1
|
Hansen BE, Vandriel SM, Vig P, Garner W, Mogul DB, Loomes KM, Piccoli DA, Rand EB, Jankowska I, Czubkowski P, Gliwicz-Miedzińska D, Gonzales EM, Jacquemin E, Bouligand J, D’Antiga L, Nicastro E, Arnell H, Fischler B, Sokal É, Demaret T, Siew S, Stormon M, Karpen SJ, Romero R, Ebel NH, Feinstein JA, Roberts AJ, Evans HM, Sundaram SS, Chaidez A, Hardikar W, Shankar S, Fischer RT, Lacaille F, Debray D, Lin HC, Jensen MK, Jaramillo C, Karthikeyan P, Indolfi G, Verkade HJ, Larson-Nath C, Quiros-Tejeira RE, Valentino PL, Rogalidou M, Dezsőfi A, Squires JE, Schwarz K, Calvo PL, Bernabeu JQ, Zizzo AN, Nebbia G, Bulut P, Santos-Silva E, Fawaz R, Nastasio S, Karnsakul W, Tamara ML, Busoms CM, Kelly DA, Sandahl TD, Jimenez-Rivera C, Banales JM, Mujawar Q, Li LT, She H, Wang JS, Kim KM, Oh SH, Sanchez MC, Cavalieri ML, Lee WS, Hajinicolaou C, Lertudomphonwanit C, Waisbourd-Zinman O, Arikan C, Alam S, Carvalho E, Melere M, Eshun J, Önal Z, Desai DM, Wiecek S, Pinto RB, Wolters VM, Garcia J, Beretta M, Kerkar N, Brecelj J, Rock N, Lurz E, Blondet N, Shah U, Thompson RJ, Kamath BM. Event-free survival of maralixibat-treated patients with Alagille syndrome compared to a real-world cohort from GALA. Hepatology 2024; 79:1279-1292. [PMID: 38146932 PMCID: PMC11095900 DOI: 10.1097/hep.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/18/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND AND AIMS Alagille syndrome (ALGS) is characterized by chronic cholestasis with associated pruritus and extrahepatic anomalies. Maralixibat, an ileal bile acid transporter inhibitor, is an approved pharmacologic therapy for cholestatic pruritus in ALGS. Since long-term placebo-controlled studies are not feasible or ethical in children with rare diseases, a novel approach was taken comparing 6-year outcomes from maralixibat trials with an aligned and harmonized natural history cohort from the G lobal AL agille A lliance (GALA) study. APPROACH AND RESULTS Maralixibat trials comprise 84 patients with ALGS with up to 6 years of treatment. GALA contains retrospective data from 1438 participants. GALA was filtered to align with key maralixibat eligibility criteria, yielding 469 participants. Serum bile acids could not be included in the GALA filtering criteria as these are not routinely performed in clinical practice. Index time was determined through maximum likelihood estimation in an effort to align the disease severity between the two cohorts with the initiation of maralixibat. Event-free survival, defined as the time to first event of manifestations of portal hypertension (variceal bleeding, ascites requiring therapy), surgical biliary diversion, liver transplant, or death, was analyzed by Cox proportional hazards methods. Sensitivity analyses and adjustments for covariates were applied. Age, total bilirubin, gamma-glutamyl transferase, and alanine aminotransferase were balanced between groups with no statistical differences. Event-free survival in the maralixibat cohort was significantly better than the GALA cohort (HR, 0.305; 95% CI, 0.189-0.491; p <0.0001). Multiple sensitivity and subgroup analyses (including serum bile acid availability) showed similar findings. CONCLUSIONS This study demonstrates a novel application of a robust statistical method to evaluate outcomes in long-term intervention studies where placebo comparisons are not feasible, providing wide application for rare diseases. This comparison with real-world natural history data suggests that maralixibat improves event-free survival in patients with ALGS.
Collapse
Affiliation(s)
- Bettina E. Hansen
- Department of Hepatology, Toronto General Hospital University Health Network, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Shannon M. Vandriel
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Pamela Vig
- Department of Scientific and Medical Affairs, Mirum Pharmaceuticals, Inc., Foster City, California, USA
| | - Will Garner
- Department of Scientific and Medical Affairs, Mirum Pharmaceuticals, Inc., Foster City, California, USA
| | - Douglas B. Mogul
- Department of Scientific and Medical Affairs, Mirum Pharmaceuticals, Inc., Foster City, California, USA
| | - Kathleen M. Loomes
- Department of Pathology and Laboratory Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David A. Piccoli
- Department of Pathology and Laboratory Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth B. Rand
- Department of Pathology and Laboratory Medicine, Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Irena Jankowska
- Department of Gastroenterology, Hepatology, Nutrition Disturbances and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Piotr Czubkowski
- Department of Gastroenterology, Hepatology, Nutrition Disturbances and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Dorota Gliwicz-Miedzińska
- Department of Gastroenterology, Hepatology, Nutrition Disturbances and Pediatrics, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Emmanuel M. Gonzales
- Department of Pediatric Hepatology and Liver Transplantation, Service d’Hépatologie et de Transplantation Hépatique Pédiatriques, Centre de Référence de l’Atrésie des Voies Biliaires et des Cholestases Génétiques (AVB-CG), FSMR FILFOIE, ERN RARE LIVER, Hôpital Bicêtre, AP-HP, Faculté de Médecine Paris-Saclay, Le Kremlin-Bicêtre, and Inserm U1193, Hépatinov, Université Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Department of Pediatric Hepatology and Liver Transplantation, Service d’Hépatologie et de Transplantation Hépatique Pédiatriques, Centre de Référence de l’Atrésie des Voies Biliaires et des Cholestases Génétiques (AVB-CG), FSMR FILFOIE, ERN RARE LIVER, Hôpital Bicêtre, AP-HP, Faculté de Médecine Paris-Saclay, Le Kremlin-Bicêtre, and Inserm U1193, Hépatinov, Université Paris-Saclay, Orsay, France
| | - Jérôme Bouligand
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpitaux Universitaires Paris-Saclay, Assistance PubliqueHôpitaux de Paris, Centre Hospitalier Universitaire de Bicêtre, Le Kremlin-Bicêtre, France
| | - Lorenzo D’Antiga
- Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Ospedale Papa Giovanni XXIII, Pediatric Hepatology, Gastroenterology and Transplantation, Bergamo, Italy
| | - Emanuele Nicastro
- Department of Pediatric Hepatology, Gastroenterology, and Transplantation, Ospedale Papa Giovanni XXIII, Pediatric Hepatology, Gastroenterology and Transplantation, Bergamo, Italy
| | - Henrik Arnell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Astrid Lindgren Children’s Hospital, Karolinska University Hospital and Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Björn Fischler
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Astrid Lindgren Children’s Hospital, Karolinska University Hospital and CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Étienne Sokal
- Department of Pediatric GI and Hepatology, Cliniques Universitaires Saint-Luc, Service De Gastroentérologie & Hépatologie Pédiatrique, Brussels, Belgium
| | - Tanguy Demaret
- Department of Pediatric GI and Hepatology, Cliniques Universitaires Saint-Luc, Service De Gastroentérologie & Hépatologie Pédiatrique, Brussels, Belgium
| | - Susan Siew
- Department of Gastroenterology, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Michael Stormon
- Department of Gastroenterology, The Children’s Hospital at Westmead, Sydney, New South Wales, Australia
| | - Saul J. Karpen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Children’s Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rene Romero
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology & Nutrition, Children’s Healthcare of Atlanta & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Noelle H. Ebel
- Department of Pediatrics, Division of Gastroenterology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jeffrey A. Feinstein
- Department of Pediatrics (Cardiology), Stanford University School of Medicine, Lucile Packard Children’s Hospital, Palo Alto, California, USA
| | - Amin J. Roberts
- Starship Child Health, Department of Paediatric Gastroenterology, Auckland, New Zealand
| | - Helen M. Evans
- Starship Child Health, Department of Paediatric Gastroenterology, Auckland, New Zealand
| | - Shikha S. Sundaram
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics and the Digestive Health Institute, Children’s Hospital of Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexander Chaidez
- Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics and the Digestive Health Institute, Children’s Hospital of Colorado and University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Winita Hardikar
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Sahana Shankar
- Department of Pediatrics, Mazumdar Shaw Medical Center, Narayana Health, Bangalore, Karnataka, India
| | - Ryan T. Fischer
- Department of Gastroenterology, Children’s Mercy Kansas City, Section of Hepatology, Kansas City, Missouri, USA
| | - Florence Lacaille
- Department of Pediatric Gastroenterology and Nutrition, Necker-Enfants Malades Hospital, University of Paris, Paris, France
| | - Dominique Debray
- Department of Pediatric Gastroenterology and Hepatology, Pediatric Liver Unit, National Reference Centre for Rare Pediatric Liver Diseases (Biliary Atresia and Genetic Cholestasis), FILFOIE, ERN RARE LIVER, Necker-Enfants Malades Hospital, University of Paris, Paris, France
| | - Henry C. Lin
- Department of Pediatrics, Division of Pediatric Gastroenterology, Oregon Health and Science University, Portland, Oregon, USA
| | - M. Kyle Jensen
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Primary Children’s Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Catalina Jaramillo
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Primary Children’s Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Palaniswamy Karthikeyan
- Department of Pediatrics, Leeds Teaching Hospitals NHS Trust, Leeds Children’s Hospital, Leeds, UK
| | - Giuseppe Indolfi
- Department Neurofarba, University of Florence and Meyer Children’s University Hospital, Paediatric and Liver Unit, Florence, Italy
| | - Henkjan J. Verkade
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Catherine Larson-Nath
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruben E. Quiros-Tejeira
- Department of Pediatrics, Children’s Hospital & Medical Center and University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Pamela L. Valentino
- Department of Pediatrics, Gastroenterology & Hepatology Division, University of Washington, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Maria Rogalidou
- First Department of Pediatrics, Division of Gastroenterology & Hepatology, “Agia Sofia” Children’s Hospital, University of Athens, Athens, Greece
| | - Antal Dezsőfi
- First Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - James E. Squires
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kathleen Schwarz
- Department of Pediatrics, Division of Pediatric Gastroenterology, Rady Children’s Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Pier Luigi Calvo
- Department of Pediatrics, Pediatric Gastroenterology Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera-Universitaria Citta’ della Salute e della Scienza, Turin, Italy
| | - Jesus Quintero Bernabeu
- Pediatric Hepatology and Liver Transplant Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute—Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Andréanne N. Zizzo
- Department of Paediatrics, Division of Paediatric Gastroenterology and Hepatology, London Health Sciences Centre, Children’s Hospital, Western University, London, Ontario, Canada
| | - Gabriella Nebbia
- Department of Pediatric Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Servizio di Epatologia Pediatrica, Milan, Italy
| | - Pinar Bulut
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Phoenix Children’s Hospital, Phoenix, Arizona, USA
| | - Ermelinda Santos-Silva
- Department of Pediatrics, Centro Hospitalar Universitário Do Porto, Pediatric Gastroenterology Unit, Porto, Portugal
| | - Rima Fawaz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Silvia Nastasio
- Department of Pediatrics, Division of Gastroenterology, Hepatology, & Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Wikrom Karnsakul
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - María Legarda Tamara
- Department of Pediatrics, Paediatric Gastroenterology Unit, Cruces University Hospital, Bilbao, Spain
| | - Cristina Molera Busoms
- Department of Gastroenterology, Hepatology and Nutrition, Pediatric Gastroenterology Hepatology and Nutrition Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Deirdre A. Kelly
- Department of Paediatric Hepatology, Liver Unit, Birmingham Women’s & Children’s Hospital NHS Trust and University of Birmingham, Birmingham, UK
| | | | - Carolina Jimenez-Rivera
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Jesus M. Banales
- Department of Hepatology and Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Biodonostia Health Research Institute—Donostia University Hospital, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Quais Mujawar
- Section of Pediatric Gastroenterology, Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Li-Ting Li
- Department of Pediatric Gastroenterology, Children’s Hospital of Fudan University, The Center for Pediatric Liver Diseases, Shanghai, China
| | - Huiyu She
- Department of Pediatric Gastroenterology, Children’s Hospital of Fudan University, The Center for Pediatric Liver Diseases, Shanghai, China
| | - Jian-She Wang
- Department of Pediatric Gastroenterology, Children’s Hospital of Fudan University, The Center for Pediatric Liver Diseases, Shanghai, China
| | - Kyung Mo Kim
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children’s Hospital, Seoul, South Korea
| | - Seak Hee Oh
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children’s Hospital, Seoul, South Korea
| | - Maria Camila Sanchez
- Department of Pediatric Gastroenterology, Pediatric Gastroenterology and Hepatology Division, Hospital Italiano Buenos Aires, Buenos Aires, Argentina
| | - Maria Lorena Cavalieri
- Department of Pediatric Gastroenterology, Pediatric Gastroenterology and Hepatology Division, Hospital Italiano Buenos Aires, Buenos Aires, Argentina
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Christina Hajinicolaou
- Department of Paediatrics and Child Health, Division of Paediatric Gastroenterology, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Chatmanee Lertudomphonwanit
- Department of Pediatrics, Division of Gastroenterology, Ramathibodi Hospital Mahidol University, Bangkok, Thailand
| | - Orith Waisbourd-Zinman
- Department of Pediatrics, Schneider Children’s Medical Center of Israel, Institute of Gastroenterology, Nutrition and Liver Diseases, Petah Tikva, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Cigdem Arikan
- Department of Pediatric Gastroenterology and Organ Transplant, Koç University School of Medicine, Istanbul, Turkey
| | - Seema Alam
- Department of Pediatric Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Elisa Carvalho
- Pediatric Gastroenterology Department, Hospital de Base do Distrito Federal, Hospital da Criança de Brasília, Centro Universitário de Brasília, Brasília, DF, Brazil
| | - Melina Melere
- Departamento de Gastroenterologia e Hepatologia Pediátrica, Pediatric Gastroenterology Service, Hospital da Criança Santo Antônio, Universidade Federal de Ciências da Saúde de Porto Alegre, Complexo Hospitalar Santa Casa, Porto Alegre, RS, Brazil
| | - John Eshun
- Department of Pediatric Gastroenterology, Le Bonheur Children’s Hospital and The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zerrin Önal
- Pediatric Gastroenterology, Hepatology and Nutrition Department, Istanbul University Istanbul Medical Faculty, Istanbul, Turkey
| | - Dev M. Desai
- Solid Organ Transplant Department, Children’s Health—Children’s Medical Center, Dallas, Texas, USA
| | - Sabina Wiecek
- Department of Pediatrics, Medical University of Silesia in Katowice, Katowice, Poland
| | - Raquel Borges Pinto
- Department of Pediatric Gastroenterology, Division of Pediatric Gastroenterology of Hospital da Criança Conceição do Grupo Hospitalar Conceição, Porto Alegre, RS, Brazil
| | - Victorien M. Wolters
- Department of Pediatric Gastroenterology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jennifer Garcia
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition/Miami Transplant Institute, University of Miami, Miami, Florida, USA
| | - Marisa Beretta
- Department of Pediatric Intensive Care, Wits Donald Gordon Medical Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nanda Kerkar
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Rochester Medical Center, Rochester, New York, USA
| | - Jernej Brecelj
- Pediatric Gastroenterology, Hepatology and Nutrition, and Department of Pediatrics, Faculty of Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nathalie Rock
- Department of Pediatrics, Gynecology, and Obstetrics, Division of Pediatric Specialties, Swiss Pediatric Liver Center, University Hospitals Geneva and University of Geneva, Geneva, Switzerland
| | - Eberhard Lurz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Niviann Blondet
- Department of Pediatrics, Gastroenterology & Hepatology Division, University of Washington, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Uzma Shah
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Richard J. Thompson
- Department of Inflammation Biology, Institute of Liver Studies, King’s College London, London, UK
| | - Binita M. Kamath
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Flattmann FE, Mohiuddin FS, Singh A, Tandon A, Lockett SJ, Hirsch JD, Mosieri CN, Kaye AM, Varrassi G, Ahmadzadeh S, Shekoohi S, Kaye AD. Odevixibat: A Novel Bile Salt Inhibitor Treatment for Pruritus in Progressive Familial Intrahepatic Cholestasis. Cureus 2024; 16:e56886. [PMID: 38659510 PMCID: PMC11042757 DOI: 10.7759/cureus.56886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic pruritus is defined as an itch lasting greater than six weeks. It can manifest from a wide variety of etiologies, as many different substances can act as pruritogens, such as steroids, histamine, progesterone, endogenous opioids, and serotonin. In the setting of cholestatic liver disease, increased bile acids play a major role in chronic pruritus. The itching in cholestatic liver disease is worsened in intensity at night and localized frequently to the palms, soles, knees, and other pressure sites. It can be hard to manage, affecting the quality of sleep and causing irritability, poor attention, and, in some cases, depression. One such disease that results from chronic pruritus is progressive familial intrahepatic cholestasis (PFIC), a group of uncommon hereditary disorders that affects the formation of bile and its outflow from the liver. Previously, the drug ursodeoxycholic acid was used to help manage pruritus or surgical procedures, e.g., partial external biliary diversion or partial internal biliary diversion, to help control complications of the disease. This literature review will discuss three clinical studies covering the effectiveness of odevixibat in treating pruritus in patients with PFIC. Odevixibat (Bylvay) is an oral drug that has been FDA-approved to treat pruritus in patients three months of age and older with PFIC. Odevixibat prevents the reabsorption of bile salts in the intestines, resulting in decreased levels of bile salts via their excretion in stool. Several studies have determined that the drug is well tolerated and provides a nonsurgical, pharmacological treatment alternative for those with PFIC.
Collapse
Affiliation(s)
- Farrah E Flattmann
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Farhan S Mohiuddin
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Anjuni Singh
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Anamika Tandon
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Stewart J Lockett
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jon D Hirsch
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Chizoba N Mosieri
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences University of the Pacific, Stockton, USA
| | | | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| |
Collapse
|
3
|
Bolia R, Goel AD, Sharma V, Srivastava A. Biliary diversion in progressive familial intrahepatic cholestasis: a systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol 2022; 16:163-172. [PMID: 35051344 DOI: 10.1080/17474124.2022.2032660] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Biliary diversion (BD) is indicated in progressive familial intrahepatic cholestasis (PFIC) with refractory pruritus. Three types-partial external biliary drainage (PEBD), partial internal biliary drainage (PIBD), and ileal exclusion (IE) are described, with no consensus about the relative efficacy of these procedures. METHODS PubMed, Scopus, and Google Scholar were searched for publications on PFIC and BD. Improvement in pruritus, serum bile acid (BA), and need for liver transplantation (LT) were compared between the various BD procedures. RESULTS 25 studies [424 children (PEBD-301, PIBD-93, IE-30)] were included. Pruritus resolved in 59.5% [PIBD:72% (95%CI 43-96%), PEBD:57% (95%CI 43-71%) and IE:48% (95%CI 14-82%)] cases. Significant overlap in confidence intervals indicated no significant differences. Absolute decrease in BA (AUROC-0.72) and bilirubin (AUROC-0.69) discriminated responders and non-responders. Eventually, 27% required LT: PIBD 10.7%, PEBD32%, IE 27%. The post-operative BA (AUROC-0.9) and bilirubin (AUROC-0.85) determined need for LT. Complications were commoner in PEBD than PIBD (38% vs 21.8%: p=0.02). CONCLUSION 59.5% children have pruritus relief after BD and 27% need LT. PIBD has lower complications and LT requirement than PEBD. However, this requires cautious interpretation as the 2 groups differed in PFIC type and follow-up duration.
Collapse
Affiliation(s)
- Rishi Bolia
- Division of Paediatric Gastroenterology, Department of Paediatrics, All India Institute of Medical Sciences, Rishikesh, India
| | - Akhil Dhanesh Goel
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India
| | - Vishakha Sharma
- Division of Paediatric Gastroenterology, Department of Paediatrics, All India Institute of Medical Sciences, Rishikesh, India
| | - Anshu Srivastava
- Department of Paediatric Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
4
|
Farooqui N, Elhence A, Shalimar. A Current Understanding of Bile Acids in Chronic Liver Disease. J Clin Exp Hepatol 2022; 12:155-173. [PMID: 35068796 PMCID: PMC8766695 DOI: 10.1016/j.jceh.2021.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic liver disease (CLD) is one of the leading causes of disability-adjusted life years in many countries. A recent understanding of nuclear bile acid receptor pathways has increased focus on the impact of crosstalk between the gut, bile acids, and liver on liver pathology. While conventionally used in cholestatic disorders and to dissolve gallstones, the discovery of bile acids' influence on the gut microbiome and human metabolism offers a unique potential for their utility in early and advanced liver diseases because of diverse etiologies. Based on these findings, preclinical studies using bile acid-based molecules have shown encouraging results at addressing liver inflammation and fibrosis. Emerging data also suggest that bile acid profiles change distinctively across various causes of liver disease. We summarize the current knowledge and evidence related to bile acids in health and disease and discuss culminated and ongoing therapeutic trials of bile acid derivatives in CLD. In the near future, further evidence in this area might help clinicians better detect and manage liver diseases.
Collapse
Key Words
- AD, Acute decompensation
- ALP, Alkaline phosphatase
- AMACR, α-methylacyl-CoA racemase (AMACR)
- ASBT, Apical sodium dependent bile salt transporter
- BA, Bile acid
- BSEP, Bile salt export pump
- BSH, Bile salt hydrolase
- CA, Cholic acid
- CDCA, Chenodeoxycholic acid
- CLD
- CLD, Chronic Liver Disease
- CTP, Child-Turcotte-Pugh
- CYP7A1, Cholesterol 7 α hydroxylase
- DCA, Deoxycholic acid
- DR5, Death receptor 5
- ELF, Enhanced Liver Fibrosis
- FGF-19, Fibroblast growth factor-19
- FGFR4, FGF receptor 4
- FXR, Farnesoid X receptor
- GCA, Glycocholic acid
- GDCA, Glycodeoxycholic acid
- GLP-1, Glucagon-like peptide1
- HBV, Hepatitis B virus
- HCV, Hepatitis C virus
- HVPG, Hepatic Venous Pressure Gradient
- LCA, Lithocholic acid
- LPS, Lipopolysaccharide
- MELD, Model for End-Stage Liver Disease (MELD)
- MRI-PDFF, Magnetic resonance imaging derived proton density fat fraction
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, Nonalcoholic steatohepatitis
- NTCP, Sodium taurocholate cotransporting polypeptide
- OCA, Obeticholic acid
- OST, Organic solute transporter
- PBC, Primary biliary cirrhosis
- PFIC, Progressive familial intrahepatic cholestasis
- PSC, Primary sclerosing cholangitis
- PXR, Pregnane X receptor
- SHP, Small heterodimer partner
- TBA, Total bile acids
- TGR5, Takeda G-protein coupled receptor 5
- TRAIL, TNF-related apoptosis-inducing ligand
- UDCA, Ursodeoxycholic acid
- UPLC-MS, Ultra-performance liquid chromatography with tandem mass spectrometry
- VDR, Vitamin D receptor
- bile acids
- cirrhosis
- microbiome
Collapse
Affiliation(s)
- Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Anshuman Elhence
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Kamath BM, Stein P, Houwen RHJ, Verkade HJ. Potential of ileal bile acid transporter inhibition as a therapeutic target in Alagille syndrome and progressive familial intrahepatic cholestasis. Liver Int 2020; 40:1812-1822. [PMID: 32492754 PMCID: PMC7496162 DOI: 10.1111/liv.14553] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022]
Abstract
Alagille syndrome (ALGS) and progressive familial intrahepatic cholestasis (PFIC) are rare, inherited cholestatic liver disorders that manifest in infants and children and are associated with impaired bile flow (ie cholestasis), pruritus and potentially fatal liver disease. There are no effective or approved pharmacologic treatments for these diseases (standard medical treatments are supportive only), and new, noninvasive options would be valuable. Typically, bile acids undergo biliary secretion and intestinal reabsorption (ie enterohepatic circulation). However, in these diseases, disrupted secretion of bile acids leads to their accumulation in the liver, which is thought to underlie pruritus and liver-damaging inflammation. One approach to reducing pathologic bile acid accumulation in the body is surgical biliary diversion, which interrupts the enterohepatic circulation (eg by diverting bile acids to an external stoma). These procedures can normalize serum bile acids, reduce pruritus and liver injury and improve quality of life. A novel, nonsurgical approach to interrupting the enterohepatic circulation is inhibition of the ileal bile acid transporter (IBAT), a key molecule in the enterohepatic circulation that reabsorbs bile acids from the intestine. IBAT inhibition has been shown to reduce serum bile acids and pruritus in trials of paediatric cholestatic liver diseases. This review explores the rationale of inhibition of the IBAT as a therapeutic target, describes IBAT inhibitors in development and summarizes the current data on interrupting the enterohepatic circulation as treatment for cholestatic liver diseases including ALGS and PFIC.
Collapse
Affiliation(s)
- Binita M. Kamath
- The Hospital for Sick ChildrenTorontoONCanada
- University of TorontoTorontoONCanada
| | | | | | - Henkjan J. Verkade
- University of GroningenBeatrix Children’s Hospital/University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
6
|
Abstract
Progressive familial intrahepatic cholestasis (PFIC) and Alagille syndrome (AS) are conditions caused by either an autosomal recessive or an autosomal dominant genetic defect, and they are both characterized by cholestasis, jaundice, and severe debilitating pruritus refractory to medical management. Before the advent of liver transplantation, most PFIC patients would die from end-stage liver disease in the first decade of life. Although liver transplantation has led to patients' survival, disease recurrence (PFIC-2) and severe extra-hepatic manifestations of the disease (PFIC-1) occurred post transplant. In the late 1980s, Whitington described the use of partial external biliary diversion in PFIC and AS patients as a successful way to improve symptoms and decrease circulating bile acid serum concentrations. Since then, other diversion techniques have been described (ileal exclusion and partial internal biliary diversion). These techniques have the benefit of avoiding a stoma, but equivalent results have not been demonstrated (recurrence of cholestasis after ileal exclusion, limited follow up after internal biliary diversion). Overall, studies have showed that biliary diversions in children with cholestasis are safe procedures with low morbidity and mortality, and that they can reduce inflammation and ongoing liver injury, therefore delaying or avoiding the need for liver transplantation in some patients.
Collapse
|
7
|
Verkade HJ, Thompson RJ, Arnell H, Fischler B, Gillberg PG, Mattsson JP, Torfgård K, Lindström E. Systematic Review and Meta-analysis: Partial External Biliary Diversion in Progressive Familial Intrahepatic Cholestasis. J Pediatr Gastroenterol Nutr 2020; 71:176-183. [PMID: 32433433 DOI: 10.1097/mpg.0000000000002789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES We assessed available data on impact of partial external biliary diversion (PEBD) surgery on clinical outcomes in patients with progressive familial intrahepatic cholestasis (PFIC). METHODS We performed a systematic literature review (PubMed) and meta-analysis to evaluate relationships between liver biochemistry parameters (serum bile acids, bilirubin, and alanine aminotransferase [ALT]) and early response (pruritus improvement) or long-term outcomes (need for liver transplant) in patients with PFIC who underwent PEBD. RESULTS Searches identified 175 publications before September 2018; 16 met inclusion criteria. Receiver operating characteristic (ROC) analysis examined ability of liver biochemistry parameters to discriminate patients who demonstrated early and long-term response to PEBD from those who did not. Regarding pruritus improvement in 155 included patients in aggregate, 104 (67%) were responders, 14 (9%) had partial response, and 37 (24%) were nonresponders. In ROC analyses of individual patient data, post-PEBD serum concentration of bile acids, in particular, could discriminate responders from nonresponders for pruritus improvement (area under the curve, 0.99; P < 0.0001; n = 42); to a lesser extent, this was also true for bilirubin (0.87; P = 0.003; n = 31), whereas ALT could not discriminate responders from nonresponders for pruritus improvement (0.74; P = 0.06; n = 28). Reductions from pre-PEBD values in serum bile acid concentration (0.89; P = 0.0003; n = 32) and bilirubin (0.98; P = 0.002; n = 18) but not ALT (0.62; P = 0.46; n = 18) significantly discriminated decreased aggregate need for liver transplant. CONCLUSION Changes in bile acids seem particularly useful in discriminating early and long-term post-PEBD outcomes and may be potential biomarkers of response to interruption of enterohepatic circulation in patients with PFIC.
Collapse
Affiliation(s)
- Henkjan J Verkade
- Department of Pediatrics, University of Groningen, Beatrix Children's Hospital/University Medical Center Groningen, Groningen, The Netherlands
| | - Richard J Thompson
- Institute of Liver Studies, King's College London, London, United Kingdom
| | - Henrik Arnell
- Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, CLINTEC, Karolinska Institutet, Stockholm
| | - Björn Fischler
- Pediatric Gastroenterology, Hepatology and Nutrition, Karolinska University Hospital, CLINTEC, Karolinska Institutet, Stockholm
| | | | | | | | | |
Collapse
|
8
|
van Wessel DBE, Thompson RJ, Gonzales E, Jankowska I, Sokal E, Grammatikopoulos T, Kadaristiana A, Jacquemin E, Spraul A, Lipiński P, Czubkowski P, Rock N, Shagrani M, Broering D, Algoufi T, Mazhar N, Nicastro E, Kelly DA, Nebbia G, Arnell H, Björn Fischler, Hulscher JBF, Serranti D, Arikan C, Polat E, Debray D, Lacaille F, Goncalves C, Hierro L, Muñoz Bartolo G, Mozer-Glassberg Y, Azaz A, Brecelj J, Dezsőfi A, Calvo PL, Grabhorn E, Sturm E, van der Woerd WJ, Kamath BM, Wang JS, Li L, Durmaz Ö, Onal Z, Bunt TMG, Hansen BE, Verkade HJ. Genotype correlates with the natural history of severe bile salt export pump deficiency. J Hepatol 2020; 73:84-93. [PMID: 32087350 DOI: 10.1016/j.jhep.2020.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Mutations in ABCB11 can cause deficiency of the bile salt export pump (BSEP), leading to cholestasis and end-stage liver disease. Owing to the rarity of the disease, the associations between genotype and natural history, or outcomes following surgical biliary diversion (SBD), remain elusive. We aimed to determine these associations by assembling the largest genetically defined cohort of patients with severe BSEP deficiency to date. METHODS This multicentre, retrospective cohort study included 264 patients with homozygous or compound heterozygous pathological ABCB11 mutations. Patients were categorized according to genotypic severity (BSEP1, BSEP2, BSEP3). The predicted residual BSEP transport function decreased with each category. RESULTS Genotype severity was strongly associated with native liver survival (NLS, BSEP1 median 20.4 years; BSEP2, 7.0 years; BSEP3, 3.5 years; p <0.001). At 15 years of age, the proportion of patients with hepatocellular carcinoma was 4% in BSEP1, 7% in BSEP2 and 34% in BSEP3 (p = 0.001). SBD was associated with significantly increased NLS (hazard ratio 0.50; 95% CI 0.27-0.94: p = 0.03) in BSEP1 and BSEP2. A serum bile acid concentration below 102 μmol/L or a decrease of at least 75%, each shortly after SBD, reliably predicted NLS of ≥15 years following SBD (each p <0.001). CONCLUSIONS The genotype of severe BSEP deficiency strongly predicts long-term NLS, the risk of developing hepatocellular carcinoma, and the chance that SBD will increase NLS. Serum bile acid parameters shortly after SBD can predict long-term NLS. LAY SUMMARY This study presents data from the largest genetically defined cohort of patients with severe bile salt export pump deficiency to date. The genotype of patients with severe bile salt export pump deficiency is associated with clinical outcomes and the success of therapeutic interventions. Therefore, genotypic data should be used to guide personalized clinical care throughout childhood and adulthood in patients with this disease.
Collapse
Affiliation(s)
- Daan B E van Wessel
- Pediatric Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | | | - Emmanuel Gonzales
- Service d'Hépatologie et de Transplantation Hépatique Pédiatriques, Bicêtre Hôspital, AP-HP, Université Paris-Sud, Paris Saclay, Inserm UMR-S 1174, France; European Reference Network on Hepatological Diseases (ERN RARE-LIVER)
| | - Irena Jankowska
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Etienne Sokal
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Université; Catholique de Louvain, Cliniques St Luc, Brussels, Belgium
| | | | | | - Emmanuel Jacquemin
- Service d'Hépatologie et de Transplantation Hépatique Pédiatriques, Bicêtre Hôspital, AP-HP, Université Paris-Sud, Paris Saclay, Inserm UMR-S 1174, France
| | - Anne Spraul
- Service de Biochemie, Bicêtre Hôspital, AP-HP, Université Paris-Sud, Paris Saclay, Inserm UMR-S 1174, France
| | - Patryk Lipiński
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Czubkowski
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Nathalie Rock
- Université; Catholique de Louvain, Cliniques St Luc, Brussels, Belgium
| | - Mohammad Shagrani
- Liver & SB Transplant & Hepatobiliary-Pancreatic Surgery, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia; Alfaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - Dieter Broering
- Liver & SB Transplant & Hepatobiliary-Pancreatic Surgery, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Talal Algoufi
- Liver & SB Transplant & Hepatobiliary-Pancreatic Surgery, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Nejat Mazhar
- Liver & SB Transplant & Hepatobiliary-Pancreatic Surgery, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology and Transplantation, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Deirdre A Kelly
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Liver Unit, Birmingham Women's and Children's Hospital, Birmingham, United Kingdom
| | - Gabriella Nebbia
- Servizio Di Epatologia e Nutrizione Pediatrica, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Henrik Arnell
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Pediatric Digestive Diseases, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Björn Fischler
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Pediatric Digestive Diseases, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Jan B F Hulscher
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Paediatric Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Daniele Serranti
- Paediatric and Liver Unit, Meyer Children's University Hospital of Florence
| | - Cigdem Arikan
- Koc University School of Medicine, Paediatric GI and Hepatology Liver Transplantation Centre, Kuttam System in Liver Medicine, Istanbul, Turkey
| | - Esra Polat
- Hospital Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Dominique Debray
- Unité; d'hépatologie Pédiatrique et Transplantation, Hôpital Necker, Paris, France
| | - Florence Lacaille
- Unité; d'hépatologie Pédiatrique et Transplantation, Hôpital Necker, Paris, France
| | - Cristina Goncalves
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Coimbra University Hospital Center, Coimbra, Portugal
| | - Loreto Hierro
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Pediatric Liver Service, La Paz University Hospital, Madrid, Spain
| | - Gema Muñoz Bartolo
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); Pediatric Liver Service, La Paz University Hospital, Madrid, Spain
| | - Yael Mozer-Glassberg
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Centre of Israel
| | - Amer Azaz
- Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Jernej Brecelj
- Department of Gastroenterology, Hepatology and Nutrition, University Children's Hospital Ljubljana, and Department of Paediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Antal Dezsőfi
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Pier Luigi Calvo
- Pediatic Gastroenterology Unit, Regina Margherita Children's Hospital, Azienda Ospedaliera Città Della Salute e Della Scienza University Hospital, Torino, Italy
| | - Enke Grabhorn
- Klinik Für Kinder- Und Jugendmedizin, Universitätsklinikum Hamburg Eppendorf, Hamburg, Germany
| | - Ekkehard Sturm
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER); University Children's Hospital Tübingen, Tübingen, Germany
| | - Wendy J van der Woerd
- Wilhelmina Children's Hospital, University Medical Centre Utrecht, Paediatric Gastroenterology, Hepatology and Nutrition, Utrecht, The Netherlands
| | - Binita M Kamath
- The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Jian-She Wang
- Children's Hospital of Fudan University, Shanghai, China
| | - Liting Li
- Children's Hospital of Fudan University, Shanghai, China
| | - Özlem Durmaz
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Zerrin Onal
- Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Ton M G Bunt
- Pediatric Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Bettina E Hansen
- Toronto Centre for Liver Disease, University Health Network, Canada; IHPME, University of Toronto, Canada
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, The Netherlands; European Reference Network on Hepatological Diseases (ERN RARE-LIVER).
| | | |
Collapse
|
9
|
Chen HL, Wu SH, Hsu SH, Liou BY, Chen HL, Chang MH. Jaundice revisited: recent advances in the diagnosis and treatment of inherited cholestatic liver diseases. J Biomed Sci 2018; 25:75. [PMID: 30367658 PMCID: PMC6203212 DOI: 10.1186/s12929-018-0475-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background Jaundice is a common symptom of inherited or acquired liver diseases or a manifestation of diseases involving red blood cell metabolism. Recent progress has elucidated the molecular mechanisms of bile metabolism, hepatocellular transport, bile ductular development, intestinal bile salt reabsorption, and the regulation of bile acids homeostasis. Main body The major genetic diseases causing jaundice involve disturbances of bile flow. The insufficiency of bile salts in the intestines leads to fat malabsorption and fat-soluble vitamin deficiencies. Accumulation of excessive bile acids and aberrant metabolites results in hepatocellular injury and biliary cirrhosis. Progressive familial intrahepatic cholestasis (PFIC) is the prototype of genetic liver diseases manifesting jaundice in early childhood, progressive liver fibrosis/cirrhosis, and failure to thrive. The first three types of PFICs identified (PFIC1, PFIC2, and PFIC3) represent defects in FIC1 (ATP8B1), BSEP (ABCB11), or MDR3 (ABCB4). In the last 5 years, new genetic disorders, such as TJP2, FXR, and MYO5B defects, have been demonstrated to cause a similar PFIC phenotype. Inborn errors of bile acid metabolism also cause progressive cholestatic liver injuries. Prompt differential diagnosis is important because oral primary bile acid replacement may effectively reverse liver failure and restore liver functions. DCDC2 is a newly identified genetic disorder causing neonatal sclerosing cholangitis. Other cholestatic genetic disorders may have extra-hepatic manifestations, such as developmental disorders causing ductal plate malformation (Alagille syndrome, polycystic liver/kidney diseases), mitochondrial hepatopathy, and endocrine or chromosomal disorders. The diagnosis of genetic liver diseases has evolved from direct sequencing of a single gene to panel-based next generation sequencing. Whole exome sequencing and whole genome sequencing have been actively investigated in research and clinical studies. Current treatment modalities include medical treatment (ursodeoxycholic acid, cholic acid or chenodeoxycholic acid), surgery (partial biliary diversion and liver transplantation), symptomatic treatment for pruritus, and nutritional therapy. New drug development based on gene-specific treatments, such as apical sodium-dependent bile acid transporter (ASBT) inhibitor, for BSEP defects are underway. Short conclusion Understanding the complex pathways of jaundice and cholestasis not only enhance insights into liver pathophysiology but also elucidate many causes of genetic liver diseases and promote the development of novel treatments.
Collapse
Affiliation(s)
- Huey-Ling Chen
- Departments of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, 17F, No. 8, Chung Shan S. Rd, Taipei, 100, Taiwan. .,Department of Medical Education and Bioethics, National Taiwan University College of Medicine, No. 1, Jen Ai Rd Section 1, Taipei, 100, Taiwan. .,Hepatitis Research Center, National Taiwan University Hospital, Changde St. No.1, Zhongzhen Dist., Taipei 100, Taiwan.
| | - Shang-Hsin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, No. 7 Chung Shan S. Rd, Taipei 100, Taiwan
| | - Shu-Hao Hsu
- Graduate Institute of Anatomy and Cell Biology, Nationatl Taiwan University College of Medicine, No. 1 Jen Ai Rd Section 1, Taipei 100, Taiwan
| | - Bang-Yu Liou
- Departments of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, 17F, No. 8, Chung Shan S. Rd, Taipei, 100, Taiwan
| | - Hui-Ling Chen
- Hepatitis Research Center, National Taiwan University Hospital, Changde St. No.1, Zhongzhen Dist., Taipei 100, Taiwan
| | - Mei-Hwei Chang
- Departments of Pediatrics, National Taiwan University College of Medicine and Children's Hospital, 17F, No. 8, Chung Shan S. Rd, Taipei, 100, Taiwan.,Hepatitis Research Center, National Taiwan University Hospital, Changde St. No.1, Zhongzhen Dist., Taipei 100, Taiwan
| |
Collapse
|
10
|
Wang KS, Tiao G, Bass LM, Hertel PM, Mogul D, Kerkar N, Clifton M, Azen C, Bull L, Rosenthal P, Stewart D, Superina R, Arnon R, Bozic M, Brandt ML, Dillon PA, Fecteau A, Iyer K, Kamath B, Karpen S, Karrer F, Loomes KM, Mack C, Mattei P, Miethke A, Soltys K, Turmelle YP, West K, Zagory J, Goodhue C, Shneider BL. Analysis of surgical interruption of the enterohepatic circulation as a treatment for pediatric cholestasis. Hepatology 2017; 65:1645-1654. [PMID: 28027587 PMCID: PMC5397365 DOI: 10.1002/hep.29019] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED To evaluate the efficacy of nontransplant surgery for pediatric cholestasis, 58 clinically diagnosed children, including 20 with Alagille syndrome (ALGS), 16 with familial intrahepatic cholestasis-1 (FIC1), 18 with bile salt export pump (BSEP) disease, and 4 others with low γ-glutamyl transpeptidase disease (levels <100 U/L), were identified across 14 Childhood Liver Disease Research Network (ChiLDReN) centers. Data were collected retrospectively from individuals who collectively had 39 partial external biliary diversions (PEBDs), 11 ileal exclusions (IEs), and seven gallbladder-to-colon (GBC) diversions. Serum total bilirubin decreased after PEBD in FIC1 (8.1 ± 4.0 vs. 2.9 ± 4.1 mg/dL, preoperatively vs. 12-24 months postoperatively, respectively; P = 0.02), but not in ALGS or BSEP. Total serum cholesterol decreased after PEBD in ALGS patients (695 ± 465 vs. 457 ± 319 mg/dL, preoperatively vs. 12-24 months postoperatively, respectively; P = 0.0001). Alanine aminotransferase levels increased in ALGS after PEBD (182 ± 70 vs. 260 ± 73 IU/L, preoperatively vs. 24 months; P = 0.03), but not in FIC1 or BSEP. ALGS, FIC1, and BSEP patients experienced less severely scored pruritus after PEBD (ALGS, 100% vs. 9% severe; FIC1, 64% vs. 10%; BSEP, 50% vs. 20%, preoperatively vs. >24 months postoperatively, respectively; P < 0.001). ALGS patients experienced a trend toward greater freedom from xanthomata after PEBD. There was a trend toward decreased pruritus in FIC1 after IE and GBC. Vitamin K supplementation increased in ALGS after PEBD (33% vs. 77%; P = 0.03). Overall, there were 15 major complications after surgery. Twelve patients (3 ALGS, 3 FIC1, and 6 BSEP) subsequently underwent liver transplantation. CONCLUSION This was a multicenter analysis of nontransplant surgical approaches to intrahepatic cholestasis. Approaches vary, are well tolerated, and generally, although not uniformly, result in improvement of pruritus and cholestasis. (Hepatology 2017;65:1645-1654).
Collapse
Affiliation(s)
| | - Greg Tiao
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lee M. Bass
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | | | | | - Nanda Kerkar
- Children’s Hospital Los Angeles, Los Angeles, CA
| | | | - Colleen Azen
- Children’s Hospital Los Angeles, Los Angeles, CA
| | - Laura Bull
- University of California, San Francisco, CA
| | | | | | | | | | - Molly Bozic
- Riley Hospital for Children, Indianapolis, IN
| | | | | | | | | | | | - Saul Karpen
- Children’s Healthcare of Atlanta, Atlanta, GA
| | | | | | - Cara Mack
- Children’s Hospital Colorado, Aurora, CO
| | - Peter Mattei
- Children’s Hospital of Philadelphia, Philadelphia, PA
| | | | - Kyle Soltys
- Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | | - Karen West
- Riley Hospital for Children, Indianapolis, IN
| | | | - Cat Goodhue
- Children’s Hospital Los Angeles, Los Angeles, CA
| | - Benjamin L. Shneider
- Texas Children’s Hospital, Houston, TX,Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
11
|
Lemoine C, Bhardwaj T, Bass LM, Superina RA. Outcomes following partial external biliary diversion in patients with progressive familial intrahepatic cholestasis. J Pediatr Surg 2017; 52:268-272. [PMID: 27916445 DOI: 10.1016/j.jpedsurg.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND/PURPOSE PFIC is a family of bile acid (BA) transport disorders that may result in serious liver disease requiring transplantation. We reviewed our experience with PEBD as a method to improve liver function and avoid transplantation. METHODS All patients with PFIC were reviewed. Outcomes included changes in serum BA, conversion to ileal bypass (IB), and survival without transplantation. Statistics were obtained using paired t-test and Wilcoxon test. RESULTS Thirty-five patients with PFIC were identified. Data were available in 24. Twenty-four children (12 males) underwent PEBD: 10 PFIC-1, 13 PFIC-2, and one PFIC-3. BA levels decreased in PFIC-1 patients (1724±3215 to 11±6μmol/L, P=0.03) and in the single PFIC-3 patient (821 to 11.2μmol/L), but not significantly in PFIC-2 patients (193±99 to 141±118μmol/L, P=0.15). Seven patients were converted to IB. There were no significant changes in BA levels following conversion. Five-year transplant-free survival was 100% in PFIC-1 and PFIC-3, but only 38% (5/13) in PFIC-2 (P=0.004). CONCLUSION PEBD is an effective procedure to reduce total BA levels and improve symptoms in PFIC patients. However, it appears to be less efficacious in the PFIC-2 group. The higher BA levels could contribute to ongoing liver damage, and thus a higher transplant rate in PFIC-2 patients. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
- Caroline Lemoine
- Division of Transplant Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - Tanya Bhardwaj
- Division of Transplant Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - Lee M Bass
- Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
| | - Riccardo A Superina
- Division of Transplant Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Kubitz R, Dröge C, Kluge S, Stross C, Walter N, Keitel V, Häussinger D, Stindt J. Autoimmune BSEP disease: disease recurrence after liver transplantation for progressive familial intrahepatic cholestasis. Clin Rev Allergy Immunol 2016; 48:273-84. [PMID: 25342496 DOI: 10.1007/s12016-014-8457-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe cholestasis may result in end-stage liver disease with the need of liver transplantation (LTX). In children, about 10 % of LTX are necessary because of cholestatic liver diseases. Apart from bile duct atresia, three types of progressive familial intrahepatic cholestasis (PFIC) are common causes of severe cholestasis in children. The three subtypes of PFIC are defined by the involved genes: PFIC-1, PFIC-2, and PFIC-3 are due to mutations of P-type ATPase ATP8B1 (familial intrahepatic cholestasis 1, FIC1), the ATP binding cassette transporter ABCB11 (bile salt export pump, BSEP), or ABCB4 (multidrug resistance protein 3, MDR3), respectively. All transporters are localized in the canalicular membrane of hepatocytes and together mediate bile salt and phospholipid transport. In some patients with PFIC-2 disease, recurrence has been observed after LTX, which mimics a PFIC phenotype. It could be shown by several groups that inhibitory anti-BSEP antibodies emerge, which most likely cause disease recurrence. The prevalence of severe BSEP mutations (e.g., splice site and premature stop codon mutations) is very high in this group of patients. These mutations often result in the complete absence of BSEP, which likely accounts for an insufficient auto-tolerance against BSEP. Although many aspects of this "new" disease are not fully elucidated, the possibility of anti-BSEP antibody formation has implications for the pre- and posttransplant management of PFIC-2 patients. This review will summarize the current knowledge including diagnosis, pathomechanisms, and management of "autoimmune BSEP disease."
Collapse
Affiliation(s)
- Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Grochowski CM, Rajagopalan R, Falsey AM, Loomes KM, Piccoli DA, Krantz ID, Devoto M, Spinner NB. Exome sequencing reveals compound heterozygous mutations in ATP8B1 in a JAG1/NOTCH2 mutation-negative patient with clinically diagnosed Alagille syndrome. Am J Med Genet A 2015; 167A:891-3. [PMID: 25737299 DOI: 10.1002/ajmg.a.36946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/12/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Christopher M Grochowski
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Liver biopsy (LB) is still the criterion standard procedure for obtaining liver tissue for histopathological examination and a valuable tool in the diagnosis, prognosis, and management of many parenchymal liver diseases. The aim of this position paper is to summarise the present practice of paediatric LB and make recommendations about its performance. Although histological evaluation of the liver is important in assessing prognosis and exploring treatment, noninvasive techniques (ie, imaging, laboratory markers) may replace use of liver histology. The indications for LB are changing as present knowledge of aetiologies, pathomechanism, and therapeutic options in paediatric liver disease is evolving. Adult and paediatric literature was reviewed to assess the existing clinical practice of LB with focus on the technique, indications, risk of complications, and contraindications in paediatrics. This position paper presents types of LB, indications, complications, contraindications, and an essential checklist for paediatric LB.
Collapse
|
15
|
Girard M, Lacaille F, Verkarre V, Mategot R, Feldmann G, Grodet A, Sauvat F, Irtan S, Davit-Spraul A, Jacquemin E, Ruemmele F, Rainteau D, Goulet O, Colomb V, Chardot C, Henrion-Caude A, Debray D. MYO5B and bile salt export pump contribute to cholestatic liver disorder in microvillous inclusion disease. Hepatology 2014; 60:301-10. [PMID: 24375397 DOI: 10.1002/hep.26974] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED Microvillous inclusion disease (MVID) is a congenital disorder of the enterocyte related to mutations in the MYO5B gene, leading to intractable diarrhea often necessitating intestinal transplantation (ITx). Among our cohort of 28 MVID patients, 8 developed a cholestatic liver disease akin to progressive familial intrahepatic cholestasis (PFIC). Our aim was to investigate the mechanisms by which MYO5B mutations affect hepatic biliary function and lead to cholestasis in MVID patients. Clinical and biological features and outcome were reviewed. Pretransplant liver biopsies were analyzed by immunostaining and electron microscopy. Cholestasis occurred before (n = 5) or after (n = 3) ITx and was characterized by intermittent jaundice, intractable pruritus, increased serum bile acid (BA) levels, and normal gamma-glutamyl transpeptidase activity. Liver histology showed canalicular cholestasis, mild-to-moderate fibrosis, and ultrastructural abnormalities of bile canaliculi. Portal fibrosis progressed in 5 patients. No mutation in ABCB11/BSEP or ATP8B1/FIC1 genes were identified. Immunohistochemical studies demonstrated abnormal cytoplasmic distribution of MYO5B, RAB11A, and BSEP in hepatocytes. Interruption of enterohepatic BA cycling after partial external biliary diversion or graft removal proved the most effective to ensure long-term remission. CONCLUSION MVID patients are at risk of developing a PFIC-like liver disease that may hamper outcome after ITx. Our results suggest that cholestasis in MVID patients results from (1) impairment of the MYO5B/RAB11A apical recycling endosome pathway in hepatocytes, (2) altered targeting of BSEP to the canalicular membrane, and (3) increased ileal BA absorption. Because cholestasis worsens after ITx, indication of a combined liver ITx should be discussed in MVID patients with severe cholestasis. Future studies will need to address more specifically the effect of MYO5B dysfunction in BA homeostasis.
Collapse
Affiliation(s)
- Muriel Girard
- Department of Pediatric Gastroenterology and Hepatology, Necker Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes-Sorbonne Cité, Paris, France; INSERM, UMR 781, Université Paris Descartes-Sorbonne Cité, Institut Imagine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anakk S, Watanabe M, Ochsner SA, McKenna NJ, Finegold MJ, Moore DD. Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cholestasis. J Clin Invest 2011; 121:86-95. [PMID: 21123943 PMCID: PMC3007143 DOI: 10.1172/jci42846] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/13/2010] [Indexed: 12/17/2022] Open
Abstract
Bile acid homeostasis is tightly regulated via a feedback loop operated by the nuclear receptors farnesoid X receptor (FXR) and small heterodimer partner (SHP). Contrary to current models, which place FXR upstream of SHP in a linear regulatory pathway, here we show that the phenotypic consequences in mice of the combined loss of both receptors are much more severe than the relatively modest impact of the loss of either Fxr or Shp alone. Fxr-/-Shp-/- mice exhibited cholestasis and liver injury as early as 3 weeks of age, and this was linked to the dysregulation of bile acid homeostatic genes, particularly cytochrome P450, family 7, subfamily a, polypeptide 1 (Cyp7a1). In addition, double-knockout mice showed misregulation of genes in the C21 steroid biosynthesis pathway, with strong induction of cytochrome P450, family 17, subfamily a, polypeptide 1 (Cyp17a1), resulting in elevated serum levels of its enzymatic product 17-hydroxyprogesterone (17-OHP). Treatment of WT mice with 17-OHP was sufficient to induce liver injury that reproduced many of the histopathological features observed in the double-knockout mice. Therefore, our data indicate a pathologic role for increased production of 17-hydroxy steroid metabolites in liver injury and suggest that Fxr-/-Shp-/- mice could provide a model for juvenile onset cholestasis.
Collapse
Affiliation(s)
- Sayeepriyadarshini Anakk
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Mitsuhiro Watanabe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Milton J. Finegold
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
Department of Internal Medicine, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Davit-Spraul A, Fabre M, Branchereau S, Baussan C, Gonzales E, Stieger B, Bernard O, Jacquemin E. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology 2010; 51:1645-55. [PMID: 20232290 DOI: 10.1002/hep.23539] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Progressive familial intrahepatic cholestasis (PFIC) types 1 and 2 are characterized by normal serum gamma-glutamyl transferase (GGT) activity and are due to mutations in ATP8B1 (encoding FIC1) and ABCB11 (encoding bile salt export pump [BSEP]), respectively. Our goal was to evaluate the features that may distinguish PFIC1 from PFIC2 and ease their diagnosis. We retrospectively reviewed charts of 62 children with normal-GGT PFIC in whom a search for ATP8B1 and/or ABCB11 mutation, liver BSEP immunostaining, and/or bile analysis were performed. Based on genetic testing, 13 patients were PFIC1 and 39 PFIC2. The PFIC origin remained unknown in 10 cases. PFIC2 patients had a higher tendency to develop neonatal cholestasis. High serum alanine aminotransferase and alphafetoprotein levels, severe lobular lesions with giant hepatocytes, early liver failure, cholelithiasis, hepatocellular carcinoma, very low biliary bile acid concentration, and negative BSEP canalicular staining suggest PFIC2, whereas an absence of these signs and/or presence of extrahepatic manifestations suggest PFIC1. The PFIC1 and PFIC2 phenotypes were not clearly correlated with mutation types, but we found tendencies for a better prognosis and response to ursodeoxycholic acid (UDCA) or biliary diversion (BD) in a few children with missense mutations. Combination of UDCA, BD, and liver transplantation allowed 87% of normal-GGT PFIC patients to be alive at a median age of 10.5 years (1-36), half of them without liver transplantation. CONCLUSION PFIC1 and PFIC2 differ clinically, biochemically, and histologically at presentation and/or during the disease course. A small proportion of normal-GGT PFIC is likely not due to ATP8B1 or ABCB11 mutations.
Collapse
Affiliation(s)
- Anne Davit-Spraul
- Biochemistry Unit, Hôpital Bicêtre, Assistance Publique, Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stapelbroek JM, van Erpecum KJ, Klomp LWJ, Houwen RHJ. Liver disease associated with canalicular transport defects: current and future therapies. J Hepatol 2010; 52:258-71. [PMID: 20034695 DOI: 10.1016/j.jhep.2009.11.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bile formation at the canalicular membrane is a delicate process. This is illustrated by inherited liver diseases due to mutations in ATP8B1, ABCB11, ABCB4, ABCC2 and ABCG5/8, all encoding hepatocanalicular transporters. Effective treatment of these canalicular transport defects is a clinical and scientific challenge that is still ongoing. Current evidence indicates that ursodeoxycholic acid (UDCA) can be effective in selected patients with PFIC3 (ABCB4 deficiency), while rifampicin reduces pruritus in patients with PFIC1 (ATP8B1 deficiency) and PFIC2 (ABCB11 deficiency), and might abort cholestatic episodes in BRIC (mild ATP8B1 or ABCB11 deficiency). Cholestyramine is essential in the treatment of sitosterolemia (ABCG5/8 deficiency). Most patients with PFIC1 and PFIC2 will benefit from partial biliary drainage. Nevertheless liver transplantation is needed in a substantial proportion of these patients, as it is in PFIC3 patients. New developments in the treatment of canalicular transport defects by using nuclear receptors as a target, enhancing the expression of the mutated transporter protein by employing chaperones, or by mutation specific therapy show substantial promise. This review will focus on the therapy that is currently available as well as on those developments that are likely to influence clinical practice in the near future.
Collapse
Affiliation(s)
- Janneke M Stapelbroek
- Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|