1
|
Onyango MG, Attardo GM, Kelly ET, Bialosuknia SM, Stout J, Banker E, Kuo L, Ciota AT, Kramer LD. Zika Virus Infection Results in Biochemical Changes Associated With RNA Editing, Inflammatory and Antiviral Responses in Aedes albopictus. Front Microbiol 2020; 11:559035. [PMID: 33133033 PMCID: PMC7561680 DOI: 10.3389/fmicb.2020.559035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Rapid and significant range expansion of both the Zika virus (ZIKV) and its Aedes vector species has resulted in the declaration of ZIKV as a global health threat. Successful transmission of ZIKV by its vector requires a complex series of interactions between these entities including the establishment, replication and dissemination of the virus within the mosquito. The metabolic conditions within the mosquito tissues play a critical role in mediating the crucial processes of viral infection and replication and represent targets for prevention of virus transmission. In this study, we carried out a comprehensive metabolomic phenotyping of ZIKV infected and uninfected Ae. albopictus by untargeted analysis of primary metabolites, lipids and biogenic amines. We performed a comparative metabolomic study of infection state with the aim of understanding the biochemical changes resulting from the interaction between the ZIKV and its vector. We have demonstrated that ZIKV infection results in changes to the cellular metabolic environment including a significant enrichment of inosine and pseudo-uridine (Ψ) levels which may be associated with RNA editing activity. In addition, infected mosquitoes demonstrate a hypoglycemic phenotype and show significant increases in the abundance of metabolites such as prostaglandin H2, leukotriene D4 and protoporphyrinogen IX which are associated with antiviral activity. These provide a basis for understanding the biochemical response to ZIKV infection and pathology in the vector. Future mechanistic studies targeting these ZIKV infection responsive metabolites and their associated biosynthetic pathways can provide inroads to identification of mosquito antiviral responses with infection blocking potential.
Collapse
Affiliation(s)
- Maria G. Onyango
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Geoffrey M. Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Erin Taylor Kelly
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Sean M. Bialosuknia
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| | - Jessica Stout
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Elyse Banker
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
| | - Alexander T. Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| | - Laura D. Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States
- School of Public Health, State University of New York, Albany, NY, United States
| |
Collapse
|
2
|
Zhang A, Wan B, Jiang D, Wu Y, Ji P, Du Y, Zhang G. The Cytoprotective Enzyme Heme Oxygenase-1 Suppresses Pseudorabies Virus Replication in vitro. Front Microbiol 2020; 11:412. [PMID: 32231654 PMCID: PMC7082841 DOI: 10.3389/fmicb.2020.00412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies virus (PRV) infection brings about great economic losses to the swine industry worldwide, as there are currently no effective therapeutic agents or vaccines against this disease, and mutations in endemic wild virulent PRV strains result in immune failure of traditional vaccines. Heme oxygenase-1 (HO-1) catalyzes the conversion of heme into biliverdin (BV), iron and carbon monoxide (CO), all of which have been demonstrated to protect cells from various stressors. However, the role of HO-1 in PRV replication remains unknown. Thus, the present study aimed to investigate the effect of HO-1 on PRV replication and determine its underlying molecular mechanisms. The results demonstrated that induction of HO-1 via cobalt-protoporphyrin (CoPP) markedly suppressed PRV replication, while HO-1 specific small interfering RNA or inhibitor zinc-protoporphyrin partially reversed the inhibitory effect of CoPP on PRV replication. Furthermore, overexpression of HO-1 notably inhibited PRV replication, while knockdown of endogenous HO-1 expression promoted PRV replication. Mechanism analyses indicated that the HO-1 downstream metabolites, CO and BV/BR partially mediated the virus suppressive effect of HO-1. Taken together, the results of the present study suggest that HO-1 may be developed as a novel endogenous antiviral factor against PRV, and the HO-1/BV/CO system may constitute a unique antiviral protection network during PRV infection and interaction with host cells.
Collapse
Affiliation(s)
- Angke Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengchao Ji
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
4
|
Remichkova M, Mukova L, Nikolaeva-Glomb L, Nikolova N, Doumanova L, Mantareva V, Angelov I, Kussovski V, Galabov AS. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes. ACTA ACUST UNITED AC 2017; 72:123-128. [PMID: 27845890 DOI: 10.1515/znc-2016-0119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 11/15/2022]
Abstract
Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.
Collapse
Affiliation(s)
- Mimi Remichkova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Luchia Mukova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Nadya Nikolova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lubka Doumanova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Veselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Angel S Galabov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 26, 1113 Sofia, Bulgaria, Phone: +359-2-870-0108, Fax: +359-2-870-0109
| |
Collapse
|
5
|
Mechanisms of Vesicular Stomatitis Virus Inactivation by Protoporphyrin IX, Zinc-Protoporphyrin IX, and Mesoporphyrin IX. Antimicrob Agents Chemother 2017; 61:AAC.00053-17. [PMID: 28348154 DOI: 10.1128/aac.00053-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
Virus resistance to antiviral therapies is an increasing concern that makes the development of broad-spectrum antiviral drugs urgent. Targeting of the viral envelope, a component shared by a large number of viruses, emerges as a promising strategy to overcome this problem. Natural and synthetic porphyrins are good candidates for antiviral development due to their relative hydrophobicity and pro-oxidant character. In the present work, we characterized the antiviral activities of protoprophyrin IX (PPIX), Zn-protoporphyrin IX (ZnPPIX), and mesoporphyrin IX (MPIX) against vesicular stomatitis virus (VSV) and evaluated the mechanisms involved in this activity. Treatment of VSV with PPIX, ZnPPIX, and MPIX promoted dose-dependent virus inactivation, which was potentiated by porphyrin photoactivation. All three porphyrins inserted into lipid vesicles and disturbed the viral membrane organization. In addition, the porphyrins also affected viral proteins, inducing VSV glycoprotein cross-linking, which was enhanced by porphyrin photoactivation. Virus incubation with sodium azide and α-tocopherol partially protected VSV from inactivation by porphyrins, suggesting that singlet oxygen (1O2) was the main reactive oxygen species produced by photoactivation of these molecules. Furthermore, 1O2 was detected by 9,10-dimethylanthracene oxidation in photoactivated porphyrin samples, reinforcing this hypothesis. These results reveal the potential therapeutic application of PPIX, ZnPPIX, and MPIX as good models for broad antiviral drug design.
Collapse
|
6
|
Assunção-Miranda I, Cruz-Oliveira C, Neris R, Figueiredo C, Pereira L, Rodrigues D, Araujo D, Da Poian A, Bozza M. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX. J Appl Microbiol 2016; 120:790-804. [DOI: 10.1111/jam.13038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/25/2022]
Affiliation(s)
- I. Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - C. Cruz-Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - R.L.S. Neris
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - C.M. Figueiredo
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - L.P.S. Pereira
- Instituto de Bioquímica Médica Leopoldo de Meis; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - D. Rodrigues
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - D.F.F. Araujo
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - A.T. Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| | - M.T. Bozza
- Instituto de Microbiologia Paulo de Góes; Universidade Federal do Rio de Janeiro; Rio de Janeiro Brazil
| |
Collapse
|
7
|
Abstract
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
Collapse
|
8
|
Dixon DW, Gill AF, Sook BR. Characterization of sulfonated phthalocyanines by mass spectrometry and capillary electrophoresis. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000672] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report the characterization of sulfonated phthalocyanines using capillary electrophoresis and mass spectrometry. Derivatives investigated included the copper, cobalt, zinc and metal-free sulfonated phthalocyanines. In general, sulfonated phthalocyanines were found as aggregates in capillary electrophoresis separations, even at low concentration. Separations were much better at pH 9.0 than at pH 2.5. The addition of β-cyclodextrin did not alter the electropherograms significantly. The electropherograms of commercially available copper phthalocyanine-3,4',4″,4‴-tetrasulfonic acid and 4,4',4″,4‴-tetrasulfonic acid were very different, consistent with the latter compound having a structure that is not fully sulfonated. Matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) were used to characterize the sulfonated phthalocyanines. In general, MALDI gave better results than ESI. Mass spectral evidence was obtained for a pentasulfonated species of both the metal-free phthalocyanine and zinc phthalocyanine when these species were made by sulfonation of the metal-free phthalocyanine (followed by zinc insertion in the latter case). Sulfonated tetraphenylporphyrin derivatives were used as standards for mass spectrometry and to estimate the effect of net charge on the capillary electrophoresis migration time for sulfonated tetrapyrroles. Clean separation of the sulfonated tetraphenylporphyrin derivatives [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4), 5,10,15-tris(4-sulfonatophenyl)-20-phenylporphyrin (TPPS3) and 5,10-bis(4-sulfonatophenyl)-15,20-diphenylporphyrin (TPPS2a)] was observed by capillary electrophoresis.
Collapse
Affiliation(s)
- Dabney W. Dixon
- Department of Chemistry, Box 4098, Georgia State University, Atlanta, GA 30303-4098, USA
| | - Anila F. Gill
- Department of Chemistry, Box 4098, Georgia State University, Atlanta, GA 30303-4098, USA
| | - Brian R. Sook
- Department of Chemistry, Box 4098, Georgia State University, Atlanta, GA 30303-4098, USA
| |
Collapse
|
9
|
A novel class of meso-tetrakis-porphyrin derivatives exhibits potent activities against hepatitis C virus genotype 1b replicons in vitro. Antimicrob Agents Chemother 2009; 54:197-206. [PMID: 19901090 DOI: 10.1128/aac.01206-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent years have seen the rapid advancement of new therapeutic agents against hepatitis C virus (HCV) in response to the need for treatment that is unmet by interferon (IFN)-based therapies. Most antiviral drugs discovered to date are small molecules that modulate viral enzyme activities. In the search for highly selective protein-binding molecules capable of disrupting the viral life cycle, we have identified a class of anionic tetraphenylporphyrins as potent and specific inhibitors of the HCV replicons. Based on the structure-activity relationship studies reported herein, meso-tetrakis-(3,5-dicarboxy-4,4'-biphenyl) porphyrin was found to be the most potent inhibitor of HCV genotype 1b (Con1) replicon systems but was less effective against the genotype 2a (JFH-1) replicon. This compound induced a reduction of viral RNA and protein levels when acting in the low nanomolar range. Moreover, the compound could suppress replicon rebound in drug-treated cells and exhibited additive to synergistic effects when combined with protease inhibitor BILN 2061 or with IFN-alpha-2a. Our results demonstrate the potential use of tetracarboxyphenylporphyrins as potent anti-HCV agents.
Collapse
|
10
|
Gianferrara T, Bratsos I, Iengo E, Milani B, Ostrić A, Spagnul C, Zangrando E, Alessio E. Synthetic strategies towards ruthenium-porphyrin conjugates for anticancer activity. Dalton Trans 2009:10742-56. [PMID: 20023904 DOI: 10.1039/b911393b] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conjugation of porphyrins to metal fragments is a strategy for making new compounds that are expected to combine the phototoxicity and the tumour-localization properties of the porphyrin chromophore with the cytotoxicity of the metal fragment for additive antitumour effect. We report here the preparation of new classes of porphyrin-ruthenium conjugates with potential bio-medical applications. Ruthenium was chosen because several Ru compounds have shown promising anticancer activity. The conjugation with the porphyrin moiety was accomplished either through peripheral pyridyl rings (e.g.meso-4'-tetrapyridylporphyrin, 4'TPyP) or through bpy units (e.g.meso-(p-bpy-phenyl)porphyrins, bpy(n)-PPs, n = 1-4). The number of Ru fragments attached to the porphyrins ranges from 1 to 4 and the total charge of the conjugates from -4 to +8. Different types of peripheral fragments, both Ru(III) and Ru(II), have been used: in some cases they are structurally similar to established anticancer compounds. Examples are [Na](4)[4'TPyP{trans-RuCl(4)(dmso-S)}(4)] (2), that bears four NAMI-type Ru(III) fragments, or [4'TPyP{Ru([9]aneS3)(en)}(4)][CF(3)SO(3)](8) (3) and [bpy(4)-PP{Ru([9]aneS3)(dmso-S)}(4)][CF(3)SO(3)](8) (9) (en = ethane-1,2-diamine, [9]aneS3 = 1,4,7-trithiacyclononane) that have four half-sandwich Ru(II) compounds. The Ru fragments may either contain one or more labile ligands, such as in 2 or in 9, or be coordinatively saturated and substitutionally inert, such as in 3 or in [bpy(4)-PP{Ru([12]aneS4)}(4)][CF(3)SO(3)](8) (11) ([12]aneS4 = 1,4,7,10-tetrathiacyclododecane). Most of the ruthenium-porphyrin conjugates described in this work are soluble--at least moderately--in aqueous solution and are thus suitable for biological investigations, in particular for cytotoxicity and photo-cytotoxicity tests.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Parker S, Handley L, Buller RM. Therapeutic and prophylactic drugs to treat orthopoxvirus infections. Future Virol 2008; 3:595-612. [PMID: 19727418 DOI: 10.2217/17460794.3.6.595] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the global eradication of smallpox in 1979, the causative agent, variola, no longer circulates in human populations. Other human poxvirus infections, such as those caused by vaccinia, cowpox virus and molluscum, are usually relatively benign in immunocompetent individuals. Conversely, monkeypox virus infections cause high levels of mortality and morbidity in Africa and the virus appears to be increasing its host range, virulence and demographic environs. Furthermore, there are concerns that clandestine stocks of variola virus exist. The re-introduction of aerosolized variola (or perhaps monkeypox virus) into human populations would result in high levels of morbidity and mortality. The attractiveness of variola as a bioweapon and, to a certain extent, monkeypox virus is its inherent ability to spread from person-to-person. The threat posed by the intentional release of variola or monkeypox virus, or a monkeypox virus epizoonosis, will require the capacity to rapidly diagnose the disease and to intervene with antivirals, as intervention is likely to take place during the initial diagnosis, approximately 10-15 days postinfection. Preimmunization of 'at-risk populations' with vaccines will likely not be practical, and the therapeutic use of vaccines has been shown to be ineffective after 4 days of infection with variola. However, a combination of vaccine and antivirals for those infected may be an option. Here we describe historical, current and future therapies to treat orthopoxvirus diseases.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology & Immunology, Saint Louis University Health Sciences Center, St Louis, MO 63104, USA
| | | | | |
Collapse
|
12
|
Casteel MJ, Jayaraj K, Gold A, Ball LM, Sobsey MD. Photoinactivation of Hepatitis A Virus by Synthetic Porphyrins¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00086.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Vzorov AN, Bhattacharyya D, Marzilli LG, Compans RW. Prevention of HIV-1 infection by platinum triazines. Antiviral Res 2005; 65:57-67. [PMID: 15708632 DOI: 10.1016/j.antiviral.2004.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 06/15/2004] [Indexed: 11/19/2022]
Abstract
To identify and explore the activity of compounds which may act as anti-HIV virucidal agents, we have investigated platinum compounds, especially those containing N-donor aromatic ligands. After screening over 70 related agents, including N-donor aromatic ligands and metal precursors, we have identified a novel class of platinum(II) complexes with 2-pyridyl-1,2,4-triazine derivatives and Pt(II) formulations with these derivatives (ptt compounds) as having the highest anti-HIV activity. The maximum activity was observed when the agents were added immediately post-infection. The ptt agents did not block cell fusion activity of HIV-1 Env proteins in cells bearing CD4X4 or CD4R5 receptors, indicating a lack of interaction with the Env protein. The ptt compounds exhibit low toxicity for human epithelial cells, and are thus promising candidates for use as microbicides or antiviral agents against HIV.
Collapse
Affiliation(s)
- A N Vzorov
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University, 1510 Clifton Road, Room 3001, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
14
|
Gianferrara T, Serli B, Zangrando E, Iengo E, Alessio E. Pyridylporphyrins peripherally coordinated to ruthenium-nitrosyls, including the water-soluble Na4[Zn·4′TPyP{RuCl4(NO)}4]: synthesis and structural characterization. NEW J CHEM 2005. [DOI: 10.1039/b418855a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Casteel MJ, Jayaraj K, Gold A, Ball LM, Sobsey MD. Photoinactivation of Hepatitis A Virus by Synthetic Porphyrins¶. Photochem Photobiol 2004. [DOI: 10.1562/2004-04-05-ra-134.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|