Baker SG, Kramer BS, Prorok PC. Comparing breast cancer mortality rates before-and-after a change in availability of screening in different regions: extension of the paired availability design.
BMC Med Res Methodol 2004;
4:12. [PMID:
15149551 PMCID:
PMC434501 DOI:
10.1186/1471-2288-4-12]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 05/18/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND
In recent years there has been increased interest in evaluating breast cancer screening using data from before-and-after studies in multiple geographic regions. One approach, not previously mentioned, is the paired availability design. The paired availability design was developed to evaluate the effect of medical interventions by comparing changes in outcomes before and after a change in the availability of an intervention in various locations. A simple potential outcomes model yields estimates of efficacy, the effect of receiving the intervention, as opposed to effectiveness, the effect of changing the availability of the intervention. By combining estimates of efficacy rather than effectiveness, the paired availability design avoids confounding due to different fractions of subjects receiving the interventions at different locations. The original formulation involved short-term outcomes; the challenge here is accommodating long-term outcomes.
METHODS
The outcome is incident breast cancer deaths in a time period, which are breast cancer deaths that were diagnosed in the same time period. We considered the plausibility of the basic five assumptions of the paired availability design and propose a novel analysis to accommodate likely violations of the assumption of stable screening effects.
RESULTS
We applied the paired availability design to data on breast cancer screening from six counties in Sweden. The estimated yearly change in incident breast cancer deaths per 100,000 persons ages 40-69 (in most counties) due to receipt of screening (among the relevant type of subject in the potential outcomes model) was -9 with 95% confidence interval (-14, -4) or (-14, -5), depending on the sensitivity analysis.
CONCLUSION
In a realistic application, the extended paired availability design yielded reasonably precise confidence intervals for the effect of receiving screening on the rate of incident breast cancer death. Although the assumption of stable preferences may be questionable, its impact will be small if there is little screening in the first time period. However, estimates may be substantially confounded by improvements in systemic therapy over time. Therefore the results should be interpreted with care.
Collapse