1
|
Ahmed S, Jiang X, Liu G, Yang H, Sadiq A, Yi D, Farooq U, Yiyu S, Zubair M. The protective role of maternal genetic immunization on maternal-fetal health and welfare. Int J Gynaecol Obstet 2023; 163:763-777. [PMID: 37218379 DOI: 10.1002/ijgo.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, University of Poonch, Rawalakot, Pakistan
| |
Collapse
|
2
|
Chaudhari T. Vaccinations in the newborn. Best Pract Res Clin Obstet Gynaecol 2021; 76:66-82. [DOI: 10.1016/j.bpobgyn.2020.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
|
3
|
Clemens EA, Alexander-Miller MA. Understanding Antibody Responses in Early Life: Baby Steps towards Developing an Effective Influenza Vaccine. Viruses 2021; 13:v13071392. [PMID: 34372597 PMCID: PMC8310046 DOI: 10.3390/v13071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The immune system of young infants is both quantitatively and qualitatively distinct from that of adults, with diminished responsiveness leaving these individuals vulnerable to infection. Because of this, young infants suffer increased morbidity and mortality from respiratory pathogens such as influenza viruses. The impaired generation of robust and persistent antibody responses in these individuals makes overcoming this increased vulnerability through vaccination challenging. Because of this, an effective vaccine against influenza viruses in infants under 6 months is not available. Furthermore, vaccination against influenza viruses is challenging even in adults due to the high antigenic variability across viral strains, allowing immune evasion even after induction of robust immune responses. This has led to substantial interest in understanding how specific antibody responses are formed to variable and conserved components of influenza viruses, as immune responses tend to strongly favor recognition of variable epitopes. Elicitation of broadly protective antibody in young infants, therefore, requires that both the unique characteristics of young infant immunity as well as the antibody immunodominance present among epitopes be effectively addressed. Here, we review our current understanding of the antibody response in newborns and young infants and discuss recent developments in vaccination strategies that can modulate both magnitude and epitope specificity of IAV-specific antibody.
Collapse
|
4
|
Immunization with DNA prime-subunit protein boost strategy based on influenza H9N2 virus conserved matrix protein M1 and its epitope screening. Sci Rep 2020; 10:4144. [PMID: 32139720 PMCID: PMC7057951 DOI: 10.1038/s41598-020-60783-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
Developing an effective universal influenza vaccine against influenza virus with highly conserved antigenic epitopes could induce a broad-spectrum immune response to prevent infection. The soluble protein M1 that can induce the M1 specific immune response was first confirmed in our previous study. In this study, we characterized the immune response induced by DNA prime-subunit protein boost strategy based on the relatively conserved matrix protein 1 (M1) in the BALB/c mouse model, and evaluated its protection ability against a lethal challenge of homologous H9N2 avian influenza virus (A/Chicken/Jiangsu/11/2002). The results showed that 100 μg DNA prime + 100 μg M1 subunit protein boost-strategy significantly increased antibody levels more than vaccination with M1 DNA or M1 subunit protein alone, and induced a more balanced Th1 / Th2 immune response, which not only can provide protection against the homologous virus but also can provide part of the cross-protection against the heterosubtypic PR8 H1N1 strain. In addition, we used an Elispot assay to preliminary screen the T cell epitope in M1 protein, and identified that p22 (M111-25 VLSIIPSGPLKAEIA) epitope was the only immunodominant M1-specific CD4+ T cell epitopes, which could be helpful in understanding the function of influenza virus T cell epitopes.
Collapse
|
5
|
Willis E, Pardi N, Parkhouse K, Mui BL, Tam YK, Weissman D, Hensley SE. Nucleoside-modified mRNA vaccination partially overcomes maternal antibody inhibition of de novo immune responses in mice. Sci Transl Med 2020; 12:eaav5701. [PMID: 31915303 PMCID: PMC7339908 DOI: 10.1126/scitranslmed.aav5701] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 06/21/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Maternal antibodies provide short-term protection to infants against many infections. However, they can inhibit de novo antibody responses in infants elicited by infections or vaccination, leading to increased long-term susceptibility to infectious diseases. Thus, there is a need to develop vaccines that are able to elicit protective immune responses in the presence of antigen-specific maternal antibodies. Here, we used a mouse model to demonstrate that influenza virus-specific maternal antibodies inhibited de novo antibody responses in mouse pups elicited by influenza virus infection or administration of conventional influenza vaccines. We found that a recently developed influenza vaccine, nucleoside-modified mRNA encapsulated in lipid nanoparticles (mRNA-LNP), partially overcame this inhibition by maternal antibodies. The mRNA-LNP influenza vaccine established long-lived germinal centers in the mouse pups and elicited stronger antibody responses than did a conventional influenza vaccine approved for use in humans. Vaccination with mRNA-LNP vaccines may offer a promising strategy for generating robust immune responses in infants in the presence of maternal antibodies.
Collapse
Affiliation(s)
- Elinor Willis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norbert Pardi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Xiong FF, Liu XY, Gao FX, Luo J, Duan P, Tan WS, Chen Z. Protective efficacy of anti-neuraminidase monoclonal antibodies against H7N9 influenza virus infection. Emerg Microbes Infect 2020; 9:78-87. [PMID: 31894728 PMCID: PMC6968527 DOI: 10.1080/22221751.2019.1708214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/24/2022]
Abstract
The H7N9 influenza virus has been circulating in China for more than six years. The neuraminidase (NA) has gained great concern for the development of antiviral drugs, therapeutic antibodies, and new vaccines. In this study, we screened seven mouse monoclonal antibodies (mAbs) and compared their protective effects against H7N9 influenza virus. The epitope mapping from escape mutants showed that all the seven mAbs could bind to the head region of the N9 NA close to the enzyme activity sites, and four key sites of N9 NA were reported for the first time. The mAbs D3 and 7H2 could simultaneously inhibit the cleavage of the sialic acid of fetuin protein with large molecular weight and NA-XTD with small molecule weight in the NA inhibition experiment, prevent the formation of virus plaque at a low concentration, and effectively protect the mice from the challenge of the lethal dose of H7N9 virus.
Collapse
Affiliation(s)
- Fei-Fei Xiong
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Xue-Ying Liu
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Fei-Xia Gao
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
- East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Peng Duan
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| | - Wen-Song Tan
- East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Chang H, Duan J, Zhou P, Su L, Zheng D, Zhang F, Fang F, Li X, Chen Z. Single immunization with MF59-adjuvanted inactivated whole-virion H7N9 influenza vaccine provides early protection against H7N9 virus challenge in mice. Microbes Infect 2017; 19:616-625. [DOI: 10.1016/j.micinf.2017.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/30/2017] [Indexed: 11/24/2022]
|
8
|
Riccardo F, Réal A, Voena C, Chiarle R, Cavallo F, Barutello G. Maternal Immunization: New Perspectives on Its Application Against Non-Infectious Related Diseases in Newborns. Vaccines (Basel) 2017; 5:E20. [PMID: 28763018 PMCID: PMC5620551 DOI: 10.3390/vaccines5030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The continuous evolution in preventive medicine has anointed vaccination a versatile, human-health improving tool, which has led to a steady decline in deaths in the developing world. Maternal immunization represents an incisive step forward for the field of vaccination as it provides protection against various life-threatening diseases in pregnant women and their children. A number of studies to improve prevention rates and expand protection against the largest possible number of infections are still in progress. The complex unicity of the mother-infant interaction, both during and after pregnancy and which involves immune system cells and molecules, is an able partner in the success of maternal immunization, as intended thus far. Interestingly, new studies have shed light on the versatility of maternal immunization in protecting infants from non-infectious related diseases, such as allergy, asthma and congenital metabolic disorders. However, barely any attempt at applying maternal immunization to the prevention of childhood cancer has been made. The most promising study reported in this new field is a recent proof of concept on the efficacy of maternal immunization in protecting cancer-prone offspring against mammary tumor progression. New investigations into the possibility of exploiting maternal immunization to prevent the onset and/or progression of neuroblastoma, one of the most common childhood malignancies, are therefore justified. Maternal immunization is presented in a new guise in this review. Attention will be focused on its versatility and potential applications in preventing tumor progression in neuroblastoma-prone offspring.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Aline Réal
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Claudia Voena
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino 10126, Italy.
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino 10126, Italy.
| |
Collapse
|
9
|
Intranasal Immunization of Mice to Avoid Interference of Maternal Antibody against H5N1 Infection. PLoS One 2016; 11:e0157041. [PMID: 27280297 PMCID: PMC4900595 DOI: 10.1371/journal.pone.0157041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/03/2022] Open
Abstract
Maternally-derived antibodies (MDAs) can protect offspring against influenza virus infection but may also inhibit active immune responses. To overcome MDA- mediated inhibition, active immunization of offspring with an inactivated H5N1 whole-virion vaccine under the influence of MDAs was explored in mice. Female mice were vaccinated twice via the intraperitoneal (IP) or intranasal (IN) route with the vaccine prior to mating. One week after birth, the offspring were immunized twice via the IP or IN route with the same vaccine and then challenged with a lethal dose of a highly homologous virus strain. The results showed that, no matter which immunization route (IP or IN) was used for mothers, the presence of MDAs severely interfered with the active immune response of the offspring when the offspring were immunized via the IP route. Only via the IN immunization route did the offspring overcome the MDA interference. These results suggest that intranasal immunization could be a suitable inoculation route for offspring to overcome MDA interference in the defense against highly pathogenic H5N1 virus infection. This study may provide references for human and animal vaccination to overcome MDA-induced inhibition.
Collapse
|
10
|
Zheng M, Liu F, Shen Y, Wang S, Xu W, Fang F, Sun B, Xie Z, Chen Z. Cross-protection against influenza virus infection by intranasal administration of nucleoprotein-based vaccine with compound 48/80 adjuvant. Hum Vaccin Immunother 2015; 11:397-406. [PMID: 25607884 DOI: 10.4161/21645515.2014.995056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleoprotein (NP) of influenza viruses is highly conserved and therefore has become one of the major targets of current universal influenza vaccine (UIV) studies. In this study, the recombinant nucleoprotein (NP) of the A/PR/8/34 (H1N1) influenza virus strain was expressed using an Escherichia coli (E. coli) expression system and then purified as a candidate UIV. The NP protein was administered intranasally or intraperitoneally twice at 3-week intervals to female BALB/c mice in combination with C48/80 adjuvant. Then, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose 3 weeks after the last immunization. The results showed that the serum IgG titers of all of the mice immunized with NP reached a higher level and the protection provided by NP vaccine against the homologous virus depended on the administered dosage and adjuvant. In addition, immunization with 100 μg NP in combination with C48/80 adjuvant could provide good cross-protection against heterologous H9N2 avian influenza viruses. This study indicated that NP as a candidate antigen of UIV immunized intranasally could effectively induce mucosal and cell-mediated immunity, with the potential to control epidemics caused by the appearance of new emerging influenza viruses.
Collapse
Affiliation(s)
- Mei Zheng
- a Shanghai Institute of Biological Products ; Shanghai , China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Long-term immunogenicity of an inactivated split-virion 2009 pandemic influenza A H1N1 virus vaccine with or without aluminum adjuvant in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:327-35. [PMID: 25589552 DOI: 10.1128/cvi.00662-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD(50)]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice.
Collapse
|
12
|
Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar ART, Mirjalili A, Mohammadi M, Banihashemi R, Ebrahimi SM. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a universal vaccine candidate enhances both humoral and cell-mediated immune responses and decreases viral shedding against experimental challenge of H9N2 influenza in chickens. Vet Microbiol 2014; 174:116-26. [PMID: 25293397 DOI: 10.1016/j.vetmic.2014.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023]
Abstract
As cellular immunity is essential for virus clearance, it is commonly accepted that no adequate cellular immunity is achieved by all available inactivated HA-based influenza vaccines. Thus, an improved influenza vaccine to induce both humoral and cell-mediated immune responses is urgently required to control LPAI H9N2 outbreaks in poultry farms. M2e-based vaccines have been suggested and developed as a new generation of universal vaccine candidate against influenza A infection. Our previous study have shown that a prime-boost administration of recombinant 4×M2e.HSP70c (r4M2e/H70c) fusion protein compared to conventional HA-based influenza vaccines provided full protection against lethal dose of influenza A viruses in mice. In the present study, the immunogenicity and protective efficacy of (r4M2e/H70c) was examined in chickens. The data reported herein show that protection against H9N2 viral challenge was significantly increased in chickens by injection of r4M2e/H70c compared with injection of conventional HA-based influenza vaccine adjuvanted with MF59 or recombinant 4×M2e (r4M2e) without HSP70c. Oropharyngeal and cloacal shedding of the virus was detected in all of the r4M2e/H70c vaccinated birds at 2 days after challenge, but the titer was low and decreased rapidly to reach undetectable levels at 7 days after challenge. Moreover, comparison of protective efficacy against LPAI H9N2 in birds intramuscularly immunized with r4M2e/H70c likely represented the ability of the M2e-based vaccine in providing cross-protection against heterosubtypic H9N2 challenge and also allowed the host immune system to induce HA-homosubtype neutralizing antibody against H9N2 challenge. This protective immunity might be attributed to enhanced cell-mediated immunity, which is interpreted as increased lymphocytes proliferation, increased levels of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines production and increased CD4(+) to CD8(+) ratios, resulting from the injection of four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (4×M2e) genetically fused to C-terminus of Mycobacterium tuberculosis HSP70 (mHSP70c).
Collapse
Affiliation(s)
- Mehran Dabaghian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran; Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, PO Box 14155-6453, Tehran, Iran
| | - Ali Mohammad Latify
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Hassan Nili
- Department of Avian Research, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Iran
| | | | - Ali Mirjalili
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Mashallah Mohammadi
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Reza Banihashemi
- Department of Medical Immunology, Tarbiyat Modares University, Tehran, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran.
| |
Collapse
|
13
|
Chowdhury MYE, Seo SK, Moon HJ, Talactac MR, Kim JH, Park ME, Son HY, Lee JS, Kim CJ. Heterosubtypic protective immunity against widely divergent influenza subtypes induced by fusion protein 4sM2 in BALB/c mice. Virol J 2014; 11:21. [PMID: 24502341 PMCID: PMC3923897 DOI: 10.1186/1743-422x-11-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/29/2014] [Indexed: 01/18/2023] Open
Abstract
Background Regular reformulation of currently available vaccines is necessary due to the unpredictable variability of influenza viruses. Therefore, vaccine based on a highly conserved antigen with capability of induction of effective immune responses could be a potential solution. Influenza matrix protein-2 (M2) is highly conserved across influenza subtypes and a promising candidate for a broadly protective influenza vaccine. For the enhancement of broad protection, four tandem copies of consensus M2 gene containing extracellular (ED) and cytoplasmic (CD) without the trans-membrane domain (TM) reconstituted from H1N1, H5N1 and H9N2 influenza viruses were linked and named as 4sM2. The construct was effectively expressed in Escherichia coli, purified and proteins were used to immunize BALB/c mice. Humoral and cell-mediated immune responses were investigated following administration. Results Mice were intramuscularly immunized with 4sM2 protein 2 times at 2 weeks interval. Two weeks after the last immunization, first humoral and cell mediated immune response specific to sM2 protein were evaluated and the mice were challenged with a lethal dose (10MLD50) of divergent subtypes A/EM/Korea/W149/06(H5N1), A/PR/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses. The efficacy of 4sM2 was evaluated by determining survival rates, body weights and residual lung viral titers. Our studies demonstrate that the survival of mice immunized with 4sM2 was significantly higher (80–100% survival) than that of unimmunized mice (0% survival). We also examined the long lasting protection against heterosubtype H5N2 virus and found that mice vaccinated with 4sM2 displayed 80% of protection even after 6 months of final vaccination. Conclusion Taken together, these results suggest that prokaryotic expressed multimeric sM2 protein achieved cross protection against lethal infection of divergent influenza subtypes which are lasting for the long time.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon 305-764, Republic of Korea.
| | | |
Collapse
|
14
|
Zhang F, Fang F, Chang H, Peng B, Wu J, Chen J, Wang H, Chen Z. Comparison of protection against H5N1 influenza virus in mouse offspring provided by maternal vaccination with HA DNA and inactivated vaccine. Arch Virol 2013; 158:1253-65. [DOI: 10.1007/s00705-013-1621-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/17/2012] [Indexed: 01/04/2023]
|
15
|
Sato MN. Maternal antibodies as an immunotherapeutic strategy in the newborn. Immunotherapy 2012; 4:659-62. [PMID: 22853749 DOI: 10.2217/imt.12.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Electroporation-Mediated DNA Vaccination. CLINICAL ASPECTS OF ELECTROPORATION 2011. [PMCID: PMC7122510 DOI: 10.1007/978-1-4419-8363-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Vaccine protection against lethal homologous and heterologous challenge using recombinant AAV vectors expressing codon-optimized genes from pandemic swine origin influenza virus (SOIV). Vaccine 2010; 29:1690-9. [PMID: 21195079 DOI: 10.1016/j.vaccine.2010.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 08/16/2010] [Accepted: 12/14/2010] [Indexed: 12/12/2022]
Abstract
The recent H1N1 influenza pandemic and the inevitable delay between identification of the virus and production of the specific vaccine have highlighted the urgent need for new generation influenza vaccines that can preemptively induce broad immunity to different strains of the virus. In this study we have produced AAV-based vectors expressing the A/Mexico/4603/2009 (H1N1) hemagglutinin (HA), nucleocapsid (NP) and the matrix protein M1 and have evaluated their ability to induce specific immune response and protect mice against homologous and heterologous challenge. Each of the vaccine vectors elicited potent cellular and humoral immune responses in mice. Although immunization with AAV-M1 did not improve survival after challenge with the homologous strain, immunization with the AAV-H1 and AAV-NP vectors resulted in survival of all mice, as did inoculation with a combination of all three vectors. Furthermore, trivalent vaccination also conferred partial protection against challenge with the highly heterologous and virulent A/PR/8/34 strain of H1N1 influenza.
Collapse
|
18
|
Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010; 28:7690-8. [DOI: 10.1016/j.vaccine.2010.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/01/2023]
|
19
|
Guo L, Zheng M, Ding Y, Li D, Yang Z, Wang H, Chen Q, Sui Z, Fang F, Chen Z. Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein. Arch Virol 2010; 155:1765-75. [PMID: 20652335 DOI: 10.1007/s00705-010-0756-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.
Collapse
Affiliation(s)
- Lina Guo
- Shanghai Institute of Biological Products, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sturgill TL, Horohov DW. Vaccination Response of Young Foals to Keyhole Limpet Hemocyanin: Evidence of Effective Priming in the Presence of Maternal Antibodies. J Equine Vet Sci 2010. [DOI: 10.1016/j.jevs.2010.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kim JK, Kayali G, Walker D, Forrest HL, Ellebedy AH, Griffin YS, Rubrum A, Bahgat MM, Kutkat MA, Ali MAA, Aldridge JR, Negovetich NJ, Krauss S, Webby RJ, Webster RG. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry. Proc Natl Acad Sci U S A 2010; 107:11044-9. [PMID: 20534457 PMCID: PMC2890765 DOI: 10.1073/pnas.1006419107] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Ghazi Kayali
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - David Walker
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Heather L. Forrest
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ali H. Ellebedy
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Yolanda S. Griffin
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Adam Rubrum
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Mahmoud M. Bahgat
- Department of Infection Genetics, the Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | - M. A. A. Ali
- Center of Excellence for Advanced Sciences, National Research Center, 12311 Dokki, Giza, Egypt; and
| | - Jerry R. Aldridge
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Nicholas J. Negovetich
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Scott Krauss
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Richard J. Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38106
| | - Robert G. Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN 38106
| |
Collapse
|
22
|
Sui Z, Chen Q, Wu R, Zhang H, Zheng M, Wang H, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M2-based vaccine with chitosan as an adjuvant. Arch Virol 2010; 155:535-44. [DOI: 10.1007/s00705-010-0621-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/01/2010] [Indexed: 10/19/2022]
|
23
|
Abstract
Newborns have an immature immune system that renders them at high risk for infection while simultaneously reducing responses to most vaccines, thereby posing challenges in protecting this vulnerable population. Nevertheless, certain vaccines, such as BCG and Hepatitis B vaccine, do demonstrate safety and some efficacy at birth, providing proof of principal that certain antigen-adjuvant combinations are able to elicit protective neonatal responses. Moreover, birth is a major point of healthcare contact globally meaning that effective neonatal vaccines achieve high population penetration. Given the potentially significant benefit of vaccinating at birth, availability of a broader range of more effective neonatal vaccines is an unmet medical need and a public health priority. This review focuses on safety and efficacy of neonatal vaccination in humans as well as recent research employing novel approaches to enhance the efficacy of neonatal vaccination.
Collapse
Affiliation(s)
- Alicia Demirjian
- Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston, Boston, MA 02115, USA
| | | |
Collapse
|