1
|
Nemetchek B, English L, Kissoon N, Ansermino JM, Moschovis PP, Kabakyenga J, Fowler-Kerry S, Kumbakumba E, Wiens MO. Paediatric postdischarge mortality in developing countries: a systematic review. BMJ Open 2018; 8:e023445. [PMID: 30593550 PMCID: PMC6318528 DOI: 10.1136/bmjopen-2018-023445] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES To update the current evidence base on paediatric postdischarge mortality (PDM) in developing countries. Secondary objectives included an evaluation of risk factors, timing and location of PDM. DESIGN Systematic literature review without meta-analysis. DATA SOURCES Searches of Medline and EMBASE were conducted from October 2012 to July 2017. ELIGIBILITY CRITERIA Studies were included if they were conducted in developing countries and examined paediatric PDM. 1238 articles were screened, yielding 11 eligible studies. These were added to 13 studies identified in a previous systematic review including studies prior to October 2012. In total, 24 studies were included for analysis. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted and synthesised data using Microsoft Excel. RESULTS Studies were conducted mostly within African countries (19 of 24) and looked at all admissions or specific subsets of admissions. The primary subpopulations included malnutrition, respiratory infections, diarrhoeal diseases, malaria and anaemia. The anaemia and malaria subpopulations had the lowest PDM rates (typically 1%-2%), while those with malnutrition and respiratory infections had the highest (typically 3%-20%). Although there was significant heterogeneity between study populations and follow-up periods, studies consistently found rates of PDM to be similar, or to exceed, in-hospital mortality. Furthermore, over two-thirds of deaths after discharge occurred at home. Highly significant risk factors for PDM across all infectious admissions included HIV status, young age, pneumonia, malnutrition, anthropometric variables, hypoxia, anaemia, leaving hospital against medical advice and previous hospitalisations. CONCLUSIONS Postdischarge mortality rates are often as high as in-hospital mortality, yet remain largely unaddressed. Most children who die following discharge do so at home, suggesting that interventions applied prior to discharge are ideal to addressing this neglected cause of mortality. The development, therefore, of evidence-based, risk-guided, interventions must be a focus to achieve the sustainable development goals.
Collapse
Affiliation(s)
- Brooklyn Nemetchek
- College of Nursing, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lacey English
- Department of Medicine, University of North Carolina, Raleigh, North Carolina, USA
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Center for International Child Health, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - John Mark Ansermino
- Center for International Child Health, BC Children's Hospital, Vancouver, British Columbia, Canada
- Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Peter P Moschovis
- Division of Global Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jerome Kabakyenga
- Maternal, Newborn and Child Health Institute, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Susan Fowler-Kerry
- College of Nursing, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elias Kumbakumba
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Matthew O Wiens
- Center for International Child Health, BC Children's Hospital, Vancouver, British Columbia, Canada
- Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
2
|
Mbugi EV, Katale BZ, Streicher EM, Keyyu JD, Kendall SL, Dockrell HM, Michel AL, Rweyemamu MM, Warren RM, Matee MI, van Helden PD, Couvin D, Rastogi N. Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries. PLoS One 2016; 11:e0154571. [PMID: 27149626 PMCID: PMC4858144 DOI: 10.1371/journal.pone.0154571] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/15/2016] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.
Collapse
Affiliation(s)
- Erasto V. Mbugi
- Department of Biochemistry, Muhimbili University of Health and Allied Sciences, P. O. Box 65001, Dar es Salaam, Tanzania
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Bugwesa Z. Katale
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Elizabeth M. Streicher
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Julius D. Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), P.O. Box 661, Arusha, Tanzania
| | - Sharon L. Kendall
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Hazel M. Dockrell
- The Royal Veterinary College, Royal College Street, London, NW1 0TU, United Kingdom
| | - Anita L. Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mark M. Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Robin M. Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - Mecky I. Matee
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Paul D. van Helden
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/ South African Medical Research Council (MRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, P.O. Box 241, Cape Town, 8000, South Africa
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis & Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Joliviere, BP 484, 97183, Abymes, Guadeloupe
| |
Collapse
|
3
|
Schumacher SG, Sohn H, Qin ZZ, Gore G, Davis JL, Denkinger CM, Pai M. Impact of Molecular Diagnostics for Tuberculosis on Patient-Important Outcomes: A Systematic Review of Study Methodologies. PLoS One 2016; 11:e0151073. [PMID: 26954678 PMCID: PMC4783056 DOI: 10.1371/journal.pone.0151073] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Several reviews on the accuracy of Tuberculosis (TB) Nucleic Acid Amplification Tests (NAATs) have been performed but the evidence on their impact on patient-important outcomes has not been systematically reviewed. Given the recent increase in research evaluating such outcomes and the growing list of TB NAATs that will reach the market over the coming years, there is a need to bring together the existing evidence on impact, rather than accuracy. We aimed to assess the approaches that have been employed to measure the impact of TB NAATs on patient-important outcomes in adults with possible pulmonary TB and/or drug-resistant TB. METHODS We first develop a conceptual framework to clarify through which mechanisms the improved technical performance of a novel TB test may lead to improved patient outcomes and outline which designs may be used to measure them. We then systematically review the literature on studies attempting to assess the impact of molecular TB diagnostics on such outcomes and provide a narrative synthesis of designs used, outcomes assessed and risk of bias across different study designs. RESULTS We found 25 eligible studies that assessed a wide range of outcomes and utilized a variety of experimental and observational study designs. Many potentially strong design options have never been used. We found that much of the available evidence on patient-important outcomes comes from a small number of settings with particular epidemiological and operational context and that confounding, time trends and incomplete outcome data receive insufficient attention. CONCLUSIONS A broader range of designs should be considered when designing studies to assess the impact of TB diagnostics on patient outcomes and more attention needs to be paid to the analysis as concerns about confounding and selection bias become relevant in addition to those on measurement that are of greatest concern in accuracy studies.
Collapse
Affiliation(s)
- Samuel G. Schumacher
- McGill University Department of Epidemiology & Biostatistics, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Hojoon Sohn
- McGill University Department of Epidemiology & Biostatistics, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Zhi Zhen Qin
- McGill University Department of Epidemiology & Biostatistics, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| | - Genevieve Gore
- McGill University, Schulich Library of Science and Engineering, Montreal, Canada
| | - J. Lucian Davis
- UCSF Pulmonary & Critical Care Medicine, San Francisco, United States of America
| | - Claudia M. Denkinger
- McGill University Department of Epidemiology & Biostatistics, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
- Beth Israel Deaconess Medical Centre, Division of Infectious Disease, Boston, MA, United States of America
| | - Madhukar Pai
- McGill University Department of Epidemiology & Biostatistics, Montreal, Canada
- McGill International TB Centre, Montreal, Canada
| |
Collapse
|