs. Int J Mol Sci 2019; 20:ijms20061446. [PMID: 30909368 PMCID: PMC6470483 DOI: 10.3390/ijms20061446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. METHODS In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. RESULTS Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. CONCLUSIONS These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Hélène Peyret
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Gael Poitevin
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Yoann Cazaubon
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Floriane Oszust
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Philippe Nguyen
- Laboratory of Hematology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Hervé Millart
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| | - Zoubir Djerada
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims CEDEX, France.
| |
Collapse
|
4
|
Ando M, Matsumoto T, Taguchi K, Kobayashi T. Poly (I:C) impairs NO donor-induced relaxation by overexposure to NO via the NF-kappa B/iNOS pathway in rat superior mesenteric arteries. Free Radic Biol Med 2017; 112:553-566. [PMID: 28870522 DOI: 10.1016/j.freeradbiomed.2017.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Recent studies have suggested a link between vascular dysfunction and innate immune activation including toll-like receptors (TLRs), but the detailed mechanism remains unclear. Here we investigated whether poly (I:C) [a synthetic double-strand RNA recognized by TLR3, melanoma differentiation-associated gene 5 (MDA5), and retinoic acid-inducible gene I (RIG-I)] affected nitric oxide (NO)/cGMP-related vascular relaxation, one of the major cascades of relaxation, in rat superior mesenteric arteries. Using organ-cultured arteries, we found that poly (I:C) (30μg/mL for approximately 1 day) markedly reduced sodium nitroprusside (SNP)-induced relaxation (vs. vehicle); this was prevented by co-treatment with a TLR3 inhibitor. Relaxation induced by 8-Br cGMP (a phosphodiesterase (PDE)-resistant cGMP analogue) and the expression of proteins related to NO/cGMP signaling did not differ between vehicle- and poly (I:C)-treated groups. When PDEs were inhibited by IBMX (a nonselective PDE inhibitor), the SNP-induced relaxation was still greatly reduced in poly (I:C)-treated arteries (vs. vehicle). Poly (I:C) reduced SNP-stimulated cGMP production, but increased NO production and iNOS expression (vs. vehicle). The impairment of SNP-induced relaxation by poly (I:C) was prevented by co-treatment with either iNOS or a nuclear factor-kappa B (NF-κB) inhibitor. This effect induced by poly (I:C) appeared to be independent of oxidative stress. The SNP-induced relaxation was reduced in freshly isolated arteries by pre-incubation with SNP in a concentration-dependent manner. Poly (I:C) did not alter protein levels of TLR3, TRIF/TICAM-1, or phospho-IRF3/IRF3, whereas RIG-I and MDA5 were significantly upregulated (vs. vehicle). These results suggest that poly (I:C) impairs NO donor-induced relaxation in rat superior mesenteric arteries via overexposure to NO produced by the NF-κB/iNOS pathway.
Collapse
Affiliation(s)
- Makoto Ando
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
5
|
Jiang J, Gan Z, Li Y, Zhao W, Li H, Zheng JP, Ke Y. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine. PLoS One 2017; 12:e0182746. [PMID: 28809932 PMCID: PMC5557538 DOI: 10.1371/journal.pone.0182746] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/23/2017] [Indexed: 11/18/2022] Open
Abstract
Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.
Collapse
Affiliation(s)
- Jiaye Jiang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zhongyuan Gan
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yuan Li
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Wenqi Zhao
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Hanqing Li
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jian-Pu Zheng
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- * E-mail: (YK); (JPZ)
| | - Yan Ke
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- * E-mail: (YK); (JPZ)
| |
Collapse
|
6
|
Outzen EM, Zaki M, Mehryar R, Abdolalizadeh B, Sajid W, Boonen HCM, Sams A, Sheykhzade M. Lipopolysaccharides, but not Angiotensin ll, lnduces Direct Pro-lnflammatory Effects in Cultured Mouse Arteries and Human Endothelial and Vascular Smooth Muscle Cells. Basic Clin Pharmacol Toxicol 2017; 120:335-347. [DOI: 10.1111/bcpt.12697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Emilie M. Outzen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Marina Zaki
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Rahila Mehryar
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Bahareh Abdolalizadeh
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Waseem Sajid
- Department of Diabetes Complications Biology; Novo Nordisk A/S; Maaloev Denmark
| | - Harrie C. M. Boonen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Anette Sams
- Department of Diabetes Complications Biology; Novo Nordisk A/S; Maaloev Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
7
|
Chen G, Wang JJ, Xu CB, Cao L, Lin J, Qing XP, Liu SY, Liu EQ, Li J. Minimally Modified LDL-Induced Impairment of Endothelium-Dependent Relaxation in Small Mesenteric Arteries of Mice. J Vasc Res 2016; 53:58-71. [DOI: 10.1159/000447011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
|
8
|
Jiang J, Zheng JP, Li Y, Gan Z, Jiang Y, Huang D, Li H, Liu Z, Ke Y. Differential contribution of endothelium-derived relaxing factors to vascular reactivity in conduit and resistance arteries from normotensive and hypertensive rats. Clin Exp Hypertens 2016; 38:393-8. [PMID: 27159544 DOI: 10.3109/10641963.2016.1148155] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium contributes to the maintenance of vasodilator tone by releasing nitric oxide (NO), prostacyclin (PGI2), and endothelium-derived hyperpolarizing factor (EDHF). In hypertension, endothelium-dependent relaxation is attenuated (a phenomenon referred to as endothelial dysfunction) and contributes to the increased peripheral resistance. However, which vasodilator among NO, PGI2, and EDHF is impaired in hypertension remains largely unknown. The present study was designed to study the exact contribution of NO, PGI2, and EDHF to vascular reactivity in conduit and resistance artery, under physiological and pathological conditions. The aorta and the second-order mesenteric artery from spontaneous hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were used to measure the vasorelaxation with myograph technology, in the presence or absence of different inhibitors. The results showed that the endothelium-dependent vasodilatation in the conduit artery was mediated mainly by NO, whereas the resistant artery by NO, PGI2, and EDHF together. In hypertension, both NO-mediated relaxation in the conduit artery and NO-, PGI2-, and EDHF-mediated dilation in the resistant artery were markedly impaired. Furthermore, the endothelium-dependent and the endothelium-independent vasorelaxation in conduit artery was attenuated more pronouncedly than that in the resistant artery from hypertensive rats, suggesting that the conduit artery is more vulnerable to hypertensive condition. In conclusion, vasodilators including NO, PGI2, and EDHF contribute distinctively to endothelium-dependent relaxation in conduit and resistance artery under physiological and pathological conditions.
Collapse
Affiliation(s)
- Jiaye Jiang
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Jian-Pu Zheng
- b Department of Cardiology, Putuo Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China.,c Central Laboratory, Putuo Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yuan Li
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Zhongyuan Gan
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yongbo Jiang
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Dan Huang
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Hanqing Li
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Zongjun Liu
- b Department of Cardiology, Putuo Hospital , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yan Ke
- a Experimental Center for Teaching and Learning , Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
9
|
Potentiated adrenomedullin-induced vasorelaxation during hypoxia in organ cultured porcine coronary arteries. J Cardiovasc Pharmacol 2014; 63:58-67. [PMID: 24084221 DOI: 10.1097/fjc.0000000000000025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study describes the effect of variable oxygen supply on relaxing responses induced by α-calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) on isolated pig coronary arteries in vitro. Organ culture during normoxia (21% of O₂) and hypoxia (5% of O₂) induced a significant leftward shift of the AM concentration-response curves compared with fresh vessels altering the pEC₅₀ values from 6.9 ± 0.04 to 8.0 ± 0.04, whereas the potency (pEC₅₀) of αCGRP was attenuated from 8.8 ± 0.04 to 7.6 ± 0.04. AM₂₂₋₅₂ exerted significant antagonistic effect on AM-induced vasorelaxation in hypoxic and normoxic conditions (apparent pK(B) = 6.8-7.2), whereas no antagonistic effect was observed in fresh and hyperoxic (95%) organ cultured vessels. The antagonistic effect exerted by αCGRP₈₋₃₇ (10⁻⁶·⁵-10⁻⁵·⁵ M) on αCGRP-induced vasodilatation in fresh vessels (derived from Schild plot pA₂ = 7.4 ± 0.1) was unaltered during organ culture. The antagonistic effect exerted by αCGRP₈₋₃₇ (10⁻⁶ M) on AM-induced vasorelaxation in fresh vessels (apparent pK(B) = 7.4 ± 0.1) was absent during hypoxic organ culture. The receptor activity-modifying proteins 1 (RAMP1)/calcitonin-like receptor (CLR) messenger RNA ratio was reduced and RAMP2/CLR messenger RNA ratio was increased during hypoxic and normoxic organ culture compared with fresh vessels. Hypoxic organ culture for 24-72 hours potentiated the AM-induced vasorelaxation through an AM₂₂₋₅₂-sensitive receptor but attenuated the vasorelaxant effect of CGRP through the CGRP receptors. This could possibly be explained by relatively decreased levels of RAMP1, thus favoring RAMP2 + CLR complex (=AM receptor) formation during hypoxic organ culture.
Collapse
|
10
|
Investigating the protective role of death receptor 3 (DR3) in renal injury using an organ culture model. Methods Mol Biol 2014; 1155:69-79. [PMID: 24788174 DOI: 10.1007/978-1-4939-0669-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Death receptor 3 (DR3; also designated as Wsl-1, Apo3, LARD, TRAMP, TNFRSF25, and TR3) is a member of the tumor necrosis factor (TNF) receptor superfamily that has emerged as a major regulator of inflammation and autoimmune diseases. DR3 contains a homologous intracellular region called the death domain (DD) that can bind adaptor proteins, which also contain a DD, initiating cellular responses such as caspase activation and apoptotic cell death. However, in other circumstances DR3 can initiate induction of transcription genes and gene products that can prevent cell death from occurring. Our laboratory has reported an inducible expression of DR3 in human and mouse tubular epithelial cells in renal injury, but its function in these setting still remains unclear. To directly manipulate and evaluate the role of DR3 in vivo, I have used an in vitro organ culture (OC) model, which I have developed in our laboratory. In this chapter, I will describe in detail the OC model used to study the role of DR3 in renal injury and discuss its advantages and limitations. In my hands, the OC model has proven to be an efficient tool for studying human cell heterogeneity, basal and regulated receptor expression, signalling pathways, and various biological responses not readily achievable in traditional cell culture models. Various assays can be carried out on organ cultures including histology, biochemistry, cell biology, and molecular biology, which will not be described in detail in this chapter.
Collapse
|
11
|
Zhang Y, Zhang W, Edvinsson L, Xu CB. Apolipoprotein B of low-density lipoprotein impairs nitric oxide-mediated endothelium-dependent relaxation in rat mesenteric arteries. Eur J Pharmacol 2014; 725:10-7. [DOI: 10.1016/j.ejphar.2014.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
12
|
Zheng JP, Zhang X, Wang H, Wang Y, Cheng Z, Yin P, Peng W. Vasomotor Dysfunction in the Mesenteric Artery after Organ Culture with Cyclosporin A. Basic Clin Pharmacol Toxicol 2013; 113:370-6. [PMID: 23809336 DOI: 10.1111/bcpt.12105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Jian-Pu Zheng
- Experimental Research Center; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Xuemei Zhang
- Department of Pharmacology; School of Pharmacy; Fudan University; Shanghai China
| | - Hao Wang
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Yunman Wang
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Zhuoan Cheng
- Experimental Research Center; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Peihao Yin
- Department of General Surgery; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| | - Wen Peng
- Department of Nephrology; Putuo Hospital; Shanghai University of Traditional Chinese Medicine; Shanghai China
| |
Collapse
|
13
|
Lei Y, Cao Y, Zhang Y, Edvinsson L, Xu CB. Enhanced airway smooth muscle cell thromboxane receptor signaling via activation of JNK MAPK and extracellular calcium influx. Eur J Pharmacol 2010; 650:629-38. [PMID: 21036122 DOI: 10.1016/j.ejphar.2010.10.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 10/14/2010] [Accepted: 10/15/2010] [Indexed: 12/22/2022]
Abstract
Thromboxane is a key inflammatory mediator and potent airway constrictor. It acts on thromboxane A(2) (TP) receptors and contributes to airway inflammation and airway hyperresponsiveness that is the characteristic feature of asthma. The present study was designed to study TP receptor signaling in airway smooth muscle cells by using an organ culture model and a set of selective pharmacological inhibitors for mitogen-activated protein kinase (MAPK) and calcium signal pathways. Western-blot, immunohistochemistry, myograph and a selective TP receptor agonist U46619 were used for examining TP receptor signal proteins and function. Organ culture of rat bronchial segments for up to 48 h induces a time-dependently increased airway contractile response to U46619. This indicates that organ culture increases TP receptor signaling in the airway smooth muscle cells. The enhanced bronchial contraction was attenuated by the inhibition of c-Jun N-terminal kinase (JNK) MAPK activity, chelation of extracellular calcium and calcium channel blocker nifedipine, suggesting that JNK MAPK activity and elevated intracellular calcium level are required for the TP receptor signaling. In conclusion, airway smooth muscle cell TP receptor signaling occurs via JNK MAPK activity and the elevation of extracellular calcium influx, which may provide knowledge for understanding the signaling pathway responsible for the modulation of TP receptor mediated airway hyperresponsiveness to thromboxane.
Collapse
Affiliation(s)
- Ying Lei
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
14
|
Up-regulation of bradykinin receptors in rat bronchia via IκB kinase-mediated inflammatory signaling pathway. Eur J Pharmacol 2010; 634:149-61. [DOI: 10.1016/j.ejphar.2010.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 01/26/2010] [Accepted: 02/13/2010] [Indexed: 11/19/2022]
|
15
|
Dimethylsulfoxide-soluble smoking particles and nicotine affect vascular contractibility. Arch Pharm Res 2009; 32:1475-81. [DOI: 10.1007/s12272-009-2019-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
|
16
|
Zheng JP, Ju D, Shen J, Yang M, Li L. Disruption of actin cytoskeleton mediates loss of tensile stress induced early phenotypic modulation of vascular smooth muscle cells in organ culture. Exp Mol Pathol 2009; 88:52-7. [PMID: 19874818 DOI: 10.1016/j.yexmp.2009.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/19/2009] [Indexed: 12/29/2022]
Abstract
Aorta organ culture has been widely used as an ex vivo model for studying vessel pathophysiology. Recent studies show that the vascular smooth muscle cells (VSMCs) in organ culture undergo drastic dedifferentiation within the first few hours (termed early phenotypic modulation). Loss of tensile stress to which aorta is subject in vivo is the cause of this early phenotypic modulation. However, no underlying molecular mechanism has been discovered thus far. The purpose of the present study is to identify intracellular signals involved in the early phenotypic modulation of VSMC in organ culture. We find that the drastic VSMC dedifferentiation is accompanied by accelerated actin cytoskeleton dynamics and downregulation of SRF and myocardin. Among the variety of signal pathways examined, increasing actin polymerization by jasplakinolide is the only one hindering VSMC dedifferentiation in organ culture. Moreover, jasplakinolide reverses actin dynamics during organ culture. Latrunculin B (disrupting actin cytoskeleton) and jasplakinolide respectively suppressed and enhanced the expression of VSMC markers, SRF, myocardin, and CArG-box-mediated SMC promoters in PAC1, a VSMC line. These results identify actin cytoskeleton degradation as a major intracellular signal for loss of tensile stress-induced early phenotypic modulation of VSMC in organ culture. This study suggests that disrupting actin cytoskeleton integrity may contribute to the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Jian-Pu Zheng
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
17
|
Schytz HW, Wienecke T, Oturai PS, Olesen J, Ashina M. The cholinomimetic agent carbachol induces headache in healthy subjects. Cephalalgia 2009; 29:258-68. [PMID: 19143771 DOI: 10.1111/j.1468-2982.2008.01715.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The parasympathetic nervous system is likely to be involved in migraine pathogenesis. We hypothesized that the cholinomimetic agonist carbachol would induce headache and vasodilation of cephalic and radial arteries. Carbachol (3 microg/kg) or placebo was randomly infused into 12 healthy subjects in a double-blind crossover study. Headache was scored on a verbal rating scale from 0-10. Velocity in the middle cerebral artery (V(MCA)) and diameter of the superficial temporal artery (STA) and radial artery (RA) were recorded. Nine participants developed headache after carbachol compared with three after placebo. The area under the curve for headache was increased after carbachol compared with placebo both during infusion (0-30 min) (P = 0.042) and in the postinfusion period (30-90 min) (P = 0.027). Carbachol infusion caused a drop in V(MCA) (P = 0.003) and an increase in STA diameter (P = 0.006), but no increase in the RA diameter (P = 0.200). In conclusion, the study demonstrated that carbachol caused headache and dilation of cephalic arteries in healthy subjects.
Collapse
Affiliation(s)
- H W Schytz
- Danish Headache Centre, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark.
| | | | | | | | | |
Collapse
|
18
|
Edvinsson ML, Andersson SE, Xu CB, Edvinsson L. Cigarette smoking leads to reduced relaxant responses of the cutaneous microcirculation. Vasc Health Risk Manag 2008; 4:699-704. [PMID: 18827920 PMCID: PMC2515430 DOI: 10.2147/vhrm.s2285] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Smoking is a major risk factor for cardiovascular disease. The present study was undertaken to examine if cigarette smoking translates into reduced relaxant responses of the peripheral microcirculation. Methods The cutaneous forearm blood flow was measured by laser Doppler flowmetry. The vasodilator response to the iontophorectic administration of acetylcholine (ACh), acting via an endothelial mechanism, and sodium nitroprusside (SNP), and acting via a smooth muscle mechanism were studied. The study population consisted of 17 nonsmokers and 17 current smokers (mean age 64 ± 2 years, 13 females and 4 males) in each matched group. Results There was no difference between the groups in baseline characteristics or in basal flow. Smokers showed however significantly reduced responses to both ACh (mean ± SEM, from 973 ± 137% in nonsmokers to 651 ± 114% in smokers, p < 0.05) and SNP (from 575 ± 111% in nonsmokers to 355 ± 83% in smokers, p < 0.05). The response to the local heating (44 °C) was reduced in smokers (from 1188 ± 215% in nonsmokers to 714 ± 107% in smokers, p < 0.01). In addition, there was no difference between men and women within the groups. Conclusions The data show that cigarette smoking results in reduced peripheral microvascular responses to both endothelial and smooth muscle cell stimulation in healthy subjects, suggesting a generalized microvascular vasomotor function.
Collapse
Affiliation(s)
- Marie-Louise Edvinsson
- Department of Emergency Medicine, Institute of Clinical Sciences in Lund, University Hospital of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
19
|
Nilsson D, Wackenfors A, Gustafsson L, Ugander M, Ingemansson R, Edvinsson L, Malmsjö M. PKC and MAPK signalling pathways regulate vascular endothelin receptor expression. Eur J Pharmacol 2008; 580:190-200. [DOI: 10.1016/j.ejphar.2007.10.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 01/24/2023]
|
20
|
Endothelin receptor-mediated vasodilatation: Effects of organ culture. Eur J Pharmacol 2008; 579:233-40. [DOI: 10.1016/j.ejphar.2007.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/08/2007] [Accepted: 09/25/2007] [Indexed: 11/18/2022]
|
21
|
Tummala S, Hill BJF. The enhanced endothelin-1-induced contraction in cultured coronary arteries from mature female pigs is not antagonized by 17beta-estradiol. Vascul Pharmacol 2006; 46:346-52. [PMID: 17240201 PMCID: PMC1924796 DOI: 10.1016/j.vph.2006.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/14/2006] [Accepted: 12/01/2006] [Indexed: 11/16/2022]
Abstract
We have previously reported that organ cultured coronary arteries from market-age pigs (6-9 months of age) exhibit an enhanced contraction to the atherosclerotic-associated peptide, endothelin-1 (ET-1). The objective of this study was to investigate the interaction of 17beta-estradiol with ET-1 in organ cultured coronary arteries from older female pigs (3-4 years old). A cumulative concentration-response relationship (1 x 10(-9) M to 3 x 10(-7) M) was generated to ET-1, and the isometric tension measured in fresh and organ cultured (4 days at 37 degrees C) arterial rings that were each pre-incubated for 50 min in different concentrations (1 x 10(-9) M to 1 x 10(-5) M) of 17beta-estradiol. Compared to freshly used arteries, culturing induced a 2-fold increase in tension development to ET-1 (3 x 10(-7) M). Although 17beta-estradiol previously relaxed pre-constricted (with a 60 mM KCl solution) arteries, it did not affect the constrictive response to ET-1. Also, using an ET-1 ELISA we found that 17beta-estradiol did not effect ET-1 production in intact arteries. Our results indicate that 17beta-estradiol does not attenuate the production and constrictive properties of ET-1 in coronary arteries demonstrating a dedifferentiated cell phenotype.
Collapse
Affiliation(s)
- Saigiridhar Tummala
- Department of Biology, University of Central Arkansas, 201 Donaghey Avenue, Conway, AR 72035, USA
| | | |
Collapse
|
22
|
Granström BW, Xu CB, Nilsson E, Vikman P, Edvinsson L. Smoking particles enhance endothelin A and endothelin B receptor-mediated contractions by enhancing translation in rat bronchi. BMC Pulm Med 2006; 6:6. [PMID: 16539723 PMCID: PMC1448182 DOI: 10.1186/1471-2466-6-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 03/15/2006] [Indexed: 12/11/2022] Open
Abstract
Background Smoking is known to cause chronic inflammatory changes in the bronchi and to contribute to airway hyper-reactivity, such as in bronchial asthma. To study the effect of smoking on the endothelin system in rat airways, bronchial segments were exposed to DMSO-soluble smoking particles (DSP) from cigarette smoke, to nicotine and to DMSO, respectively. Methods Isolated rat bronchial segments were cultured for 24 hours in the presence or absence of DSP, nicotine or DMSO alone. Contractile responses to sarafotoxin 6c (a selective agonist for ETB receptors) and endothelin-1 (an ETA and ETB receptor agonist) were studied by use of a sensitive myograph. Before ET-1 was introduced, the ETB receptors were desensitized by use of S6c. The remaining contractility observed was considered to be the result of selective activation of the ETA receptors. ETA and ETB receptor mRNA expression was analyzed using real-time quantitative PCR. The location and concentration of ETA and ETB receptors were studied by means of immunohistochemistry together with confocal microscopy after overnight incubation with selective antibodies. Results After being cultured together with DSP for 24 hours the bronchial segments showed an increased contractility mediated by ETA and ETB receptors, whereas culturing them together with nicotine did not affect their contractility. The up-regulation of their contractility was blunted by cycloheximide treatment, a translational inhibitor. No significant change in the expression of ETA and ETB receptor mRNA through exposure to DMSO or to nicotine exposure alone occurred, although immunohistochemistry revealed a clear increase in ETA and ETB receptors in the smooth muscle after incubation in the presence of DSP. Taken as a whole, this is seen as the presence of a translation mechanism. Conclusion The increased contractility of rat bronchi when exposed to DSP appears to be due to a translation mechanism.
Collapse
Affiliation(s)
- Bengt W Granström
- Department of Medicine, Clinical sciences, Lund, Lund University, Sweden
| | - Cang-Bao Xu
- Department of Medicine, Clinical sciences, Lund, Lund University, Sweden
| | - Elisabeth Nilsson
- Department of Medicine, Clinical sciences, Lund, Lund University, Sweden
| | - Petter Vikman
- Department of Medicine, Clinical sciences, Lund, Lund University, Sweden
| | - Lars Edvinsson
- Department of Medicine, Clinical sciences, Lund, Lund University, Sweden
| |
Collapse
|
23
|
Zhang JY, Cao YX, Xu CB, Edvinsson L. Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man. BMC Cardiovasc Disord 2006; 6:3. [PMID: 16423279 PMCID: PMC1388236 DOI: 10.1186/1471-2261-6-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 01/19/2006] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Cigarette smoking is a strong risk factor for vascular disease and known to cause dysfunction of the endothelium. However, the molecular mechanisms involved are still not fully understood. METHODS In order to reveal the direct effects of lipid-soluble smoke particles on the endothelium, ring segments isolated from rat mesenteric arteries and human middle cerebral arteries (MCA) obtained at autopsy were incubated for 6 to 48 hrs in the presence of dimethylsulphoxide (DMSO)-soluble particles from cigarette smoke (DSP), i.e. lipid-soluble smoke particles. The endothelial microstructure was examined by transmission electron microscopy. The endothelial function was evaluated by acetylcholine (ACh)-induced endothelium-dependent vasodilatation, using a sensitive myograph. RESULTS After DSP treatment, the arterial endothelium was swollen and loosing its attachment. In functional tests, the total ACh-induced dilatation, the nitric oxide (NO)-mediated and the endothelium-derived hyperpolarization factor (EDHF)-mediated dilatations were significantly decreased by DSP in a time- and concentration-dependent manner (p < 0.05). Nicotine, an important compound in cigarette smoke had, in an equivalent concentration as in DSP, no such effects (p > 0.05). Similar results were obtained in the human MCA. CONCLUSION Thus, we demonstrate that the lipid-soluble smoke particles, but not nicotine, caused damage to arterial endothelium and reduced the endothelium-dependent dilatation in man and rat.
Collapse
Affiliation(s)
- Jin-Yan Zhang
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, P. R. China
| | - Yong-Xiao Cao
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, P. R. China
| | - Cang-Bao Xu
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, P. R. China
- Division of Experimental Vascular Research, Institute of Clinical Science, Lund University, SE-22184, Sweden
| | - Lars Edvinsson
- Department of Pharmacology, Xi'an Jiaotong University School of Medicine, and Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi 710061, P. R. China
- Division of Experimental Vascular Research, Institute of Clinical Science, Lund University, SE-22184, Sweden
| |
Collapse
|
24
|
Cao YX, Xu CB, Luo GG, Edvinsson L. Up-Regulation of alpha1A-Adrenoceptors in Rat Mesenteric Artery Involves Intracellular Signal Pathways. Basic Clin Pharmacol Toxicol 2006; 98:61-7. [PMID: 16433893 DOI: 10.1111/j.1742-7843.2006.pto_240.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to investigate if there is an altered expression of alpha-adrenoceptors during organ culture of rat mesenteric artery segments by using a sensitive pharmacological method and molecular biological techniques. Noradrenalin (NA) induced contraction via alpha1-adrenoceptors. The contraction and alpha1A-adrenoceptor mRNA levels were elevated during organ culture. Transcriptional inhibitor actinomycin D, translational inhibitor cycloheximide, protein kinase C inhibitors (staurosporine and RO31-8220) and mitogen-activated protein kinase (MAPK) pathway inhibitors (SB386023, U0126 and SB239063) prevented the increase in NA-induced contractions. The amount of alpha1A-adrenoceptor mRNA was significantly lower in the artery segments cultured for 1 day in the presence of specific MAPK extracellular signal-regulated protein kinase1/2 pathway inhibitor SB386023 than that of the cultured controls. SB386023 did not affect alpha2-adrenoceptor mRNA level. Our results suggest that the up-regulation of alpha1A-adrenoceptors involves transcription and intracellular signal transduction via the protein kinase C and the ERK 1/2 pathways.
Collapse
Affiliation(s)
- Yong-Xiao Cao
- Division of Experimental Vascular Research, Institution of Medicine, Lund University, Sweden
| | | | | | | |
Collapse
|
25
|
Cao YX, Zheng JP, He JY, Li J, Xu CB, Edvinsson L. Induces vasodilatation of rat mesenteric arteryin vitro mainly by inhibiting receptor-mediated Ca2+-influx and Ca2+-release. Arch Pharm Res 2005; 28:709-15. [PMID: 16042081 DOI: 10.1007/bf02969362] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the effect of atropine on peripheral vasodilation and the mechanisms involved. The isometric tension of rat mesenteric artery rings was recorded in vitro on a myograph. The results showed that atropine, at concentrations greater than 1 microM, relaxed the noradrenalin (NA)-precontracted rat mesenteric artery in a concentration-dependent manner. Atropine-induced vasodilatation was mediated, in part, by an endothelium-dependent mechanism, to which endothelium-derived hyperpolarizing factor may contribute. Atropine was able to shift the NA-induced concentration-response curve to the right, in a non-parallel manner, suggesting the mechanism of atropine was not mediated via the (alpha1-adrenoreceptor. The beta-adrenoreceptor and ATP sensitive potassium channel, a voltage dependent calcium channel, were not involved in the vasodilatation. However, atropine inhibited the contraction derived from NA and CaCI2 in Ca(2+)-free medium, in a concentration dependent manner, indicating the vasodilatation was related to the inhibition of extracellular Ca2+ influx through the receptor-operated calcium channels and intracellular Ca2+ release from the Ca2+ store. Atropine had no effect on the caffeine-induced contraction in the artery segments, indicating the inhibition of intracellular Ca2+ release as a result of atropine most likely occurs via the IP3 pathway rather than the ryanodine receptors. Our results suggest that atropine-induced vasodilatation is mainly from artery smooth muscle cells due to inhibition of the receptor-mediated Ca(2+)-influx and Ca(2+)-release, and partly from the endothelium mediated by EDHF.
Collapse
Affiliation(s)
- Yong-Xiao Cao
- Department of Pharmacology, Medical School of Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi Province 710061, P. R. China.
| | | | | | | | | | | |
Collapse
|